1
|
Regime shifts on tropical coral reef ecosystems: future trajectories to animal-dominated states in response to anthropogenic stressors. Emerg Top Life Sci 2021; 6:95-106. [PMID: 34927689 DOI: 10.1042/etls20210231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
Despite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature. In most cases, these reports are over small to medium spatial scales (<4 × 104 m2 and 4 × 104 to 2 × 106 m2, respectively). Importantly, from the few studies where we were able to collect information on the persistence of the regime shifts, we determined that these non-scleractinian states are generally unstable, with further changes since the original regime shift. However, these changes were not generally back to coral dominance. While there has been some research to understand how sponge- and octocoral-dominated systems may function, there is still limited information on what ecosystem services have been disrupted or lost as a result of these shifts. Given that many coral reefs across the world are on the edge of tipping points due to increasing anthropogenic stress, we urgently need to understand the consequences of non-algal coral reef regime shifts.
Collapse
|
2
|
Mazzuco ACDA, Stelzer PS, Bernardino AF. Substrate rugosity and temperature matters: patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ 2020; 8:e8289. [PMID: 32219015 PMCID: PMC7087490 DOI: 10.7717/peerj.8289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Modeling and forecasting ocean ecosystems in a changing world will require advances in observational efforts to monitor marine biodiversity. One of the observational challenges in coastal reef ecosystems is to quantify benthic and climate interactions which are key to community dynamics across habitats. Habitat complexity (i.e., substrate rugosity) on intertidal reefs can be an important variable explaining benthic diversity and taxa composition, but the association between substrate and seasonal variability is poorly understood on lateritic reefs in the South Atlantic. We asked if benthic assemblages on intertidal reefs with distinct substrate rugosity would follow similar seasonal patterns of succession following meteo-oceanographic variability in a tropical coastal area of Brazil. We combined an innovative 3D imaging for measuring substrate rugosity with satellite monitoring to monitor spatio-temporal patterns of benthic assemblages. The dataset included monthly in situ surveys of substrate cover and taxon diversity and richness, temporal variability in meteo-oceanographic conditions, and reef structural complexity from four sites on the Eastern Marine Ecoregion of Brazil. Additionally, correlation coefficients between temperature and both benthic diversity and community composition from one year of monitoring were used to project biodiversity trends under future warming scenarios. Our results revealed that benthic diversity and composition on intertidal reefs are strongly regulated by surface rugosity and sea surface temperatures, which control the dominance of macroalgae or corals. Intertidal reef biodiversity was positively correlated with reef rugosity which supports previous assertions of higher regional intertidal diversity on lateritic reefs that offer increased substrate complexity. Predicted warming temperatures in the Eastern Marine Ecoregion of Brazil will likely lead to a dominance of macroalgae taxa over the lateritic reefs and lower overall benthic diversity. Our findings indicate that rugosity is not only a useful tool for biodiversity mapping in reef intertidal ecosystems but also that spatial differences in rugosity would lead to very distinct biogeographic and temporal patterns. This study offers a unique baseline of benthic biodiversity on coastal marine habitats that is complementary to worldwide efforts to improve monitoring and management of coastal reefs.
Collapse
Affiliation(s)
| | | | - Angelo F Bernardino
- Department of Oceanography, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
3
|
Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS, Bell JJ. Interactive effects of temperature and pCO 2 on sponges: from the cradle to the grave. GLOBAL CHANGE BIOLOGY 2017; 23:2031-2046. [PMID: 27550825 DOI: 10.1111/gcb.13474] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 05/20/2023]
Abstract
As atmospheric CO2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be 'winners' in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life-history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO2 providing phototrophic species with protection from elevated temperature, across different life stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species.
Collapse
Affiliation(s)
- Holly M Bennett
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
- Australian Institute of Marine Science, Townsville, 4810, Qld, Australia
| | - Christine Altenrath
- Australian Institute of Marine Science, Townsville, 4810, Qld, Australia
- AIMS@JCU, James Cook University, Townsville, Qld, 4811, Australia
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, 4810, Qld, Australia
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
4
|
Bell JJ, McGrath E, Biggerstaff A, Bates T, Cárdenas CA, Bennett H. Global conservation status of sponges. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:42-53. [PMID: 25599574 DOI: 10.1111/cobi.12447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand.
| | | | | | | | | | | |
Collapse
|