1
|
García-Dolores F, Hernández-Torres MA, Fuentes-Medel E, Díaz A, Guevara J, Baltazar-Gaytan E, Aguilar-Hernández L, Nicolini H, Morales-Medina JC, González-Cano SI, de la Cruz F, Gil-Velazco A, Tendilla-Beltrán H, Flores G. Atrophy and Higher Levels of Inflammatory-Related Markers in the Posterior Cerebellar Lobe Cortex in Chronic Alcohol Use Disorder: A Cross-Sectional Study. Neuropathol Appl Neurobiol 2025; 51:e70011. [PMID: 40141018 DOI: 10.1111/nan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
AIMS Alcohol use disorder (AUD) involves excessive and chronic ethanol consumption, leading to various health issues, including cerebellar atrophy. The cerebellum is particularly susceptible to ethanol-induced damage through neuroinflammation, oxidative stress and excitotoxicity. This damage has been documented predominantly in the anterior lobe, primarily due to its role in motor function, which is often impaired in patients with AUD. However, less is known about the impact of AUD on the posterior cerebellar lobes. In contrast, alterations in the posterior lobe have been associated with cerebellar cognitive affective syndrome (CCAS). Moreover, the cerebellum is an asymmetric structure with spatial functions being left-lateralised. We hypothesised that the posterior cerebellar lobe in AUD cases would show increased inflammation compared with healthy controls. METHODS This cross-sectional study examined the structural integrity and neuroinflammatory state of the left posterior cerebellar lobe cortex in post-mortem samples from nine males with chronic AUD and 9 control cases. RESULTS Chronic AUD cases showed significant cerebellar damage. Immunohistochemistry revealed higher levels of reactive astrogliosis (GFAP), increased Treg cell markers (CD45 and FOXP3), increased mitochondria marker (MitoTrackerTM), elevated COX2 (indicating inflammation and Treg cell activity), increased cFos protein (cell activity marker), and higher caspase 3 (Casp3) levels, suggesting excessive cell death. These findings indicate that chronic AUD leads to atrophy in the left posterior cerebellar lobe cortex due to neuroinflammation driven by reactive astrogliosis, Treg cell infiltration, and COX2 activity. CONCLUSIONS The study highlights the inflammatory consequences of chronic AUD, potentially linked to cerebellar atrophy and subsequent motor and cognitive impairments. Targeting neuroinflammation could help mitigate the neurodegenerative effects of chronic AUD.
Collapse
Affiliation(s)
- Fernando García-Dolores
- Instituto de Ciencias Forenses (INCIFO), Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico City, Mexico
| | | | - Estefania Fuentes-Medel
- Departamento de Farmacia, Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alfonso Díaz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Eduardo Baltazar-Gaytan
- Facultad de Medicina, Universidad Veracruzana (UV) Región Córdoba, Orizaba, Mexico
- Facultad de Enfermería, Universidad Veracruzana (UV) Región Córdoba, Orizaba, Mexico
| | | | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Gil-Velazco
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
2
|
Elesinnla A, Khatoon R, Kleinert N, Wu J, Waddell J, Kristian T. Ethanol Administration in Mice Leads to Sex-Specific Changes in the Acetylation of α-Tubulin in the Cerebellum. Brain Sci 2025; 15:326. [PMID: 40309791 PMCID: PMC12025013 DOI: 10.3390/brainsci15040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Acetylation of α-tubulin is an important post-translational modification that helps maintain microtubules' stability and dynamics, including axonal transport, cell signaling, and overall neuronal integrity. This study investigates sex-based differences in alcohol-induced acetylation of α-tubulin in mouse cerebellum. METHODS Adult, 3-month-old male and female C57BL/6 mice were administered 20% ethanol intraperitoneally. The cerebellum was dissected at 30 min, 1 h, 2 h, and 4 h post-injection. Expression levels of cerebellar acetylation of α-tubulin and enzymes mediating acetylation/deacetylation were analyzed by Western blot. The downstream product of ethanol metabolism, acetyl-CoA, was quantified by HPLC. RESULTS In males, α-tubulin acetylation levels increased significantly as early as 30 min post-ethanol injection, whereas females exhibited increased acetylation at a later time point, after 1 h. These sex-specific changes coincided with alterations in acetyl-CoA levels that increased significantly at 15 min in males and 1 h in females following ethanol administration. Furthermore, the level of acetyltransferase that acetylates tubulin increased significantly at 30 min in males and 1 h in females. Notably, however, no significant changes were observed in the level of the tubulin deacetylating enzyme, HDAC6, in either sex. CONCLUSIONS Our data demonstrate that these sex differences stem from variations in expression levels of tubulin acetyltransferase (αTAT1), and the rate of ethanol metabolism-related acetyl-CoA production between male and female animals.
Collapse
Affiliation(s)
- Abosede Elesinnla
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore Street, Baltimore, MD 21201, USA; (A.E.); (R.K.); (J.W.)
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore Street, Baltimore, MD 21201, USA; (A.E.); (R.K.); (J.W.)
| | - Nicholas Kleinert
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore Street, Baltimore, MD 21201, USA; (A.E.); (R.K.); (J.W.)
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore Street, Baltimore, MD 21201, USA; (A.E.); (R.K.); (J.W.)
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Ramakrishnan SA, Shaik RB, Kanagamani T, Neppala G, Chen J, Fiore VG, Hammond CJ, Srinivasan S, Ivanov I, Chakravarthy VS, Kool W, Parvaz MA. Impaired arbitration between reward-related decision-making strategies in Alcohol Users compared to Alcohol Non-Users: a computational modeling study. NPP - DIGITAL PSYCHIATRY AND NEUROSCIENCE 2025; 3:1. [PMID: 39759090 PMCID: PMC11698690 DOI: 10.1038/s44277-024-00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Reinforcement learning studies propose that decision-making is guided by a tradeoff between computationally cheaper model-free (habitual) control and costly model-based (goal-directed) control. Greater model-based control is typically used under highly rewarding conditions to minimize risk and maximize gain. Although prior studies have shown impairments in sensitivity to reward value in individuals with frequent alcohol use, it is unclear how these individuals arbitrate between model-free and model-based control based on the magnitude of reward incentives. In this study, 81 individuals (47 frequent Alcohol Users and 34 Alcohol Non-Users) performed a modified 2-step learning task where stakes were sometimes high, and other times they were low. Maximum a posteriori fitting of a dual-system reinforcement-learning model was used to assess the degree of model-based control, and a utility model was used to assess risk sensitivity for the low- and high-stakes trials separately. As expected, Alcohol Non-Users showed significantly higher model-based control in higher compared to lower reward conditions, whereas no such difference between the two conditions was observed for the Alcohol Users. Additionally, both groups were significantly less risk-averse in higher compared to lower reward conditions. However, Alcohol Users were significantly less risk-averse compared to Alcohol Non-Users in the higher reward condition. Lastly, greater model-based control was associated with a less risk-sensitive approach in Alcohol Users. Taken together, these results suggest that frequent Alcohol Users may have impaired metacontrol, making them less flexible to varying monetary rewards and more prone to risky decision-making, especially when the stakes are high.
Collapse
Affiliation(s)
- Srinivasan A. Ramakrishnan
- Department of Health Informatics, Rutgers - School of Health Professions, Piscataway, NJ USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Riaz B. Shaik
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Gopi Neppala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Jeffrey Chen
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Vincenzo G. Fiore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christopher J. Hammond
- Department of Psychiatry & Behavioral Sciences, Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Shankar Srinivasan
- Department of Health Informatics, Rutgers - School of Health Professions, Piscataway, NJ USA
| | - Iliyan Ivanov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Wouter Kool
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO USA
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
4
|
Neel AI, Wang Y, Sun H, Liontis KE, McCormack MC, Mayer JC, Cervera Juanes RP, Davenport AT, Grant KA, Daunais JD, Chen R. Differential regulation of G protein-coupled receptor-associated proteins in the caudate and the putamen of cynomolgus macaques following chronic ethanol drinking. J Neurochem 2024; 168:2722-2735. [PMID: 38783749 PMCID: PMC11449652 DOI: 10.1111/jnc.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCβ) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gβ1γ, PKCα, PKCε, CaMKII, GSK3β, β-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.
Collapse
Affiliation(s)
- Anna I. Neel
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Yutong Wang
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Haiguo Sun
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Katherine E. Liontis
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Mary C. McCormack
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Jonathan C. Mayer
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Rita P. Cervera Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - April T. Davenport
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Kathleen A. Grant
- Division of Neuroscience Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239
| | - James D. Daunais
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| | - Rong Chen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27157
| |
Collapse
|
5
|
Mudyanselage AW, Wijamunige BC, Kocoń A, Turner R, McLean D, Morentin B, Callado LF, Carter WG. Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues. Antioxidants (Basel) 2024; 13:580. [PMID: 38790685 PMCID: PMC11117938 DOI: 10.3390/antiox13050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocoń
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Ricky Turner
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Denise McLean
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, E-48001 Bilbao, Spain;
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country-UPV/EHU, E-48940 Leioa, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| |
Collapse
|
6
|
Mudyanselage AW, Wijamunige BC, Kocon A, Carter WG. Differentiated Neurons Are More Vulnerable to Organophosphate and Carbamate Neurotoxicity than Undifferentiated Neurons Due to the Induction of Redox Stress and Accumulate Oxidatively-Damaged Proteins. Brain Sci 2023; 13:728. [PMID: 37239200 PMCID: PMC10216341 DOI: 10.3390/brainsci13050728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Organophosphate (OP) and carbamate pesticides are toxic to pests through targeted inhibition of acetylcholinesterase (AChE). However, OPs and carbamates may be harmful to non-target species including humans and could induce developmental neurotoxicity if differentiated or differentiating neurons are particularly vulnerable to neurotoxicant exposures. Hence, this study compared the neurotoxicity of OPs, chlorpyrifos-oxon (CPO), and azamethiphos (AZO) and the carbamate pesticide, aldicarb, to undifferentiated versus differentiated SH-SY5Y neuroblastoma cells. OP and carbamate concentration-response curves for cell viability were undertaken using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and cellular bioenergetic capacity assessed via quantitation of cellular ATP levels. Concentration-response curves for inhibition of cellular AChE activity were also generated and the production of reactive oxygen species (ROS) was monitored using a 2',7'-dichlorofluorescein diacetate (DCFDA) assay. The OPs and aldicarb reduced cell viability, cellular ATP levels, and neurite outgrowth in a concentration-dependent fashion, from a threshold concentration of ≥10 µM. Neurotoxic potency was in the order AZO > CPO > aldicarb for undifferentiated cells but CPO > AZO > aldicarb for differentiated cells and this toxic potency of CPO reflected its more extensive induction of reactive oxygen species (ROS) and generation of carbonylated proteins that were characterized by western blotting. Hence, the relative neurotoxicity of the OPs and aldicarb in part reflects non-cholinergic mechanisms that are likely to contribute to developmental neurotoxicity.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.)
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.)
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocon
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.)
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.)
| |
Collapse
|
7
|
Nuñez-delMoral A, Bianchi PC, Brocos-Mosquera I, Anesio A, Palombo P, Camarini R, Cruz FC, Callado LF, Vialou V, Erdozain AM. The Matricellular Protein Hevin Is Involved in Alcohol Use Disorder. Biomolecules 2023; 13:biom13020234. [PMID: 36830603 PMCID: PMC9953008 DOI: 10.3390/biom13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.
Collapse
Affiliation(s)
- Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Paula C. Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Augusto Anesio
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fabio C. Cruz
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Vincent Vialou
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Université, 75005 Paris, France
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| | - Amaia M. Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| |
Collapse
|
8
|
Macedo GC, Kreifeldt M, Goulding SP, Okhuarobo A, Sidhu H, Contet C. Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder. Neuropsychopharmacology 2023; 48:821-830. [PMID: 36670228 PMCID: PMC10066354 DOI: 10.1038/s41386-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.
Collapse
Affiliation(s)
- Giovana C Macedo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott P Goulding
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Faculty of Pharmacy, Department of Pharmacology & Toxicology, University of Benin, Benin City, Nigeria
| | - Harpreet Sidhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Denham AN, Drake J, Gavrilov M, Taylor ZN, Bacanu SA, Vladimirov VI. Long Non-Coding RNAs: The New Frontier into Understanding the Etiology of Alcohol Use Disorder. Noncoding RNA 2022; 8:59. [PMID: 36005827 PMCID: PMC9415279 DOI: 10.3390/ncrna8040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.
Collapse
Affiliation(s)
- Allie N. Denham
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- MSCI Program, Texas A&M University, Bryan, TX 77807, USA
| | - Matthew Gavrilov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX 77807, USA
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ 85004, USA
- Departent of Psychiatry, Virginia Commonwealth University, Richmond, VA 23219, USA
- Texas A&M Institute for Neuroscience, College Station, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, College Station, Texas A&M University, College Station, TX 77843, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Segon T, Kerebih H, Gashawu F, Tesfaye B, Nakie G, Anbesaw T. Sleep quality and associated factors among nurses working at comprehensive specialized hospitals in Northwest, Ethiopia. Front Psychiatry 2022; 13:931588. [PMID: 36051547 PMCID: PMC9425912 DOI: 10.3389/fpsyt.2022.931588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Poor sleep quality is common among nurses. This problem possibly results in negative emotional and psychological consequences in nurses which secondary affect their work performances. However, in Ethiopia, there is a paucity of information about poor sleep quality and associated factors among nurses. This study aimed to assess the prevalence of poor sleep quality and associated factors among nurses working at comprehensive specialized hospitals in Northwest Ethiopia. METHODS An institutional-based cross-sectional study was conducted among 542 nurses who worked at University of Gondar (UOG), Tibebe Ghion, Felege Hiwot Comprehensive Specialized Hospitals, Ethiopia, who were incorporated into the study through a simple random sampling technique from 1 May to 2 June 2021. The Pittsburgh sleep quality index (PSQI) with a cut score of above 5 was used to assess sleep quality using a structured self-administered questionnaire. Other tools used are Depression Anxiety Stress Scales (DASS-21), Shift Work sleep disorders (SWSD), and Oslo-3 social support scales. Epi-Data version 3.1 was used for data entry and SPSS version 25 was used for data analysis. A multivariable logistic regression analysis was performed to identify variables that have a significant association with poor sleep quality among nurse professionals. The degree of association was assessed using an odds ratio (OR) with a 95% confidence interval (CI) at a two-tailed p-value of <0.05. RESULTS A total of 510 nurses were included in the study with a response rate of 94%. The study showed that the overall prevalence of poor sleep quality among nurses was 75.5% (95% CI (71.8, 79.1). Being female (AOR = 1.72:95% CI = 1.19, 2.28), depressive symptoms (AOR = 2.24:95% CI = 1.24, 3.85), anxiety symptoms (AOR = 2.12: 95% CI = 1.23, 3.62), stress (AOR = 2.85: 95% CI = 1.67, 4.82) and current alcohol drinking (AOR = 1.84 :95% CI = 1.27, 3.13) were significantly associated with poor sleep quality. CONCLUSION The overall prevalence of poor sleep quality among nurses was high. Being female, depressive symptoms, anxiety symptoms, stress, and current alcohol drinking had been significantly associated with poor sleep quality. Therefore, it is essential to institute effective intervention strategies emphasizing contributing factors to poor sleep quality.
Collapse
Affiliation(s)
- Tesfaye Segon
- Department of Psychiatry, College of Health Science, Mettu University, Mettu, Ethiopia
| | - Habtamu Kerebih
- Department of Psychiatry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Fanuel Gashawu
- Department of Psychiatry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Bizuneh Tesfaye
- Department of Psychiatry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Girum Nakie
- Department of Psychiatry, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tamrat Anbesaw
- Department of Psychiatry, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| |
Collapse
|
11
|
In vivo evaluation of a microtubule PET ligand, [ 11C]MPC-6827, in mice following chronic alcohol consumption. Pharmacol Rep 2021; 74:241-247. [PMID: 34491568 DOI: 10.1007/s43440-021-00311-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Excessive alcohol consumption is a global health burden and requires a better understanding of its neurobiology. A lower density of brain microtubules is found in alcohol-related human brain disease postmortem and in rodent models of chronic alcohol consumption. Here, we report in vivo imaging studies of microtubules in brain using our recently reported Positron Emission Tomography (PET) tracer, [11C]MPC-6827, in chronic alcohol-consuming adult male C57BL/6 J mice and control mice. METHODS In vivo PET imaging studies of [11C]MPC-6827 (3.7 ± 0.8 MBq) were performed in two groups of adult male mice: (1) water-consuming control mice (n = 4) and (2) mice that consumed 20% alcohol (w/v) for 4 months using the intermittent 2-bottle choice procedure that has been shown to lead to signs of alcohol dependence. Dynamic 63 min PET images were acquired using a microPET Inveon system (Siemens, Germany). PET images were reconstructed using the 3D-OSEM algorithm and analyzed using VivoQuant version 4 (Invicro, MA). Tracer uptake in ROIs that included whole brain, prefrontal cortex (PFC), liver and heart was measured and plotted as %ID/g over time (0-63 min) to generate time-activity curves (TACs). RESULTS In general, a trend for lower binding of [11C]MPC-6827 in the whole brain and PFC of mice in the chronic alcohol group was found compared with control group. No group difference in radiotracer binding was found in the peripheral organs such as liver and heart. CONCLUSIONS This pilot study indicates a trend of loss of microtubule binding in whole brain and prefrontal cortex of chronic alcohol administered mice brain compared to control mice, but no loss in heart or liver. These results indicate the potential of [11C]MPC-6827 as a PET ligand for further in vivo imaging investigations of AUD in human.
Collapse
|
12
|
Food and Nutrition Myths among Future Secondary School Teachers: A Problem of Trust in Inadequate Sources of Information. SOCIAL SCIENCES 2021. [DOI: 10.3390/socsci10090325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Internet and social networks are full of nutrition information, offering people guidance to make healthy eating choices. These sources always present themselves as a gateway to reliable information on healthy eating; however, too often this is not the case. Far from being trustworthy, there are usually plenty of food myths. A food myth is a widespread false belief about food, nutrition, and eating facts that gives rise to certain behaviors, from fashionable trends to diets. Academic training is a valuable tool to combat food myths and the pseudoscience linked to them, but educators must participate in this battle. To test this idea, we analyzed the prevalence of nine highly popular food myths held by 201 secondary school Spanish teachers. The aim was to assess whether expertise in science areas prevents teachers from falling into these food misconceptions. Our study results showed that food myths are held regardless of specialty area. The power of the media in popularizing and spreading nutrition myths among educators may be the cause, even more potent than academic training. We conclude that since scientific knowledge is not enough to erase food myths, we need further actions if we aim to prevent the problems that food myths may cause.
Collapse
|
13
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
14
|
Retinal Nerve Fiber Layer in Patients with Alcohol Use Disorder. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objectives of the present study are to determine the effects of alcohol use on the retinal nerve fiber layer (RNFL) thickness and macular thickness of abstinent patients with alcohol use disorders (AUD) and to assess whether it correlates with alcohol consumption and/or cognitive impairment. This was a prospective, observational study that included 21 patients (42 eyes) and 21 controls (42 eyes). Patients met the criteria for early remission AUD at the moment of inclusion. We used optical coherence tomography to assess retinal thickness. Macular thickness in the group of AUD patients was lower in all quadrants (p < 0.05), with the exception of the peripheral and central. Regarding the nerve fiber layer in the macular and papilla areas, we found no significant differences. At the retina ganglion cell layer and in the nerve fiber of the macula, we found significant differences in all quadrants (p < 0.05), with the exception of the superior and superior nasal area, for the right eye. For the left eye, the only differences were found in the lower quadrant. Finally, when comparing the AUD patients to the controls, we found significant reductions in the ganglion cell layer of the macula in all quadrants in the former. There was a significant correlation between these findings and cognitive impairment (measured with the Test de Detección de Deterioro Cognitivo en Alcoholismo (TEDCA)), but not with alcohol consumption. Alcohol consumption is correlated with retinal harm and related cognitive decline.
Collapse
|
15
|
Kouzoukas DE, Schreiber JA, Tajuddin NF, Kaja S, Neafsey EJ, Kim HY, Collins MA. PARP inhibition in vivo blocks alcohol-induced brain neurodegeneration and neuroinflammatory cytosolic phospholipase A2 elevations. Neurochem Int 2019; 129:104497. [PMID: 31251945 DOI: 10.1016/j.neuint.2019.104497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
Chronic alcoholism promotes brain damage that impairs memory and cognition. High binge alcohol levels in adult rats also cause substantial neurodamage to memory-linked regions, notably, the hippocampus (HC) and entorhinal cortex (ECX). Concurrent with neurodegeneration, alcohol elevates poly (ADP-ribose) polymerase-1 (PARP-1) and cytosolic phospholipase A2 (cPLA2) levels. PARP-1 triggers necrosis when excessively activated, while cPLA2 liberates neuroinflammatory ω-6 arachidonic acid. Inhibitors of PARP exert in vitro neuroprotection while suppressing cPLA2 elevations in alcohol-treated HC-ECX slice cultures. Here, we examined in vivo neuroprotection and cPLA2 suppression by the PARP inhibitor, veliparib, in a recognized adult rat model of alcohol-binging. Adult male rats received Vanilla Ensure containing alcohol (ethanol, 7.1 ± 0.3 g/kg/day), or control (dextrose) ± veliparib (25 mg/kg/day), by gavage 3x daily for 4 days. Rats were sacrificed on the morning after the final binge. HC and ECX neurodegeneration was assessed in fixed sections by Fluoro-Jade B (FJB) staining. Dorsal HC, ventral HC, and ECX cPLA2 levels were quantified by immunoblotting. Like other studies using this model, alcohol binges elevated FJB staining in the HC (dentate gyrus) and ECX, indicating neurodegeneration. Veliparib co-treatment significantly reduced dentate gyrus and ECX neurodegeneration by 79% and 66%, respectively. Alcohol binges increased cPLA2 in the ventral HC by 34% and ECX by 72%, which veliparib co-treatment largely prevented. Dorsal HC cPLA2 levels remained unaffected by alcohol binges, consistent with negligible FJB staining in this brain region. These in vivo results support an emerging key role for PARP in binge alcohol-induced neurodegeneration and cPLA2-related neuroinflammation.
Collapse
Affiliation(s)
- Dimitrios E Kouzoukas
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA; Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA.
| | - Jennifer A Schreiber
- Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA
| | - Nuzhath F Tajuddin
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Simon Kaja
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Department of Ophthalmology, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA; Burn Shock Trauma Research Institute, Loyola University Chicago, Maywood, IL, USA; Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Edward J Neafsey
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Collins
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA; Neuroscience Graduate Program, Loyola University Chicago, Maywood, IL, USA; Alcohol Research Program, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
16
|
Enculescu C, Kerr ED, Yeo KYB, Schenk G, Fortes MRS, Schulz BL. Proteomics Reveals Profound Metabolic Changes in the Alcohol Use Disorder Brain. ACS Chem Neurosci 2019; 10:2364-2373. [PMID: 30807102 DOI: 10.1021/acschemneuro.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changes in brain metabolism are a hallmark of alcohol use disorder (AUD). Determining how AUD changes the brain proteome is critical for understanding the effects of alcohol consumption on biochemical processes in the brain. We used data-independent acquisition mass spectrometry proteomics to study differences in the abundance of proteins associated with AUD in prefrontal lobe and motor cortex from autopsy brain. AUD had a substantial effect on the overall brain proteome exceeding the inherent differences between brain regions. Proteins associated with glycolysis, trafficking, the cytoskeleton, and excitotoxicity were altered in abundance in AUD. We observed extensive changes in the abundance of key metabolic enzymes, consistent with a switch from glucose to acetate utilization in the AUD brain. We propose that metabolic adaptations allowing efficient acetate utilization contribute to ethanol dependence in AUD.
Collapse
Affiliation(s)
- Charmaine Enculescu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Edward D. Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - K. Y. Benjamin Yeo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
17
|
Behavioral and stereological analysis of the prefrontal cortex of rats submitted to chronic alcohol intake. Behav Brain Res 2019; 362:21-27. [DOI: 10.1016/j.bbr.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 01/25/2023]
|
18
|
Shim JH, Kim YT, Kim S, Baek HM. Volumetric Reductions of Subcortical Structures and Their Localizations in Alcohol-Dependent Patients. Front Neurol 2019; 10:247. [PMID: 30941093 PMCID: PMC6433880 DOI: 10.3389/fneur.2019.00247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Changes in brain morphometry have been extensively reported in various studies examining the effects of chronic alcohol use in alcohol-dependent patients. Such studies were able to confirm the association between chronic alcohol use and volumetric reductions in subcortical structures using FSL (FMRIB software library). However, each study that utilized FSL had different sets of subcortical structures that showed significant volumetric reduction. First, we aimed to investigate the reproducibility of using FSL to assess volumetric differences of subcortical structures between alcohol-dependent patients and control subjects. Second, we aimed to use Vertex analysis, a less utilized program, to visually inspect 3D meshes of subcortical structures and observe significant shape abnormalities that occurred in each subcortical structure. Vertex analysis results from the hippocampus and thalamus were overlaid on top of their respective subregional atlases to further pinpoint the subregional locations where shape abnormalities occurred. We analyzed the volumes of 14 subcortical structures (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) in 21 alcohol-dependent subjects and 21 healthy controls using images acquired with 3T MRI. The images were run through various programs found in FSL, such as SIENAX, FIRST, and Vertex analysis. We found that in alcohol-dependent patients, the bilateral thalamus (left: p < 0.01, right: p = 0.01), bilateral putamen (left: p = 0.02, right: p < 0.01), right globus pallidus (p < 0.01), bilateral hippocampus (left: p = 0.05, right: p = 0.03) and bilateral nucleus accumbens (left: p = 0.05, right: p = 0.03) were significantly reduced compared to the corresponding subcortical structures of healthy controls. With vertex analysis, we observed surface reductions of the following hippocampal subfields: Presubiculum, hippocampal tail, hippocampal molecular layer, hippocampal fissure, fimbria, and CA3. We reproduced the assessment made in previous studies that reductions in subcortical volume were negatively associated with alcohol dependence by using the FMRIB Software Library. In addition, we identified the subfields of the thalamus and hippocampus that showed volumetric reduction.
Collapse
Affiliation(s)
- Jae-Hyuk Shim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Yong-Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Siekyeong Kim
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| |
Collapse
|
19
|
Labisso WL, Raulin AC, Nwidu LL, Kocon A, Wayne D, Erdozain AM, Morentin B, Schwendener D, Allen G, Enticott J, Gerdes HK, Johnson L, Grzeskowiak J, Drizou F, Tarbox R, Osna NA, Kharbanda KK, Callado LF, Carter WG. The Loss of α- and β-Tubulin Proteins Are a Pathological Hallmark of Chronic Alcohol Consumption and Natural Brain Ageing. Brain Sci 2018; 8:175. [PMID: 30208635 PMCID: PMC6162390 DOI: 10.3390/brainsci8090175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/19/2018] [Accepted: 09/02/2018] [Indexed: 02/05/2023] Open
Abstract
Repetitive excessive alcohol intoxication leads to neuronal damage and brain shrinkage. We examined cytoskeletal protein expression in human post-mortem tissue from Brodmann's area 9 of the prefrontal cortex (PFC). Brain samples from 44 individuals were divided into equal groups of 11 control, 11 alcoholic, 11 non-alcoholic suicides, and 11 suicide alcoholics matched for age, sex, and post-mortem delay. Tissue from alcoholic cohorts displayed significantly reduced expression of α- and β-tubulins, and increased levels of acetylated α-tubulin. Protein levels of histone deacetylase-6 (HDAC6), and the microtubule-associated proteins MAP-2 and MAP-tau were reduced in alcoholic cohorts, although for MAPs this was not significant. Tubulin gene expressions increased in alcoholic cohorts but not significantly. Brains from rats administered alcohol for 4 weeks also displayed significantly reduced tubulin protein levels and increased α-tubulin acetylation. PFC tissue from control subjects had reduced tubulin protein expression that was most notable from the sixth to the eighth decade of life. Collectively, loss of neuronal tubulin proteins are a hallmark of both chronic alcohol consumption and natural brain ageing. The reduction of cytosolic tubulin proteins could contribute to the brain volumetric losses reported for alcoholic patients and the elderly.
Collapse
Affiliation(s)
- Wajana L Labisso
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- School of Medicine, Addis Ababa University, Addis Ababa 1000, Ethiopia.
| | - Ana-Caroline Raulin
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- École nationale supérieure de chimie de Montpellier, 34090 Montpellier, France.
| | - Lucky L Nwidu
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- Department of Experimental Pharmacology and Toxicology, University of Port Harcourt, Port Harcourt 500262, Rivers State, Nigeria.
| | - Artur Kocon
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Declan Wayne
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Amaia M Erdozain
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
- Department of Pharmacology, University of the Basque Country, Leioa-Erandio 48940, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid 28029, Spain.
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao 48001, Spain.
| | - Daniela Schwendener
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - George Allen
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Jack Enticott
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Henry K Gerdes
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Laura Johnson
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - John Grzeskowiak
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Fryni Drizou
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Rebecca Tarbox
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, Leioa-Erandio 48940, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid 28029, Spain.
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK.
| |
Collapse
|
20
|
Elmorsy E, Al-Ghafari A, Almutairi FM, Aggour AM, Carter WG. Antidepressants are cytotoxic to rat primary blood brain barrier endothelial cells at high therapeutic concentrations. Toxicol In Vitro 2017; 44:154-163. [PMID: 28712878 DOI: 10.1016/j.tiv.2017.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Antidepressants are commonly employed for the treatment of major depressive disorders and other psychiatric conditions. We investigated the relatively acute cytotoxic effects of three commonly prescribed antidepressants: fluoxetine, sertraline, and clomipramine on rat primary blood brain barrier endothelial cells over a concentration range of 0.1-100μM. At therapeutic concentrations (0.1μM) no significant cytotoxicity was observed after 4, 24, or 48h. At high therapeutic to overdose concentrations (1-100μM), antidepressants reduced cell viability in proportion to their concentration and exposure duration. At 1μM, antidepressants significantly reduced mitochondrial membrane potential. At drug concentrations producing ~50% inhibition of cell viability, all drugs significantly reduced cellular oxygen consumption rates, activities of mitochondrial complexes I and III, and triggered a significant increase of lactate production. Fluoxetine (6.5μM) and clomipramine (5.5μM) also significantly lowered transcellular transport of albumin. The mechanism of cellular cytotoxicity was evaluated and at high concentrations all drugs significantly increased the production of reactive oxygen species, and significantly increased the activity of the pro-apoptotic caspases-3, 8, and 9. Comet assays revealed that all drugs were genotoxic. Pre-incubation of cells with glutathione significantly ameliorated antidepressant-induced cytotoxicity, indicating the potential benefit of treatment of overdosed patients with antioxidants.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Departments of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fahd M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia.
| | | | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
21
|
Peana AT, Sánchez-Catalán MJ, Hipólito L, Rosas M, Porru S, Bennardini F, Romualdi P, Caputi FF, Candeletti S, Polache A, Granero L, Acquas E. Mystic Acetaldehyde: The Never-Ending Story on Alcoholism. Front Behav Neurosci 2017; 11:81. [PMID: 28553209 PMCID: PMC5425597 DOI: 10.3389/fnbeh.2017.00081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
Collapse
Affiliation(s)
| | - María J. Sánchez-Catalán
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Lucia Hipólito
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | | | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca F. Caputi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Ana Polache
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Luis Granero
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
- Centre of Excellence on Neurobiology of Addiction, University of CagliariCagliari, Italy
| |
Collapse
|
22
|
An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2016.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
De Filippis L, Halikere A, McGowan H, Moore JC, Tischfield JA, Hart RP, Pang ZP. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain 2016; 9:51. [PMID: 27160314 PMCID: PMC4862119 DOI: 10.1186/s13041-016-0221-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Background Alcohol abuse produces an enormous impact on health, society, and the economy. Currently, there are very limited therapies available, largely due to the poor understanding of mechanisms underlying alcohol use disorders (AUDs) in humans. Oxidative damage of mitochondria and cellular proteins aggravates the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. Results Here we show that ethanol exposure causes neuroinflammation in both human induced pluripotent stem (iPS) cells and human neural progenitor cells (NPCs). Ethanol exposure for 24 hours or 7 days does not affect the proliferation of iPS cells and NPCs, but primes an innate immune-like response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway. This leads to an increase of microtubule-associated protein 1A/1B-light chain 3+ (LC3B+) autophagic puncta and impairment of the mitochondrial and lysosomal distribution. In addition, a decrease of mature neurons derived from differentiating NPCs is evident in ethanol pre-exposed compared to control NPCs. Moreover, a second insult of a pro-inflammatory factor in addition to ethanol preexposure enhances innate cellular inflammation in human iPS cells. Conclusions This study provides strong evidence that neuronal inflammation contributes to the pathophysiology of AUDs through the activation of the inflammasome pathway in human cellular models.
Collapse
Affiliation(s)
- Lidia De Filippis
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA. .,Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA.,Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Heather McGowan
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA.,Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Jennifer C Moore
- Department of Genetics, Rutgers University, Piscataway, 08854, USA.,Human Genetic Institute of New Jersey, Rutgers University, Piscataway, 08854, USA
| | - Jay A Tischfield
- Department of Genetics, Rutgers University, Piscataway, 08854, USA.,Human Genetic Institute of New Jersey, Rutgers University, Piscataway, 08854, USA
| | - Ronald P Hart
- Human Genetic Institute of New Jersey, Rutgers University, Piscataway, 08854, USA.,Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, 08854, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA. .,Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, room 3233D, 89 French Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
24
|
Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res 2016; 789:15-25. [PMID: 27208973 DOI: 10.1016/j.mrfmmm.2016.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/17/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
Abstract
The recent demonstration that massive scale chromosomal shattering or pulverization can occur abruptly due to errors induced by interference with the microtubule machinery of the mitotic spindle followed by haphazard chromosomal annealing, together with sophisticated insights from epigenetics, provide profound mechanistic insights into some of the most perplexing classical observations of addiction medicine, including cancerogenesis, the younger and aggressive onset of addiction-related carcinogenesis, the heritability of addictive neurocircuitry and cancers, and foetal malformations. Tetrahydrocannabinol (THC) and other addictive agents have been shown to inhibit tubulin polymerization which perturbs the formation and function of the microtubules of the mitotic spindle. This disruption of the mitotic machinery perturbs proper chromosomal segregation during anaphase and causes micronucleus formation which is the primary locus and cause of the chromosomal pulverization of chromothripsis and downstream genotoxic events including oncogene induction and tumour suppressor silencing. Moreover the complementation of multiple positive cannabis-cancer epidemiological studies, and replicated dose-response relationships with established mechanisms fulfils causal criteria. This information is also consistent with data showing acceleration of the aging process by drugs of addiction including alcohol, tobacco, cannabis, stimulants and opioids. THC shows a non-linear sigmoidal dose-response relationship in multiple pertinent in vitro and preclinical genotoxicity assays, and in this respect is similar to the serious major human mutagen thalidomide. Rising community exposure, tissue storage of cannabinoids, and increasingly potent phytocannabinoid sources, suggests that the threshold mutagenic dose for cancerogenesis will increasingly be crossed beyond the developing world, and raise transgenerational transmission of teratogenicity as an increasing concern.
Collapse
|
25
|
Gerace E, Landucci E, Totti A, Bani D, Guasti D, Baronti R, Moroni F, Mannaioni G, Pellegrini-Giampietro DE. Ethanol Toxicity During Brain Development: Alterations of Excitatory Synaptic Transmission in Immature Organotypic Hippocampal Slice Cultures. Alcohol Clin Exp Res 2016; 40:706-16. [DOI: 10.1111/acer.13006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elisabetta Gerace
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Elisa Landucci
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Arianna Totti
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Roberto Baronti
- Clinical Toxicology Laboratory; Local Health Service; Florence Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | | |
Collapse
|
26
|
Caputi FF, Carboni L, Mazza D, Candeletti S, Romualdi P. Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug Alcohol Depend 2016; 161:265-75. [PMID: 26922280 DOI: 10.1016/j.drugalcdep.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ethanol and cocaine are widely abused drugs triggering long-lasting changes in neuronal circuits and synaptic transmission through the regulation of enzyme activity and gene expression. Compelling evidence indicates that the ubiquitin-proteasome system plays a role in the molecular changes induced by addictive substances, impacting on several mechanisms implicated in abuse. The goal of these studies was to evaluate the effects of cocaine or ethanol on proteasome activity in neuroblastoma cells. Moreover, the gene expression of specific subunits was assessed. METHODS Chymotrypsin-like activity was measured after 2 h, 24 h, and 48 h exposure to 5 μM cocaine or 40 mM ethanol. Proteasome subunit transcripts were evaluated by qPCR at the same time-points. RESULTS Treatments modified proteasome function in opposite directions, since cocaine increased and ethanol reduced chymotrypsin-like activity. Interestingly, we observed gene expression alterations induced by these drugs. In the core particle, the β1 and α5 subunits were mainly up-regulated by cocaine, whereas α6 transcripts were mostly decreased. β2 and β5 did not change. Similarly, ethanol exposure generally increased β1 and α5 mRNAs. Moreover, the β2 subunit was significantly up-regulated by ethanol only. The β5 and α6 subunits were not altered. In the regulatory particle, Rpt3 was increased by cocaine exposure, whereas it was reduced by ethanol. No significant Rpn9 alterations were observed. CONCLUSIONS These findings support the notion that addictive substances regulate proteasome function, contributing to the dysregulations related to drug abuse since the availability of adequate subunit amounts is necessary for proper complex assembly and function.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Daria Mazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
27
|
Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:27-35. [PMID: 27239399 PMCID: PMC4878828 DOI: 10.1007/s40139-016-0097-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Jun Xu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Xiao Liu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Yunheng Zhu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National, Institutes of Health, Bethesda, Maryland
| | - Michael Karin
- Department of Pharmacology, UC San Diego, La Jolla, CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, and Department of Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA
| | - Dilip V Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA; Stein Institute for Research on Aging, UC San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, La Jolla, CA
| | - Amanda J Roberts
- Department of Molecular & Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| | | | - Binhai Zheng
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | | | | |
Collapse
|
28
|
Li L, Yang XJ. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 2015; 72:4237-55. [PMID: 26227334 PMCID: PMC11113413 DOI: 10.1007/s00018-015-2000-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, Montreal, QC, H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, Montreal, QC, H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- McGill University Health Center, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
29
|
Whittom A, Villarreal A, Soni M, Owusu-Duku B, Meshram A, Rajkowska G, Stockmeier CA, Miguel-Hidalgo JJ. Markers of apoptosis induction and proliferation in the orbitofrontal cortex in alcohol dependence. Alcohol Clin Exp Res 2015; 38:2790-9. [PMID: 25421516 DOI: 10.1111/acer.12559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol-dependent (ALC) subjects exhibit glial and neuronal pathology in the prefrontal cortex (PFC). However, in many patients, neurophysiological disturbances are not associated with catastrophic cell depletion despite prolonged alcohol abuse. It is still unclear how some relevant markers of a cell's propensity to degenerate or proliferate are changed in the PFC of ALC subjects without major neurological disorders. METHODS Levels of pro-apoptotic caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA), and density of cells immunoreactive for proliferation marker Ki-67 (Ki-67-IR) were measured postmortem in the left orbitofrontal cortex (OFC) of 29 subjects with alcohol dependence and 23 nonpsychiatric comparison subjects. RESULTS Alcohol subjects had significantly higher levels of the 14 kDa C8 fragment (C8-14), an indicator of C8 activation. However, there was no change in the levels of DIABLO, XIAP, or in the DIABLO/XIAP ratio. PCNA protein level and density of Ki-67-IR cells were not significantly changed in alcoholics, although PCNA levels were increased in older ALC subjects as compared to controls. CONCLUSIONS Significant increase of a C8 activation indicator was found in alcoholism, but without significant changes in XIAP level, DIABLO/XIAP ratio, or Ki-67 labeling. These results would help to explain the absence of catastrophic cell loss in the PFC of many Brigman subjects, while still being consistent with an alcoholism-related vulnerability to slow decline in glial cells and neurons in the OFC of alcoholics.
Collapse
Affiliation(s)
- Angela Whittom
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Carter WG, Vigneswara V, Newlaczyl A, Wayne D, Ahmed B, Saddington S, Brewer C, Raut N, Gerdes HK, Erdozain AM, Tooth D, Bolt EL, Osna NA, Tuma DJ, Kharbanda KK. Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury. Biochem Biophys Res Commun 2015; 458:626-631. [PMID: 25684186 PMCID: PMC4355035 DOI: 10.1016/j.bbrc.2015.01.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 02/08/2023]
Abstract
We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.
Collapse
Affiliation(s)
- Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK.
| | - Vasanthy Vigneswara
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Anna Newlaczyl
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Declan Wayne
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Bilal Ahmed
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Stephen Saddington
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Charlotte Brewer
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Nikhilesh Raut
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Henry K Gerdes
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Amaia M Erdozain
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK; Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | - David Tooth
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Natalie A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
31
|
Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav 2014; 41:257-63. [PMID: 25461226 DOI: 10.1016/j.yebeh.2014.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/28/2014] [Accepted: 10/03/2014] [Indexed: 02/05/2023]
Abstract
Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans.
Collapse
|