1
|
Jackson K, Samaddar S, Markiewicz MA, Bansal A. Vaccination-Based Immunoprevention of Colorectal Tumors: A Primer for the Clinician. J Clin Gastroenterol 2023; 57:246-252. [PMID: 36730670 PMCID: PMC9911105 DOI: 10.1097/mcg.0000000000001808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) continues to be a significant public health problem worldwide. CRC screening programs have reduced the incidence rates of CRCs but still suffer from the problems of missed lesions and interval cancers. Chemopreventive strategies against CRC would benefit high-risk populations but trials testing synthetic and naturally occurring compounds have not yielded a front runner. Immune mechanisms promoting cancer have been modulated to develop immunotherapy for cancer treatment that has revolutionized cancer management, but could also be applied to cancer interception, that is, cancer immunoprevention. Cancer immunoprevention refers to approaches that can enhance the immune system, either directly or by removing natural breaks such as immune checkpoints, to survey and destroy tumor cells. In this primer, we aim to explain the concepts behind vaccine-based cancer immunoprevention. Multiple cancer vaccines have been tried in advanced cancer populations, but most have failed primarily because of an immunosuppressive environment that accompanies advanced cancers. Preventive vaccines in immunocompetent hosts may have a better clinical response compared with therapeutic vaccines in immunosuppressed hosts. The first randomized controlled trial testing the mucin1 vaccine against CRC in the prevention setting has been successfully completed. For the benefit of the clinician, we briefly discuss important concepts related to the workings of preventive vaccines. Prevention with vaccines is a highly attractive approach because of the potential for highly targeted therapy with minimal side effects that could theoretically provide lifelong protection.
Collapse
Affiliation(s)
- Katy Jackson
- Department of Medicine, The University of Kansas Health System
| | | | - Mary A. Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology
- The University of Kansas Cancer Center, Kansas City, KS
| |
Collapse
|
2
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Kerr MD, McBride DA, Chumber AK, Shah NJ. Combining therapeutic vaccines with chemo- and immunotherapies in the treatment of cancer. Expert Opin Drug Discov 2020; 16:89-99. [PMID: 32867561 DOI: 10.1080/17460441.2020.1811673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breakthroughs in cancer immunotherapy have spurred interest in the development of vaccines to mediate prophylactic protection and therapeutic efficacy against primary tumors or to prevent relapse. However, immunosuppressive mechanisms employed by cancer cells to generate effective resistance have hampered clinical translation of therapeutic cancer vaccines. To enhance vaccine efficacy, the immunomodulatory properties of cytoreductive therapies could amplify a cancer-specific immune response. AREAS COVERED Herein, the authors discuss therapeutic cancer vaccines that harness whole cells and antigen-targeted vaccines. First, recent advancements in both autologous and allogeneic whole-cell vaccines and combinations with checkpoint blockade and chemotherapy are reviewed. Next, tumor antigen-targeted vaccines using peptide-based vaccines and DNA-vaccines are discussed. Finally, combination therapies using antigen-targeted vaccines are reviewed. EXPERT OPINION A deeper understanding of the immunostimulatory properties of cytoreductive therapies has supported their utility in combination therapies involving cancer vaccines as a potential strategy to induce a durable anti-tumor immune response for multiple types of cancers. Based on current evidence, combination therapies may have synergies that depend on the identity of the cytotoxic agent, vaccine target, dosing schedule, and cancer type. Together, these observations suggest that combining cancer vaccines with immunomodulatory cytoreductive therapy is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Matthew D Kerr
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - David A McBride
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - Arun K Chumber
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - Nisarg J Shah
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA.,Program in Immunology, University of California , San Diego, CA, USA.,San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California , San Diego, CA, USA
| |
Collapse
|
4
|
Santos-Sierra S. Developments in anticancer vaccination: budding new adjuvants. Biol Chem 2020; 401:435-446. [DOI: 10.1515/hsz-2019-0383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
AbstractThe immune system has a limited capacity to recognize and fight cells that become cancerous and in cancer patients, the immune system has to seek the right balance between cancer rejection and host-immunosupression. The tumor milieu builds a protective shell and tumor cells rapidly accumulate mutations that promote antigen variability and immune-escape. Therapeutic vaccination of cancer is a promising strategy the success of which depends on a powerful activation of the cells of the adaptive immune system specific for tumor-cell detection and killing (e.g. CD4+and CD8+T-cells). In the last decades, the search for novel adjuvants that enhance dendritic cell (DC) function and their ability to prime T-cells has flourished and some Toll-like receptor (TLR) agonists have long been known to be valid immune adjuvants. The implementation of TLR-synthetic agonists in clinical studies of cancer vaccination is replacing the initial use of microbial-derived products with some encouraging results. The purpose of this review is to summarize the latest discoveries of TLR-synthetic agonists with adjuvant potential in anti-cancer vaccination.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Feng Z, Yang R, Wu L, Tang S, Wei B, Guo L, He L, Feng Y. Atractylodes macrocephala polysaccharides regulate the innate immunity of colorectal cancer cells by modulating the TLR4 signaling pathway. Onco Targets Ther 2019; 12:7111-7121. [PMID: 31564895 PMCID: PMC6733773 DOI: 10.2147/ott.s219623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background It has been well-recognized that the polysaccharides from Atractylodes macrocephala (PAM) are immune system enhancers, which can facilitate the proliferation of lymphocytes and stimulate immune cells. Nevertheless, the antitumor effects of PAM and their molecular mechanisms remain unclear. Aim Our research aimed to evaluate the anti-cancer effects of PAM on colorectal cancer (CRC). Methods We tested the effects of PAM on the growth and proliferation of CRC cells and macrophages by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The pro-inflammatory cytokines expression and secretion was analyzed by real-time RT-PCR and ELISA assay. We also used MC38 cells xenograft model to test the anti-cancer effects of PAM in vivo. Results We found that although PAM treatment did not significantly affect the growth of CRC cells or enhance the proliferation of bone marrow-derived macrophages (BMDMs), it could enhance the phagocytosis of BMDMs by CRC cells. Biochemical tests and immunoblotting assays revealed that exposing BMDMs to PAM promoted the production of interleukin-6 (IL-6), interferon λ (IFN λ), tumor necrosis factor α (TNF-α), and nitric oxide (NO) through the MyD88/TLR4-dependent signaling pathway. One noteworthy observation is that PAM treatment could significantly prevent tumorigenesis of MC38 cells in C57BL/6J mice and increase the survival duration of mice with tumors, without influence on the weight of those mice. However, the anti-cancer effects of PAM were compromised in TLR4 KO mice, further suggesting that TLR4 signaling plays a vital role in the anti-cancer effects of PAM. Conclusion Therefore, PAM may prove to be a potential candidate in cancer immunotherapy.
Collapse
Affiliation(s)
- Zifang Feng
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ruibin Yang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Liusong Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Shihua Tang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Bin Wei
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Lijia Guo
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ling He
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Yonghuai Feng
- Department of Haematology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
6
|
Shi X, Chen X, Fang B, Ping Y, Qin G, Yue D, Li F, Yang S, Zhang Y. Decitabine enhances tumor recognition by T cells through upregulating the MAGE-A3 expression in esophageal carcinoma. Biomed Pharmacother 2019; 112:108632. [PMID: 30797153 DOI: 10.1016/j.biopha.2019.108632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer testis (CT) antigens are expressed in various types of tumors and represent the potential targets for T cell-based immunotherapy. Analysis of CT gene expression and DNA methylation have indicated that certain CT genes are epigenetically regulated and studies have confirmed that certain CT antigens are regulated by DNA methylation. In this study, we explored the epigenetic regulation of MAGE-A3 and improved the clinical outcome of MAGE-A3-specific T cell therapy in esophageal squamous cell carcinoma (ESCC). We used molecular profiling datasets in The Cancer Genome Atlas to analyze CT gene expression in ESCC and its regulation by DNA methylation. We performed quantitative reverse transcription PCR (qRT-PCR), immunohistochemistry and bisulfite sequencing in ESCC cell lines and ESCC tissues. Functional assays, such as flow cytometry, cytotoxicity assays and ELISA, were performed to determine the demethylation agent, decitabine (5-aza-2'-deoxycytidine, DAC)-treated cancer cell improved antigen specific T cells response. ESCC tumor cell-xenograft mouse model and enzyme-linked immunospot (ELISPOT) assays were used to determine the function of DAC treatment in enhancing anti-MAGE-3 T cell responses in ESCC. Furthermore, we performed qRT-PCR and flow cytometry in the peripheral blood mononuclear cells (PBMC) of myelodysplastic syndromes (MDS) patients. MAGE-A3, one of the CT antigens, expressed at various levels in ESCC and was interfered by DNA methylation. We observed an efficient increase in MAGE-A3 expression in tumor cells and tissues after the treatment of decitabine and the expression of MAGE-A3 was affected by DNA methylation. Functional assays showed enhanced secretion of IFN-γ and cytolysis of MAGE-A3 antigen-specific T cells by DAC-treated target cells. In the tumor cell-xenograft mouse model and ELISPOT assays, DAC increased the expression of MAGE-A3 and T cell mediated tumor clearance in ESCC as well. Notably, the proportions of MAGE-A3-responsive T cells were elevated in DAC-treated patients with MDS, indicating DAC dismissed the epigenetic inhibition of MAGE-A3. DAC would probably improve the clinical outcome of MAGE-A3-specific T cell therapy by augmenting the expression of target gene.
Collapse
Affiliation(s)
- Xiaojuan Shi
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Baijun Fang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
Rioux CR, Clapper ML, Cooper HS, Michaud J, St Amant N, Koohsari H, Workman L, Kaunga E, Hensley H, Pilorget A, Gerard C. Self-antigen MASH2 combined with the AS15 immunostimulant induces tumor protection in colorectal cancer mouse models. PLoS One 2019; 14:e0210261. [PMID: 30682058 PMCID: PMC6347180 DOI: 10.1371/journal.pone.0210261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Human achaete scute homolog 2 (HASH2) and its murine ortholog MASH2 are potential targets for colorectal cancer immunotherapy. We assessed immunogenicity and antitumor potential of recombinant MASH2 protein combined with AS15 immunostimulant (recMASH2+AS15) in CB6F1 and Apc+/Min-FCCC mice. CB6F1 mice received 4 injections of recMASH2+AS15 or AS15 alone before challenge with TC1-MASH2 tumor cells (Tumor Challenge). Apc+/Min-FCCC mice received 9 injections of recMASH2+AS15 or vehicle (phosphate buffer saline [PBS] or AS15 alone), before (two independent Prophylactic Studies) or after (Immunotherapy) colon adenomas were detectable by colonoscopy. CB6F1 mice immunized with recMASH2+AS15 had a significantly smaller mean tumor size and improved survival rate compared to controls (104 mm2 vs. 197 mm2 [p = 0.009] and 67% vs. 7% [p = 0.001], respectively). In Prophylactic Study 1, the mean number of colon adenomas was significantly lower in Apc+/Min-FCCC mice receiving recMASH2+AS15 compared to PBS (1.8 [95% confidence interval 1.0–3.3] vs. 5.2 [3.7–7.4], p = 0.003). Fewer microadenomas were observed in recMASH2+AS15 groups compared to PBS in both Prophylactic Studies (Study 1: mean 0.4 [0.2–1.0] vs. 1.5 [0.9–2.4], p = 0.009; Study 2: 0.4 [0.2–0.6] vs. 1.1 [0.8–1.5], p = 0.001). In the Immunotherapy Study, fewer colon adenomas tended to be observed in recMASH2+AS15-treated mice (4.1 [2.9–6.0]) compared to controls (AS15 4.7 [3.3–6.6]; PBS 4.9 [3.5–6.9]; no significant difference). recMASH2+AS15 induced MASH2-specific antibody and CD4+ responses in both mouse models. recMASH2+AS15 partially protected mice against MASH2-expressing tumors and reduced spontaneous colorectal adenomas in Apc+/Min-FCCC mice, indicating that MASH2/HASH2 antigens are targets for colorectal cancer immunotherapy.
Collapse
Affiliation(s)
| | - Margie L. Clapper
- Fox Chase Cancer Center, Philadelphia, PA, United States of America
- * E-mail:
| | - Harry S. Cooper
- Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | | | | | | | - Laura Workman
- Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Esther Kaunga
- Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Harvey Hensley
- Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | | | | |
Collapse
|
8
|
Vermaelen K. Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses. Front Immunol 2019; 10:8. [PMID: 30723469 PMCID: PMC6349827 DOI: 10.3389/fimmu.2019.00008] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
More than many other fields in medicine, cancer vaccine development has been plagued by a wide gap between the massive amounts of highly encouraging preclinical data on one hand, and the disappointing clinical results on the other. It is clear now that traditional approaches from the infectious diseases' vaccine field cannot be borrowed as such to treat cancer. This review highlights some of the strategies developed to improve vaccine formulations for oncology, including research into more powerful or “smarter” adjuvants to elicit anti-tumoral cellular immune responses. As an illustration of the difficulties in translating smart preclinical strategies into real benefit for the cancer patient, the difficult road of vaccine development in lung cancer is given as example. Finally, an outline is provided of the combinatorial strategies that leverage the increasing knowledge on tumor-associated immune suppressive networks. Indeed, combining with drugs that target the dominant immunosuppressive pathway in a given tumor promises to unlock the true power of cancer vaccines and potentially offer long-term protection from disease relapse.
Collapse
Affiliation(s)
- Karim Vermaelen
- Tumor Immunology Laboratory, Department of Pulmonary Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
10
|
Siddiqui MR, Grant C, Sanford T, Agarwal PK. Current clinical trials in non-muscle invasive bladder cancer. Urol Oncol 2018; 35:516-527. [PMID: 28778250 DOI: 10.1016/j.urolonc.2017.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The treatment options for non-muscle invasive bladder cancer (NMIBC) remain limited. Bacillus Calmette-Guerin (BCG) was the last major breakthrough in bladder cancer therapy almost 4 decades ago. There have been improvements in the understanding of immune therapies and cancer biology, leading to the development of novel agents. This has led to many clinical trials that are currently underway to find the next generation of therapies for NMIBC. METHOD We reviewed clinicaltrials.org and pubmed.gov to find the recently completed and ongoing clinical trials in NIMBC. Included in this review are clinical trials that are currently active and trials that were completed in and after 2014. RESULT Many trials with BCG-naive and BCG-unresponsive/recurrent/refractory/failure patients with NMIBC are either currently underway or have been recently completed. A wide variety of novel therapeutic agents are being investigated that range from cytotoxic agents to immunomodulatory agents to targeted molecular therapies. Other approaches include cancer vaccines, gene therapies, and chemoradiation potentiation agents. Novel drug-delivery methods are also being tested. CONCLUSION This comprehensive update of current trials provides researchers an overview of the current clinical trial landscape for patients with NMIBC.
Collapse
Affiliation(s)
| | - Campbell Grant
- Department of Urology, George Washington University Medical Center, Washington, D.C
| | - Thomas Sanford
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD
| | - Piyush K Agarwal
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD.
| |
Collapse
|
11
|
Akazawa T, Ohashi T, Wijewardana V, Sugiura K, Inoue N. Development of a vaccine based on bacteria-mimicking tumor cells coated with novel engineered toll-like receptor 2 ligands. Cancer Sci 2018; 109:1319-1329. [PMID: 29575556 PMCID: PMC5980365 DOI: 10.1111/cas.13576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/02/2023] Open
Abstract
For a successful tumor vaccine, it is necessary to develop effective immuno-adjuvants and identify specific tumor antigens. Tumor cells obtained from surgical or biopsy tissues are a good source of tumor antigens but, unlike bacteria, they do not induce strong immune responses. Here, we designed 2 novel lipopeptides that coat tumor cell surfaces and mimic bacterial components. Tumor cells coated with these lipopeptides (called bacteria-mimicking tumor cells [BMTC]) were prepared and their efficacy as a tumor vaccine examined. Natural bacterial lipopeptides act as ligands for toll-like receptor 2 (TLR2) and activate dendritic cells (DC). To increase the affinity of the developed lipopeptides for the negatively charged plasma membrane, a cationic polypeptide was connected to Pam2Cys (P2C), which is the basic structure of the TLR2 ligand. This increased the non-specific binding affinity of the peptides for the cell surface. Two such lipopeptides, P2CSK11 (containing 1 serine and 11 lysine residues) and P2CSR11 (containing 1 serine and 11 arginine residues) bound to irradiated tumor cells via the long cationic polypeptides more efficiently than the natural lipopeptide MALP2 (P2C-GNNDESNISFKEK) or a synthetic lipopeptide P2CSK4 (a short cationic polypeptide containing 1 serine and 4 lysines). BMTC coated with P2CSR11 or P2CSK11 were efficiently phagocytosed by DC and induced antigen cross-presentation in vitro. They also induced effective tumor-specific cytotoxic T cell responses and inhibited tumor growth in in vivo mouse models. P2CSR11 activated DC but induced less inflammation-inducing cytokines/interferons than other lipopeptides. Thus, P2CSR11 is a strong candidate antigen-specific immuno-adjuvant, with few adverse effects.
Collapse
Affiliation(s)
- Takashi Akazawa
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Toshimitsu Ohashi
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan.,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Viskam Wijewardana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Norimitsu Inoue
- Department of Tumor Immunology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
12
|
Rayn KN, Hale GR, Grave GPL, Agarwal PK. New therapies in nonmuscle invasive bladder cancer treatment. Indian J Urol 2018; 34:11-19. [PMID: 29343907 PMCID: PMC5769243 DOI: 10.4103/iju.iju_296_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Nonmuscle invasive bladder cancer (NMIBC) remains a very challenging disease to treat with high rates of recurrence and progression associated with current therapies. Recent technological and biological advances have led to the development of novel agents in NMIBC therapy. Methods: We reviewed existing literature as well as currently active and recently completed clinical trials in NMIBC by querying PubMed.gov and clinicaltrials.gov. Results: A wide variety of new therapies in NMIBC treatment are currently being developed, utilizing recent developments in the understanding of immune therapies and cancer biology. Conclusion: The ongoing efforts to develop new therapeutic approaches for NMIBC look very promising and are continuing to evolve.
Collapse
Affiliation(s)
- Kareem N Rayn
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Graham R Hale
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Merlano MC, Granetto C, Fea E, Ricci V, Garrone O. Heterogeneity of colon cancer: from bench to bedside. ESMO Open 2017; 2:e000218. [PMID: 29209524 PMCID: PMC5703395 DOI: 10.1136/esmoopen-2017-000218] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
The large bowel shows biomolecular, anatomical and bacterial changes that proceed from the proximal to the distal tract. These changes account for the different behaviour of colon cancers arising from the diverse sides of the colon-rectum as well as for the sensitivity to the therapy, including immunotherapy. The gut microbiota plays an important role in the modulation of the immune response and differs between the right colon cancer and the left colorectal cancer. The qualitative and quantitative difference of the commensal bacteria between the right side and the left side induces epigenetic changes in the intestinal epithelial cells as well as in the resident immune population. The second player in the pathological homeostasis of colorectal cancer is the differences of the genetic features of cancer cells and the different effects that microsatellite instability, chromosomal instability and the CpG island methylator phenotype induce on the immunological organisation of the tumour microenvironment. The third player is the immunological composition of the tumour microenvironment, which changes under the influence of both genetic structures and gut microbiota. All these three players influence each other. This review describes these three aspects, highlights their interactions and discusses data from reported clinical trials.
Collapse
Affiliation(s)
- Marco C Merlano
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Cristina Granetto
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Elena Fea
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Vincenzo Ricci
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Ornella Garrone
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| |
Collapse
|
14
|
Jeremic B, Cihoric N, Dubinsky P, Filipovic N. Adjuvant immunotherapy in resected early non-small cell lung cancer-battle lost, hopefully not the war! J Thorac Dis 2016; 8:1886-90. [PMID: 27618979 DOI: 10.21037/jtd.2016.07.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Branislav Jeremic
- Institute of Lung Diseases, Sremska Kamenica, Kragujevac, Serbia;; BioIRC Centre for Biomedical Research, Kragujevac, Serbia
| | - Nikola Cihoric
- Department of Radiation Oncology, Inselspital, Bern, Switzerland
| | - Pavol Dubinsky
- University Hospital to East Slovakia Institute of Oncology, Kosice, Slovakia
| | | |
Collapse
|
15
|
Hagiwara Y, Sieverling L, Hanif F, Anton J, Dickinson ER, Bui TTT, Andreeva A, Barran PE, Cota E, Nikolova PV. Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies. Sci Rep 2016; 6:25182. [PMID: 27121989 PMCID: PMC4848555 DOI: 10.1038/srep25182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 02/01/2023] Open
Abstract
The Melanoma-Associated Antigen A4 (MAGE-A4) protein is a target for cancer therapy. The function of this protein is not well understood. We report the first comprehensive study on key cancer-associated MAGE-A4 mutations and provide analysis on the consequences of these mutations on the structure, folding and stability of the protein. Based on Nuclear Magnetic Resonance and Circular Dichroism, these mutations had no significant effects on the structure and the folding of the protein. Some mutations affected the thermal stability of the protein remarkably. Native mass spectrometry of wild-type MAGE-A4 showed a broad charge state distribution suggestive of a structurally dynamic protein. Significant intensity was found in relatively low charge states, indicative of a predominantly globular form and some population in more extended states. The latter is supported by Ion Mobility measurements. The MAGE-A4 mutants exhibited similar features. These novel molecular insights shed further light on better understanding of these proteins, which are implicated in a wide range of human cancers.
Collapse
Affiliation(s)
- Yoshio Hagiwara
- King's College London, Faculty of Life Sciences &Medicine, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NH, UK
| | - Lina Sieverling
- King's College London, Faculty of Life Sciences &Medicine, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NH, UK
| | - Farina Hanif
- King's College London, Faculty of Life Sciences &Medicine, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NH, UK
| | - Jensy Anton
- King's College London, Faculty of Life Sciences &Medicine, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NH, UK
| | - Eleanor R Dickinson
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Tam T T Bui
- Biomolecular Spectroscopy Centre, King's College London, The Wolfson Wing, Hodgkin Building, London SE1 1UL
| | | | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Ernesto Cota
- Imperial College London, Faculty of Natural Sciences, London, SW7 2AZ
| | - Penka V Nikolova
- King's College London, Faculty of Life Sciences &Medicine, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford St, London, SE1 9NH, UK
| |
Collapse
|
16
|
Laubreton D, Bay S, Sedlik C, Artaud C, Ganneau C, Dériaud E, Viel S, Puaux AL, Amigorena S, Gérard C, Lo-Man R, Leclerc C. The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity. Cancer Immunol Immunother 2016; 65:315-25. [PMID: 26847142 PMCID: PMC4779142 DOI: 10.1007/s00262-016-1802-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
Malignant transformations are often associated with aberrant glycosylation processes that lead to the expression of new carbohydrate antigens at the surface of tumor cells. Of these carbohydrate antigens, the Tn antigen is particularly highly expressed in many carcinomas, especially in breast carcinoma. We designed MAG-Tn3, a fully synthetic vaccine based on three consecutive Tn moieties that are O-linked to a CD4+ T cell epitope, to induce anti-Tn antibody responses that could be helpful for therapeutic vaccination against cancer. To ensure broad coverage within the human population, the tetanus toxoid-derived peptide TT830-844 was selected as a T-helper epitope because it can bind to various HLA-DRB molecules. We showed that the MAG-Tn3 vaccine, which was formulated with the GSK proprietary immunostimulant AS15 and designed for human cancer therapy, is able to induce an anti-Tn antibody response in mice of various H-2 haplotypes, and this response correlates with the ability to induce a specific T cell response against the TT830-844 peptide. The universality of the TT830-844 peptide was extended to new H-2 and HLA-DRB molecules that were capable of binding this T cell epitope. Finally, the MAG-Tn3 vaccine was able to induce anti-Tn antibody responses in cynomolgus monkeys, which targeted Tn-expressing tumor cells and mediated tumor cell death both in vitro and in vivo. Thus, MAG-Tn3 is a highly promising anticancer vaccine that is currently under evaluation in a phase I clinical trial.
Collapse
Affiliation(s)
- Daphné Laubreton
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3523, Paris, France
| | - Christine Sedlik
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Cécile Artaud
- Pôle Intégré de Recherche Clinique, Institut Pasteur, Paris, France
| | - Christelle Ganneau
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3523, Paris, France
| | - Edith Dériaud
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Sophie Viel
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | | | - Sebastian Amigorena
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | | | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1041, Paris, France.
| |
Collapse
|
17
|
Abstract
The regulatory approval of ipilimumab (Yervoy) in 2011 ushered in a new era of cancer immunotherapies with durable clinical effects. Most of these breakthrough medicines are monoclonal antibodies that block protein-protein interactions between T cell checkpoint receptors and their cognate ligands. In addition, genetically engineered autologous T cell therapies have also recently demonstrated significant clinical responses in haematological cancers. Conspicuously missing from this class of therapies are traditional small-molecule drugs, which have previously served as the backbone of targeted cancer therapies. Modulating the immune system through a small-molecule approach offers several unique advantages that are complementary to, and potentially synergistic with, biologic modalities. This Review highlights immuno-oncology pathways and mechanisms that can be best or solely targeted by small-molecule medicines. Agents aimed at these mechanisms--modulation of the immune response, trafficking to the tumour microenvironment and cellular infiltration--are poised to significantly extend the scope of immuno-oncology applications and enhance the opportunities for combination with tumour-targeted agents and biologic immunotherapies.
Collapse
|
18
|
Boehm BE, Svatek RS. Novel therapeutic approaches for recurrent nonmuscle invasive bladder cancer. Urol Clin North Am 2015; 42:159-68, vii. [PMID: 25882558 DOI: 10.1016/j.ucl.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article summarizes strategies being investigated in patients with nonmuscle invasive bladder cancer. Progress has been made toward improving the delivery method of intravesical agents. Intravesical therapy is limited by the amount of time that the agent remains in contact with the bladder. Bladder cancer is considered to be responsive to immune therapy. Thus, many novel approaches are immune-based therapies and include cancer vaccines, use of Bacillus Calmette-Guérin (BCG) subcomponents, and checkpoint inhibitors. Finally, access to bladder mucosa via direct catheterization into the bladder via the urethra has enabled unique strategies for delivery of cancer therapy including viral- or plasmid-based gene therapy.
Collapse
Affiliation(s)
- Brock E Boehm
- Adult Cancer Program, Department of Urology, Cancer Therapy and Research Center, The University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78023, USA
| | - Robert S Svatek
- Adult Cancer Program, Department of Urology, Cancer Therapy and Research Center, The University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78023, USA.
| |
Collapse
|
19
|
Destexhe E, Stannard D, Wilby OK, Grosdidier E, Baudson N, Forster R, Gérard CM, Garçon N, Segal L. Nonclinical reproductive and developmental safety evaluation of the MAGE-A3 Cancer Immunotherapeutic, a therapeutic vaccine for cancer treatment. Reprod Toxicol 2014; 51:90-105. [PMID: 25530039 DOI: 10.1016/j.reprotox.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
We assessed potential toxic effects of the MAGE-A3 Cancer Immunotherapeutic on female fertility and embryo-fetal, pre- and post-natal development in rats and on male fertility in rats and monkeys. Three groups of 48 female (Study 1) or 22 male (Study 2) CD rats received 5 or 3 injections of 100μL of saline, AS15 immunostimulant, or MAGE-A3 Cancer Immunotherapeutic (MAGE-A3 recombinant protein combined with AS15) at various timepoints pre- or post-mating. Male Cynomolgus monkeys (Study 3) received 8 injections of 500μL of saline (n=2) or the MAGE-A3 Cancer Immunotherapeutic (n=6) every 2 weeks. Rats were sacrificed on gestation day 20 or lactation day 25 (Study 1) or 9 weeks after first injection (Study 2) and monkeys, 3 days or 8 weeks after last injection. Injections were well tolerated. Female rat mating performance or fertility, pre- and post-natal survival, offspring development up to 25 days of age, and male mating performance (rats) or fertility parameters (rats and monkeys) were unaffected.
Collapse
Affiliation(s)
- E Destexhe
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - D Stannard
- Huntingdon Life Sciences, Eye Research Centre, Eye, Suffolk IP23 7PX, UK
| | - O K Wilby
- Huntingdon Life Sciences, Eye Research Centre, Eye, Suffolk IP23 7PX, UK
| | | | - N Baudson
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - R Forster
- CiToxLAB France, BP 563, 27005 Evreux, France
| | - C M Gérard
- GSK Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - N Garçon
- Bioaster, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - L Segal
- GSK Vaccines, Parc de la Noire Epine, Rue Fleming 20, 1300 Wavre, Belgium.
| |
Collapse
|
20
|
CD8+ TIL recruitment may revert the association of MAGE A3 with aggressive features in thyroid tumors. J Immunol Res 2014; 2014:921864. [PMID: 25825704 PMCID: PMC4235601 DOI: 10.1155/2014/921864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background. We aimed to investigate a possible role of MAGE A3 and its associations with infiltrated immune cells in thyroid malignancy, analyzing their utility as a diagnostic and prognostic marker. Materials and Methods. We studied 195 malignant tissues: 154 PTCs and 41 FTCs; 102 benign tissues: 51 follicular adenomas and 51 goiter and 17 normal thyroid tissues. MAGE A3 and immune cell markers (CD4 and CD8) were evaluated using immunohistochemistry and compared with clinical pathological features. Results. The semiquantitative analysis and ACIS III analysis showed similar results. MAGE A3 was expressed in more malignant than in benign lesions (P < 0.0001), also helping to discriminate follicular-patterned lesions. It was also higher in tumors in which there was extrathyroidal invasion (P = 0.0206) and in patients with stage II disease (P = 0.0107). MAGE A3+ tumors were more likely to present CD8+ TIL (P = 0.0346), and these tumors were associated with less aggressive features, that is, extrathyroidal invasion and small size. There was a trend of MAGE A3+ CD8+ tumors to evolve free of disease. Conclusion. We demonstrated that MAGE A3 and CD8+ TIL infiltration may play an important role in malignant thyroid nodules, presenting an interesting perspective for new researches on DTC immunotherapy.
Collapse
|
21
|
Destexhe E, Grosdidier E, Baudson N, Forster R, Gerard C, Garçon N, Segal L. Non‐clinical safety evaluation of single and repeated intramuscular administrations of MAGE‐A3 Cancer Immunotherapeutic in rabbits and cynomolgus monkeys. J Appl Toxicol 2014; 35:717-28. [DOI: 10.1002/jat.3025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Eric Destexhe
- GlaxoSmithKline Vaccines 1330 Rixensart/Wavre Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Awasthi S. Toll-like receptor-4 modulation for cancer immunotherapy. Front Immunol 2014; 5:328. [PMID: 25120541 PMCID: PMC4110442 DOI: 10.3389/fimmu.2014.00328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| |
Collapse
|