1
|
González Altamiranda EA, Arias ME, Kaiser GG, Mucci NC, Odeón AC, Felmer RN. Upregulation of interferon-alpha gene in bovine embryos produced in vitro in response to experimental infection with noncytophatic bovine-viral-diarrhea virus. Mol Biol Rep 2020; 47:9959-9965. [PMID: 33226564 PMCID: PMC7681760 DOI: 10.1007/s11033-020-05958-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
In-vitro fertilization is a routine livestock-breeding technique widely used around the world. Several studies have reported the interaction of bovine viral-diarrhea virus (BVDV) with gametes and in-vitro-produced (IVP) bovine embryos. Since, gene expression in BVDV-infected IVP bovine embryos is scarcely addressed. The aim of this work was to evaluate the differential expression of genes involved in immune and inflammatory response. Groups of 20-25 embryos on Day 6 (morula stage) were exposed (infected) or not (control) to an NCP-BVDV strain in SOF medium. After 24 h, embryos that reached expanded blastocyst stage were washed. Total RNA of each embryo group was extracted to determine the transcription levels of 9 specific transcripts related with antiviral and inflammatory response by SYBR Green real time quantitative (RT-qPCR). Culture media and an aliquot of the last embryos wash on Day 7 were analyzed by titration and virus isolation, respectively. A conventional PCR confirmed BVDV presence in IVP embryos. A significantly higher expression of interferon-α was observed in blastocysts exposed to NCP-BVDV compared to the controls (p < 0.05). In this study, the upregulation of INFα and TLR7 genes involved in inflammatory and immune response in BVDV-infected IVP bovine embryos is a new finding in this field. This differential expression suggest that embryonic cells could function in a manner like immune cells by recognizing and responding early to interaction with viral pathogens. These results provide new insights into the action of BVDV on the complex molecular pathways controlling bovine early embryonic development.
Collapse
Affiliation(s)
- Erika A González Altamiranda
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires, Argentina. .,Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina.
| | - María E Arias
- Laboratorio de Reproducción Centro de Biotecnologia Reproductiva CEBIOR-BIOREN Facultad de Ciencias Agrícolas y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Germán G Kaiser
- Laboratorio de Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina
| | - Nicolás C Mucci
- Laboratorio de Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA CONICET, Balcarce, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Ricardo N Felmer
- Laboratorio de Reproducción Centro de Biotecnologia Reproductiva CEBIOR-BIOREN Facultad de Ciencias Agrícolas y Forestales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Peters SO, Hussain T, Adenaike AS, Hazzard J, Morenikeji OB, De Donato M, Paul S, Babar M, Yakubu A, Imumorin IG. Evolutionary Pattern of Interferon Alpha Genes in Bovidae and Genetic Diversity of IFNAA in the Bovine Genome. Front Immunol 2020; 11:580412. [PMID: 33117386 PMCID: PMC7561390 DOI: 10.3389/fimmu.2020.580412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interferons are secretory proteins induced in response to specific extracellular stimuli which stimulate intra- and intercellular networks for regulating innate and acquired immunity, resistance to viral infections, and normal and tumor cell survival and death. Type 1 interferons plays a major role in the CD8 T-cell response to viral infection. The genomic analysis carried out here for type I interferons within Bovidae family shows that cattle, bison, water buffalo, goat, and sheep (all Bovidae), have different number of genes of the different subtypes, with a large increase in the numbers, compared to human and mouse genomes. A phylogenetic analysis of the interferon alpha (IFNA) proteins in this group shows that the genes do not follow the evolutionary pattern of the species, but rather a cycle of duplications and deletions in the different species. In this study we also studied the genetic diversity of the bovine interferon alpha A (IFNAA), as an example of the IFNA genes in cattle, sequencing a fragment of the coding sequence in 18 breeds of cattle from Pakistan, Nigeria and USA. Similarity analysis allowed the allocation of sequences into 22 haplotypes. Bhagnari, Brangus, Sokoto Gudali, and White Fulani, had the highest number of haplotypes, while Angus, Hereford and Nari Master had the least. However, when analyzed by the average haplotype count, Angus, Bhagnari, Hereford, Holstein, Muturu showed the highest values, while Cholistani, Lohani, and Nari Master showed the lowest values. Haplotype 4 was found in the highest number of individuals (74), and in 15 breeds. Sequences for yak, bison, and water buffalo, were included within the bovine haplotypes. Medium Joining network showed that the sequences could be divided into 4 groups: one with highly similar haplotypes containing mostly Asian and African breeds, one with almost all of the Bos taurus American breeds, one mid-diverse group with mostly Asian and African sequences, and one group with highly divergent haplotypes with five N'Dama sequences and one from each of White Fulani, Dhanni, Tharparkar, and Bhagnari. The large genetic diversity found in IFNAA could be a very good indication of the genetic variation among the different genes of IFNA and could be an adaptation for these species in response to viral challenges they face.
Collapse
Affiliation(s)
- Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Adeyemi S. Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jordan Hazzard
- Department of Animal Science, Berry College, Mount Berry, GA, United States
| | - Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Marcos De Donato
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico
| | - Masroor Babar
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | | | - Ikhide G. Imumorin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Biological Sciences, First Technical University, Ibadan, Nigeria
| |
Collapse
|
3
|
He Y, Wang G, Zhang L, Zhai C, Zhang J, Zhao X, Jiang X, Zhao Z. Biological effects and clinical characteristics of microRNA-106a in human colorectal cancer. Oncol Lett 2017; 14:830-836. [PMID: 28693239 PMCID: PMC5494767 DOI: 10.3892/ol.2017.6179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs serve important roles in various diseases, particularly cancer. microRNA-106a (miR-106a) exhibits abnormal expression and oncogenic activity in carcinogenesis. The clinical significance of the abnormal expression of miR-106a in colorectal cancer is poorly understood. In the present study, miR-106a expression from colorectal cancer tissues was quantified using the reverse transcription-quantitative polymerase chain reaction. The overexpression or knockdown of miR-106a was performed by transfection with microRNA mimic or inhibitor in human colorectal carcinoma HCT116 cells. The overexpression of miR-106a promoted viability and inhibited apoptosis in colorectal cancer cells. The association between miR-106a expression and clinicopathological factors was analyzed, and it was identified that miR-106a exhibited significantly increased expression in adenocarcinoma tissues compared with in mucinous carcinoma tissues, and the expression of miR-106a was identified to be associated with the depth of invasion and differentiation. The expression of miR-106a in plasma was also determined and it was identified that increased expression of miR-106a, as a characteristic of patients with colorectal cancer, may be distinguished from that of other patients by digitization of the areas under the receiver operating characteristic curves. These data suggested that miR-106a is a potential biomarker in the diagnosis of colorectal carcinoma. However, the underlying molecular mechanism of miR-106a-promoted viability and inhibition of apoptosis requires further investigation.
Collapse
Affiliation(s)
- Yuzheng He
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China.,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guiqi Wang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Congjie Zhai
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Jun Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xusheng Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xia Jiang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zengren Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
4
|
Park MJ, Lee SE, Kim EY, Lee JB, Jeong CJ, Park SP. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer. Cell Reprogram 2015; 17:199-210. [PMID: 25984830 DOI: 10.1089/cell.2014.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bovine somatic cell nuclear transfer (SCNT) using vitrified-thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (p<0.05). Spindle assessment via the Oosight Microscopy Imaging System and microtubule staining revealed that vitrified metaphase II oocytes (VT group) were not suitable for SCNT. However, enucleating and/or activating oocytes prior to freezing enhanced their developmental potential and suitability for SCNT. The cloning efficiency of the enucleated-activated-vitrified-thawed (EAVT) group (21.6%) was better than that of the other vitrification groups [enucleated-vitrified-thawed (EVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential-related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen-thawed oocytes can be successfully achieved using optimized vitrification and co-culture techniques.
Collapse
Affiliation(s)
- Min Jee Park
- 1 Mirae Cell Bio Inc., Seoul 143-854, Korea.,2 Jeju National University Stem Cell Research Center , Seoul 143-854, Korea.,3 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju 690-756, Korea.,5 These authors contributed equally to this work
| | - Seung Eun Lee
- 2 Jeju National University Stem Cell Research Center , Seoul 143-854, Korea.,3 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju 690-756, Korea.,5 These authors contributed equally to this work
| | - Eun Young Kim
- 1 Mirae Cell Bio Inc., Seoul 143-854, Korea.,2 Jeju National University Stem Cell Research Center , Seoul 143-854, Korea.,3 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju 690-756, Korea
| | - Jun Beom Lee
- 4 Shin Woman's Hospital , Uijeongbu 480-848, Korea
| | | | - Se Pill Park
- 1 Mirae Cell Bio Inc., Seoul 143-854, Korea.,2 Jeju National University Stem Cell Research Center , Seoul 143-854, Korea.,3 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju 690-756, Korea
| |
Collapse
|