1
|
Hemmer S, Hui X, Draeger J, Menges J, Schwarz EC, Wrede A, Oertel J, Kaestner L, Jung G, Urbschat S. AlkaPhos: a novel fluorescent probe as a potential point-of-care diagnostic tool to estimate recurrence risk of meningiomas. Neurosurg Rev 2025; 48:27. [PMID: 39775316 PMCID: PMC11706915 DOI: 10.1007/s10143-024-03172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Deletion of the short arm of chromosome 1 (1p) increases recurrence rates in meningiomas by up to 33%, regardless of tumor grade, correlating with absence of intracellular alkaline phosphatase enzyme activity. Current screening methods for 1p deletion like fluorescence in situ hybridization (FISH) and loss of heterozygosity (LOH) analysis are resource-intensive. This study evaluated AlkaPhos, a novel fluorescent probe, for detecting alkaline phosphatase in meningioma cells and compared findings with FISH, LOH, and histochemical analysis. AlkaPhos sensitivity in detecting alkaline phosphatase on BEN-MEN-1 cells and primary meningioma cultures was assessed via microscopic fluorescent ratio measurements. FISH and LOH were conducted on the same tumors to detect 1p deletions. Histochemical analysis served as a reference. AlkaPhos results were compared with FISH, LOH, and histochemical analysis. AlkaPhos effectively indicated alkaline phosphatase activity in BEN-MEN-1 cells and correctly identified 1p deletion in 8/14 primary meningioma cultures, matching FISH and LOH findings, respectively. AlkaPhos showed potential superiority over histochemical analysis in identifying tumors with 1p deletion and LOH of 1p. AlkaPhos bears potential as a future diagnostic tool for identifying alkaline phosphatase absence in meningiomas, indicative of 1p deletion. Further evaluation on a larger sample size is necessary for routine clinical application.
Collapse
Affiliation(s)
- Sina Hemmer
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Xin Hui
- Biophysical Chemistry, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Julia Draeger
- Biophysical Chemistry, Saarland University, Saarbrücken, Germany
| | - Johannes Menges
- Biophysical Chemistry, Saarland University, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Arne Wrede
- Institute for Neuropathology, Saarland University Medical Center, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, Saarbrücken, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
2
|
Singh J, Mohan T, Sahu S, Sharma MC, Suri A, Sarkar C, Suri V. Evaluation of prognostic biomarkers in meningiomas and their clinical implications in settings with limited resources. Neurooncol Pract 2024; 11:464-474. [PMID: 39006518 PMCID: PMC11241373 DOI: 10.1093/nop/npae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background The 5th edition of the World Health Organization (WHO) Central Nervous System (CNS) tumor classification for meningiomas acknowledges the clinical relevance of genomic profiling studies and emphasizes the importance of incorporating molecular information alongside histopathological features, leading to more accurate diagnoses and improved patient care. Methods We analyzed 206 meningioma samples (108 histological grade 1, 89 grade 2, and 9 grade 3) to study pTERT mutations, CDKN2A/B homozygous deletion, loss of H3K27me3, and p16 expression. The association of these molecular markers with survival outcomes was also assessed. Results pTERT mutation was found in 4.85% of cases, predominantly occurring in histological grade 2 (11.24%), while none of the histological grade 1 or 3 meningiomas exhibited this mutation. CDKN2A/B gene deletion was absent in grade 1 and detected in 2.24% of grade2, and 33.3% of histological grade 3 cases. There was a significant increase in loss of H3K27me3 with higher tumor grades, while p16 loss was observed in over 50% of cases across all histological grades. The presence of pTERT mutation and CDKN2A/B homozygous deletion resulted in the reclassification of 5.33% (11/206) of meningiomas as integrated grade 3. pTERT mutation and CDKN2A/B deletion, emerged as prognostically relevant markers, showing significant differences in progression-free survival (PFS) between integrated grade 3 and histological grade 2 meningiomas (P = .0002). Conclusions pTERT mutations are the most clinically relevant genetic alterations in meningiomas. Routine testing for pTERT mutations can identify high-risk cases of histologically grade 2 meningiomas, providing crucial prognostic information for treatment planning. CDKN2A/B alteration is rare and not cost-effective in assessing meningiomas. Immunohistochemical assessment of p16 and H3K27me3 expression lacks significant prognostic value. Assessment of pTERT mutations offers a cost-effective and valuable diagnostic tool for meningiomas.
Collapse
Affiliation(s)
- Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Trishala Mohan
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Saumya Sahu
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar C Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
4
|
Trybula SJ, Youngblood MW, Karras CL, Murthy NK, Heimberger AB, Lukas RV, Sachdev S, Kalapurakal JA, Chandler JP, Brat DJ, Horbinski CM, Magill ST. The Evolving Classification of Meningiomas: Integration of Molecular Discoveries to Inform Patient Care. Cancers (Basel) 2024; 16:1753. [PMID: 38730704 PMCID: PMC11083836 DOI: 10.3390/cancers16091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Meningioma classification and treatment have evolved over the past eight decades. Since Bailey, Cushing, and Eisenhart's description of meningiomas in the 1920s and 1930s, there have been continual advances in clinical stratification by histopathology, radiography and, most recently, molecular profiling, to improve prognostication and predict response to therapy. Precise and accurate classification is essential to optimizing management for patients with meningioma, which involves surveillance imaging, surgery, primary or adjuvant radiotherapy, and consideration for clinical trials. Currently, the World Health Organization (WHO) grade, extent of resection (EOR), and patient characteristics are used to guide management. While these have demonstrated reliability, a substantial number of seemingly benign lesions recur, suggesting opportunities for improvement of risk stratification. Furthermore, the role of adjuvant radiotherapy for grade 1 and 2 meningioma remains controversial. Over the last decade, numerous studies investigating the molecular drivers of clinical aggressiveness have been reported, with the identification of molecular markers that carry clinical implications as well as biomarkers of radiotherapy response. Here, we review the historical context of current practices, highlight recent molecular discoveries, and discuss the challenges of translating these findings into clinical practice.
Collapse
Affiliation(s)
- S. Joy Trybula
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark W. Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Constantine L. Karras
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikhil K. Murthy
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A. Kalapurakal
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - James P. Chandler
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen T. Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Dang DD, Mugge LA, Awan OK, Gong AD, Fanous AA. Spinal Meningiomas: A Comprehensive Review and Update on Advancements in Molecular Characterization, Diagnostics, Surgical Approach and Technology, and Alternative Therapies. Cancers (Basel) 2024; 16:1426. [PMID: 38611105 PMCID: PMC11011121 DOI: 10.3390/cancers16071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Spinal meningiomas are the most common intradural, extramedullary tumor in adults, yet the least common entity when accounting for all meningiomas spanning the neuraxis. While traditionally considered a benign recapitulation of their intracranial counterpart, a paucity of knowledge exists regarding the differences between meningiomas arising from these two anatomic compartments in terms of histopathologic subtypes, molecular tumor biology, surgical principles, long-term functional outcomes, and recurrence rates. To date, advancements at the bench have largely been made for intracranial meningiomas, including the discovery of novel gene targets, DNA methylation profiles, integrated diagnoses, and alternative systemic therapies, with few exceptions reserved for spinal pathology. Likewise, evolving clinical research offers significant updates to our understanding of guiding surgical principles, intraoperative technology, and perioperative patient management for intracranial meningiomas. Nonetheless, spinal meningiomas are predominantly relegated to studies considering non-specific intradural extramedullary spinal tumors of all histopathologic types. The aim of this review is to comprehensively report updates in both basic science and clinical research regarding intraspinal meningiomas and to provide illustrative case examples thereof, thereby lending a better understanding of this heterogenous class of central nervous system tumors.
Collapse
Affiliation(s)
- Danielle D. Dang
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Luke A. Mugge
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Omar K. Awan
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew D. Gong
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew A. Fanous
- Department of Neurosurgery, Inova Alexandria Hospital, Alexandria, VA 22304, USA
| |
Collapse
|
6
|
Breuskin D, Fischer G, Oertel J, Linsler S. Single-step resection and reconstruction of orbito-fronto-temporal pathologies using a PMMA CAD-implant. J Neurosurg Sci 2023; 67:679-687. [PMID: 35766207 DOI: 10.23736/s0390-5616.22.05758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Resection of bone infiltrating meningiomas of the sphenoid plane and the orbital walls is a highly challenging neurosurgical procedure. In this study, the authors present 11 cases of fronto-orbital and sphenoid wing meningioma which were subjected to tumor resection and cranioplasty using a pre-designed CAD PMMA-implant in one single staged procedure. METHODS Eleven cases were prospectively analyzed from January 2011 to December 2018. In all cases preoperative CT scans were performed and evaluated, in order to produce a customized PMMA-implant, fitting the osseous defect left after surgical resection of the predefined tumorous mass. Surgery was performed with standard techniques with the addition of availability of preplanned neuronavigational data as well as a matching template of the implant for intraoperative use. After tumor resection, cranioplasty followed using the predesigned PMMA implant. RESULTS Gross total resection was achieved in 82% (9 of 11 cases). Mean time of surgery for the combined procedure resulted in 223min±99min, with a mean blood loss of 427±192cc. Mean hospital stay for the combined procedure resulted in 11.5±3 days. In 18% of the cases (2/11), patients suffered from late onset infection of the implant and needed a surgical removal. CONCLUSIONS The presented data show that gross total resection and subsequent single staged bone reconstruction in osseous sphenoid wing and orbital rim meningiomas can be achieved using predesigned PMMA CAD implants with preplanned tumor resection borders with neuronavigational guidance.
Collapse
Affiliation(s)
- David Breuskin
- Department of Neurosurgery, Saarland University Medical Center, Faculty of Medicine, Saarland University, Homburg, Germany
| | - Gerrit Fischer
- Department of Neurosurgery, Saarland University Medical Center, Faculty of Medicine, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Faculty of Medicine, Saarland University, Homburg, Germany
| | - Stefan Linsler
- Department of Neurosurgery, Saarland University Medical Center, Faculty of Medicine, Saarland University, Homburg, Germany -
| |
Collapse
|
7
|
Cain SA, Pope B, Mangiola S, Mantamadiotis T, Drummond KJ. Somatic mutation landscape in a cohort of meningiomas that have undergone grade progression. BMC Cancer 2023; 23:216. [PMID: 36882706 PMCID: PMC9990218 DOI: 10.1186/s12885-023-10624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND A subset of meningiomas progress in histopathological grade but drivers of progression are poorly understood. We aimed to identify somatic mutations and copy number alterations (CNAs) associated with grade progression in a unique matched tumour dataset. METHODS Utilising a prospective database, we identified 10 patients with meningiomas that had undergone grade progression and for whom matched pre- and post-progression tissue (n = 50 samples) was available for targeted next-generation sequencing. RESULTS Mutations in NF2 were identified in 4/10 patients, of these 94% were non-skull base tumours. In one patient, three different NF2 mutations were identified in four tumours. NF2 mutated tumours showed large-scale CNAs, with highly recurrent losses in 1p, 10, 22q, and frequent CNAs on chromosomes 2, 3 and 4. There was a correlation between grade and CNAs in two patients. Two patients with tumours without detected NF2 mutations showed a combination of loss and high gain on chromosome 17q. Mutations in SETD2, TP53, TERT promoter and NF2 were not uniform across recurrent tumours, however did not correspond with the onset of grade progression. CONCLUSION Meningiomas that progress in grade generally have a mutational profile already detectable in the pre-progressed tumour, suggesting an aggressive phenotype. CNA profiling shows frequent alterations in NF2 mutated tumours compared to non NF2 mutated tumours. The pattern of CNAs may be associated with grade progression in a subset of cases.
Collapse
Affiliation(s)
- Sarah A Cain
- Department of Neurosurgery, The Royal Melbourne Hospital, 300 Grattan street, Parkville, VIC, Australia.
| | - Bernard Pope
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Monash, Australia
| | - Stefano Mangiola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, 300 Grattan street, Parkville, VIC, Australia.,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Wang JZ, Nassiri F, Aldape K, von Deimling A, Sahm F. The Epigenetic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:175-188. [PMID: 37432627 DOI: 10.1007/978-3-031-29750-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Kenneth Aldape
- Laboratory of Pathology, Center Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andreas von Deimling
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Urbschat S, Landau B, Bewersdorf NC, Schuster C, Wagenpfeil G, Schulz-Schaeffer WJ, Oertel J, Ketter R. MicroRNA 200a as a histologically independent marker for meningioma recurrence: Results of a four microRNA panel analysis in meningiomas. Cancer Med 2022; 12:8433-8444. [PMID: 36583475 PMCID: PMC10134299 DOI: 10.1002/cam4.5566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Meningiomas are mostly benign neoplasms of the central nervous system. Nevertheless there are recurrences in about 20% after surgical resection. Previous studies could reveal several predictors of meningioma recurrence. Tumor progression often is associated with a specific pattern of chromosome losses. Our study investigated the potential function of selected microRNAs as markers of tumor progression. METHODS By real-time polymerase chain reaction the expressions of microRNA 21-3p, 34a-3p, 200a-3p, and 409-3p were analyzed in solid tumor and in blood samples of 51 meningioma patients as well as in blood samples of 20 healthy individuals. Additionally, aberrations of parts of chromosomes 1, 14, 18, and 22 were analyzed by FISH. Tumor and blood samples were statistically analyzed, using Spearman's rank correlation coefficient as well as Mann-Whitney U- and Kruskal-Wallis-Test. RESULTS MicroRNA 200a showed significantly lower expressions in recurrent meningiomas than in newly diagnosed ones. MicroRNA 409 in meningiomas was correlated significantly with tumor volume and showed a significant negative correlation with patient age. Significance was found between the expression patterns of microRNAs 34a and 200a with the respective aberrations of chromosome 1p and the microRNA 409 with aberration of chromosome 14. In the male cohort the expression of microRNA 200a in blood was significantly upregulated in patients compared to healthy volunteers. By our research the function of microRNA 200a was proved to detect meningioma patients by liquid biopsy. CONCLUSION We detected microRNA 200a as a new biomarker to indicate meningioma recurrences. Future transferability to blood could be important for patient follow-up.
Collapse
Affiliation(s)
- Steffi Urbschat
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| | - Benjamin Landau
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| | - Nina-Christin Bewersdorf
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| | - Celine Schuster
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| | | | | | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| | - Ralf Ketter
- Department of Neurosurgery, Saarland University Medical Center and Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Deng J, Hua L, Bian L, Chen H, Chen L, Cheng H, Dou C, Geng D, Hong T, Ji H, Jiang Y, Lan Q, Li G, Liu Z, Qi S, Qu Y, Shi S, Sun X, Wang H, You Y, Yu H, Yue S, Zhang J, Zhang X, Wang S, Mao Y, Zhong P, Gong Y. Molecular diagnosis and treatment of meningiomas: an expert consensus (2022). Chin Med J (Engl) 2022; 135:1894-1912. [PMID: 36179152 PMCID: PMC9746788 DOI: 10.1097/cm9.0000000000002391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Meningiomas are the most common primary intracranial neoplasm with diverse pathological types and complicated clinical manifestations. The fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), published in 2021, introduces major changes that advance the role of molecular diagnostics in meningiomas. To follow the revision of WHO CNS5, this expert consensus statement was formed jointly by the Group of Neuro-Oncology, Society of Neurosurgery, Chinese Medical Association together with neuropathologists and evidence-based experts. The consensus provides reference points to integrate key biomarkers into stratification and clinical decision making for meningioma patients. REGISTRATION Practice guideline REgistration for transPAREncy (PREPARE), IPGRP-2022CN234.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Changwu Dou
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 750306, China
| | - Dangmurenjiapu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, Jiangsu 215004, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong 250063, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Affiliated Union Hospital, Fuzhou, Fujian 350001, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hualin Yu
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan 650032, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ping Zhong
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
11
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
12
|
González-Tablas M, Prieto C, Arandia D, Jara-Acevedo M, Otero Á, Pascual D, Ruíz L, Álvarez-Twose I, García-Montero AC, Orfao A, Tabernero MD. Whole-Exome Sequencing Reveals Recurrent but Heterogeneous Mutational Profiles in Sporadic WHO Grade 1 Meningiomas. Front Oncol 2021; 11:740782. [PMID: 34868937 PMCID: PMC8635692 DOI: 10.3389/fonc.2021.740782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Human WHO grade 1 meningiomas are generally considered benign tumors; despite this, they account for ≈50% of all recurrent meningiomas. Currently, limited data exist about the mutational profiles of grade 1 meningiomas and patient outcome. We investigated the genetic variants present in 32 WHO grade 1 meningiomas using whole exome sequencing, and correlated gene mutational profiles with tumor cytogenetics and patient outcome. Overall, WHO grade 1 meningiomas harbored numerous and heterogeneous genetic variants, which most frequently affected the NF2 (47%) gene and to a less extent the PNMA6A (22%), TIGD1 (16%), SMO (13%), PTEN (13%), CREG2 (9%), EEF1A1 (6%), POLR2A (6%), ARID1B (3%), and FAIM3 (3%) genes. Notably, non-synonymous genetic variants of SMO and POLR2A were restricted to diploid meningiomas, whereas NF2 mutations were only found among tumors that showed -22/22q─ (with or without a complex karyotype). Based on NF2 mutations and tumor cytogenetics, four genetic profiles were defined with an impact on patient recurrence-free survival (RFS). These included (1) two good-prognosis tumor subgroups-diploid meningiomas (n=9) and isolated -22/22q─ associated with NF2 mutation (n=7)-with RFS rates at 10 y of 100%; and (2) two subgroups of poor-prognosis meningiomas-isolated -22/22q─ without NF2 mutation (n=3) and tumors with complex karyotypes (n=11)-with a RFS rate at 10 y of 48% (p=0.003). Our results point out the existence of recurrent but heterogeneous mutational profiles in WHO grade 1 meningiomas which have an impact on patient outcome.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Bioinformatics Service Servicio de Apoyo a la Investigación de la Universidad de Salamanca (NUNCLEUS), University of Salamanca, Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Sequencing Service Servicio de Apoyo a la Investigación de la Universidad de Salamanca (NUNCLEUS), University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruíz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha, Virgen del Valle Hospital, Toledo, Spain.,Spanish Network on Mastocytosis Red Española de Mastocitosis (REMA), Salamanca, Spain
| | - Andrés Celestino García-Montero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Spanish Network on Mastocytosis Red Española de Mastocitosis (REMA), Salamanca, Spain.,Spanish National DNA Bank Carlos III, University of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain.,Spanish National DNA Bank Carlos III, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), Salamanca, Spain
| |
Collapse
|
13
|
Maas SLN, Stichel D, Hielscher T, Sievers P, Berghoff AS, Schrimpf D, Sill M, Euskirchen P, Blume C, Patel A, Dogan H, Reuss D, Dohmen H, Stein M, Reinhardt A, Suwala AK, Wefers AK, Baumgarten P, Ricklefs F, Rushing EJ, Bewerunge-Hudler M, Ketter R, Schittenhelm J, Jaunmuktane Z, Leu S, Greenway FEA, Bridges LR, Jones T, Grady C, Serrano J, Golfinos J, Sen C, Mawrin C, Jungk C, Hänggi D, Westphal M, Lamszus K, Etminan N, Jungwirth G, Herold-Mende C, Unterberg A, Harter PN, Wirsching HG, Neidert MC, Ratliff M, Platten M, Snuderl M, Aldape KD, Brandner S, Hench J, Frank S, Pfister SM, Jones DTW, Reifenberger G, Acker T, Wick W, Weller M, Preusser M, von Deimling A, Sahm F. Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. J Clin Oncol 2021; 39:3839-3852. [PMID: 34618539 PMCID: PMC8713596 DOI: 10.1200/jco.21.00784] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established (CDKN2A/B and TERT), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference P = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction.
Collapse
Affiliation(s)
- Sybren L N Maas
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Damian Stichel
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Philipp Euskirchen
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Blume
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Areeba Patel
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helin Dogan
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hildegard Dohmen
- Department of Neuropathology, University Hospital Gießen, Giessen, Germany
| | - Marco Stein
- Department of Neuropathology, University Hospital Gießen, Giessen, Germany.,Department of Neurosurgery, University Hospital Gießen, Giessen, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Baumgarten
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | | | - Ralf Ketter
- Department of Neurosurgery, University Hospital Homburg, Homburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Severina Leu
- Department of Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Fay E A Greenway
- Department of Neurosurgery, St George's Hospital, London, United Kingdom
| | - Leslie R Bridges
- Department of Cellular Pathology, St George's Hospital, London, United Kingdom
| | - Timothy Jones
- Department of Neurosurgery, St George's Hospital, London, United Kingdom
| | - Conor Grady
- Department of Neurosurgery, NYU Langone Hospital, New York, NY
| | | | - John Golfinos
- Department of Neurosurgery, NYU Langone Hospital, New York, NY
| | - Chandra Sen
- Department of Neurosurgery, NYU Langone Hospital, New York, NY
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Medicine Mannheim, Mannheim, Germany
| | - Gerhard Jungwirth
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Exp. Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI) and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Heidelberg, Germany
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Miriam Ratliff
- Department of Neurosurgery, University Medicine Mannheim, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY
| | | | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jürgen Hench
- Department of Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Frank
- Department of Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty, Düsseldorf, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Till Acker
- Department of Neuropathology, University Hospital Gießen, Giessen, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | | |
Collapse
|
14
|
Atypical Presentation of Transcranial Extension of Intracranial Meningiomas. Am J Dermatopathol 2021; 44:207-211. [DOI: 10.1097/dad.0000000000002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Damen PJJ, Bulthuis VJ, Hanssens PEJ, Lie ST, Fleischeuer R, Melotte V, Wouters KA, Ruland A, Beckervordersandforth J, Speel EJM. WHO grade I meningiomas that show regrowth after gamma knife radiosurgery often show 1p36 loss. Sci Rep 2021; 11:16432. [PMID: 34385566 PMCID: PMC8361078 DOI: 10.1038/s41598-021-95956-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
WHO grade I meningiomas occasionally show regrowth after radiosurgical treatment, which cannot be predicted by clinical features. There is increasing evidence that certain biomarkers are associated with regrowth of meningiomas. The aim of this retrospective study was to asses if these biomarkers could be of value to predict regrowth of WHO grade I meningiomas after additive radiosurgery. Forty-four patients with WHO grade I meningiomas who underwent additive radiosurgical treatment between 2002 and 2015 after Simpson IV resection were included in this study, of which 8 showed regrowth. Median follow-up time was 64 months (range 24–137 months). Tumors were analyzed for the proliferation marker Ki-67 by immunohistochemistry and for deletion of 1p36 by fluorescence in situ hybridization (FISH). Furthermore, genomic DNA was analyzed for promoter hypermethylation of the genes NDRG1–4, SFRP1, HOXA9 and MGMT. Comparison of meningiomas with and without regrowth after radiosurgery revealed that loss of 1p36 (p = 0.001) and hypermethylation of NDRG1 (p = 0.046) were correlated with regrowth free survival. Loss of 1p36 was the only parameter that was significantly associated with meningioma regrowth after multivariate analysis (p = 0.01). Assessment of 1p36 loss in tumor tissue prior to radiosurgery might be considered an indicator of prognosis/regrowth. However, this finding has to be validated in an independent larger set of tumors.
Collapse
Affiliation(s)
- Pim J J Damen
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands
| | - Vincent J Bulthuis
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Suan Te Lie
- Gamma Knife Center Tilburg, ETZ-Elisabeth Hospital, Tilburg, The Netherlands
| | - Ruth Fleischeuer
- Department of Pathology, ETZ-Elisabeth Hospital, Tilburg, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands
| | - Kim A Wouters
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands
| | - Andrea Ruland
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jan Beckervordersandforth
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands
| | - Ernst Jan M Speel
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, Postbox 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Treatment and follow-up results of WHO grade II meningiomas. J Clin Neurosci 2021; 91:354-364. [PMID: 34373052 DOI: 10.1016/j.jocn.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
Meningiomas are the most common primary intracranial tumors. They have three pathologic grades. Surgical resection aiming Simpson I resection is the standard treatment for meningiomas. Radiotherapy and Gamma Knife radiosurgery are the main adjuvant and salvage treatments. Chemotherapy has limited use. Grade II, and III meningiomas have a higher recurrence rate, and adjuvant radiotherapy is usually the standard treatment for grade III meningiomas but there is not a consensus regarding grade II meningiomas. In this paper, we analyzed our meningioma series of 1401 patients and presented the treatment and follow-up results of 170 grade II meningioma cases. The median follow-up of grade II meningiomas was 61 (range = 1-231) months. The mean age of patients was 52.5 ± 15.0 years, 102 of them were female and 68 were male (female/male ratio = 1.5). The median progression-free survival (PFS) of them was 109 months, and the cumulative overall survival (OS) rate was 85% at 10 years. Meningiomas with gross total resection, non-skull base meningiomas, and primary grade II meningiomas had longer PFS with statistical significance, while non-skull base meningiomas, younger group of patients, and primary grade II meningiomas had longer OS with a statistical significance.
Collapse
|
17
|
Neurosurgical follow-up and treatment of a series of 26 WHO grade III meningiomas. J Clin Neurosci 2021; 91:219-225. [PMID: 34373031 DOI: 10.1016/j.jocn.2021.06.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
Abstract
Meningiomas are the most common primary intracranial tumors. They have three pathologic grades. Surgical resection aiming Simpson I resection is the standard treatment for meningiomas. Radiotherapy and Gamma Knife radiosurgery are the main adjuvant and salvage treatments. Chemotherapy has limited use. Grade II, and III meningiomas have a higher recurrence rate, and adjuvant radiotherapy is usually the standard treatment for grade III meningiomas. In this paper, we analyzed our meningioma series of 1401 patients and presented the treatment and follow-up results of 26 grade III meningioma cases. Median follow-up of grade III meningiomas was 40.5 (range, 1-154) months. The mean age of patients was 51.7 ± 15.7 years; 12 of them were female and 14 were male (female/male ratio = 0.9). The median progression-free survival (PFS) of them was 22 months, and overall survival (OS) was 62 months. Meningiomas with gross total resection (GTR), non-skull base meningiomas, and primary grade III meningiomas had longer PFS, while meningiomas with GTR, non-skull base meningiomas, and primary meningiomas had longer OS with a statistical significance.
Collapse
|
18
|
Fluorescence image-guided resection of intracranial meningioma: an experimental in vivo study on nude mice. Ann Anat 2021; 237:151752. [PMID: 33940118 DOI: 10.1016/j.aanat.2021.151752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The use of photodynamic agents in malignant cranial tumor surgery is quite common. For example five-aminolevulinic acid (5-ALA)-induced porphyrins in malignant gliomas are potent photosensitizers. Until today there is no comparable selective fluorescent substance available for meningiomas. Nevertheless, there is a demand for intraoperative fluorescent identification of e.g. invasive skull base meningiomas to increase radicality. This study was established to investigate fluorescent image-guided resection with somatostatin receptor labelled fluorescence dye for intracranial meningioma in the nude mice. METHODS Primary meningioma cell culture samples were stereotactically implanted subdural into 20 nude mice. 90 days after inoculation of the cells, a cranial MRI with contrast agent revealed tumor growth. After detection of tumor mass in MRI, FAM-TOC5,6-Carboxyfluoresceine-Tyr3-Octreotide was injected intravenously and tumor mass was hereafter resected under visualization via fluorescence microscope and endoscope. After attempted total resection, animal were sacrificed brain slices were obtained and histologically analysed to verify the resection extent. RESULTS In 18 mice tumor growth was detected in MRI after 90 days of inoculation. The tumor mass could be clearly identified with fluorescence microscope and endoscope after injecting FAM-TOC5,6-Carboxyfluoresceine-Tyr3-Octreotide. The tumor margins could be better visualized. After fluorescence-guided resection no remaining tumor could be identified in histological analysis. CONCLUSIONS This study describes for the first time the use of FAM-TOC5,6-Carboxyfluoresceine-Tyr3-Octreotide and demonstrates its value of fluorescent identification of meningioma cells in vivo. Furthermore, the authors established a new experimental animal model for fluorescence meningioma surgery.
Collapse
|
19
|
Abstract
Comprehensive genomic studies of meningioma have offered important insights about the molecular mechanisms underlying this common brain tumor. The use of next-generation sequencing techniques has identified driver mutations in approximately 80% of benign sporadic lesions, as well as epigenetic, regulatory, and copy number events that are associated with formation and disease progression. The events described to date fall into five mutually exclusive molecular subgroups that correlate with tumor location and embryological origin. Importantly, these subgroups also carry implications for clinical management, as they are predictive of histologic subtype and the likelihood of progression. Further work is necessary to understand the molecular mechanisms by which identified mutations drive tumorigenesis as well as the genomic pathways that transform benign lesions into malignancies. Progress made during the past decade has opened the door to potential molecular therapies as well as integration of meningioma genotyping data into clinical management decisions. Several pharmacologic trials are currently underway that leverage recent genomic findings to target established oncogenic pathways in refractory tumors. With the combined efforts of physicians and basic science investigators, the clinical management of meningioma will continue to make important strides in the coming years.
Collapse
|
20
|
Toland A, Huntoon K, Dahiya SM. Meningioma: A Pathology Perspective. Neurosurgery 2021; 89:11-21. [PMID: 33588439 DOI: 10.1093/neuros/nyab001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Meningiomas are dural-based neoplasms that account for ∼37% of all intracranial tumors in the adult population. They can occur anywhere within the central nervous system and have a predilection for females. The World Health Organization classifies meningiomas into 3 grades based on increased risk of recurrence and associated mortality in grade III tumors. Although most tumors are categorized as low-grade, up to ∼15%-20% demonstrate more aggressive behavior. With the long-recognized association with neurofibromatosis type 2 gene mutation, putative driver mutations can be attributed to ∼80% of tumors. Several germline mutations have also been identified in some cases of familial meningiomatosis such as SMARCE1, SUFU, PTEN, and BAP1. Finally, in addition to genetic data, epigenetic alterations, specifically deoxyribonucleic acid methylation, are being increasingly recognized for their prognostic value, potentially adding objectivity to a currently subjective grading scheme.
Collapse
Affiliation(s)
- Angus Toland
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Kristin Huntoon
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sonika M Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Nazem AA, Ruzevick J, Ferreira MJ. Advances in meningioma genomics, proteomics, and epigenetics: insights into biomarker identification and targeted therapies. Oncotarget 2020; 11:4544-4553. [PMID: 33346248 PMCID: PMC7733625 DOI: 10.18632/oncotarget.27841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023] Open
Abstract
Meningiomas are a heterogeneous group of tumors, defined histo-pathologically by World Health Organization (WHO) grading. The WHO grade of meningiomas does not always correlate with clinical aggressiveness. Despite maximal surgical resection and adjuvant radiation, a subset of tumors are clinically aggressive; displaying early recurrence and invasion. Current methods for identifying aggressive meningiomas solely focus on genomics, proteomics, or epigenetics and not a combination of all for developing a real-time clinical biomarker. Improved methods for the identification of these outlying tumors can facilitate better classification and potentially adjuvant treatment planning. Understanding the pathways of oncogenesis using multiple markers driving aggressive meningiomas can provide a foundation for targeted therapies, which currently do not exist.
Collapse
Affiliation(s)
- Ahmad A Nazem
- Department of Neurosurgery, University of Washington School of Medicine, University of Washington Medical Center, Seattle, WA 98195, USA.,These authors contributed equally to this work
| | - Jacob Ruzevick
- Department of Neurosurgery, University of Washington School of Medicine, University of Washington Medical Center, Seattle, WA 98195, USA.,These authors contributed equally to this work
| | - Manuel J Ferreira
- Department of Neurosurgery, University of Washington School of Medicine, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Champeaux-Depond C, Weller J, Resche-Rigon M. Neurofibromatosis type 2: A nationwide population-based study focused on survival after meningioma surgery. Clin Neurol Neurosurg 2020; 198:106236. [DOI: 10.1016/j.clineuro.2020.106236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022]
|
23
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Shen L, Lin D, Cheng L, Tu S, Wu H, Xu W, Pan Y, Wang X, Zhang J, Shao A. Is DNA Methylation a Ray of Sunshine in Predicting Meningioma Prognosis? Front Oncol 2020; 10:1323. [PMID: 33014773 PMCID: PMC7498674 DOI: 10.3389/fonc.2020.01323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Meningioma is the most common intracranial tumor, and recent studies have drawn attention to the importance of further research on malignant meningioma. According to the World Health Organization (WHO) grading, meningioma is classified into 15 subtypes with three grades of malignancy. However, due to a lack of descriptions of molecular subtypes, genetic mutations, or other features, there were deficiencies in the WHO classification. The DNA methylation-based meningioma classification published in 2017 used DNA copy number analysis, mutation profiling, and RNA sequencing to distinguish six clinically relevant methylation classes, which contributed to a better prediction of tumor recurrence and prognosis. Further studies indicated that gene variation and gene mutations, such as those in neurofibromin 2 (NF2) and BRCA1, were related to the high WHO grade, malignant invasion, and recurrence. Among the mutant genes described above, some have been associated with differential DNA methylation. Herein, we searched for articles published in PubMed and Web of Science from January 2000 to May 2020 by entering the keywords “meningioma,” “methylation,” and “gene mutation,” and found a number of published studies that analyzed DNA methylation in meningiomas. In this review, we summarize the key findings of recent studies on methylation status and genetic mutations of meningioma and discuss the current deficits of the WHO grading. We also propose that a methylation-based meningioma classification could provide clues in the assessment of individual risk of meningioma recurrence, which is associated with clinical benefits for patients.
Collapse
Affiliation(s)
- Lu Shen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Cheng
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Haddad AF, Young JS, Kanungo I, Sudhir S, Chen JS, Raleigh DR, Magill ST, McDermott MW, Aghi MK. WHO Grade I Meningioma Recurrence: Identifying High Risk Patients Using Histopathological Features and the MIB-1 Index. Front Oncol 2020; 10:1522. [PMID: 32983999 PMCID: PMC7483477 DOI: 10.3389/fonc.2020.01522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Objective: In this study, we identify clinical, radiographic, and histopathologic prognosticators of overall, early, and post-median recurrence in World Health Organization (WHO) grade I meningiomas. We also determine a clinically relevant cutoff for MIB-1 to identify patients at high risk for recurrence. Method: A retrospective review of WHO grade I meningioma patients with available MIB-1 index data who underwent treatment at our institution from 2007 to 2017 was performed. Univariate and multivariate analyses, and recursive partitioning analysis (RPA), were used to identify risk factors for overall, early (within 24 months), and post-median (>24 months post-treatment) recurrence. Result: A total of 239 patients were included. The mean age was 60.0 years, and 69.5% of patients were female. The average follow-up was 41.1 months. All patients received surgery and 2 patients each received either adjuvant radiotherapy (2/239) or gamma knife treatment (2/239). The incidence of recurrence was 10.9% (26/239 patients), with an average time to recurrence of 33.2 months (6–105 months). Posterior fossa tumor location (p = 0.004), MIB-1 staining (p = 0.008), nuclear atypia (p = 0.003), and STR (p < 0.001) were independently associated with an increased risk of recurrence on cox-regression analysis. RPA for overall recurrence highlighted extent of resection, and after gross total resection (GTR), a MIB-1 index cutoff of 4.5% as key prognostic factors for recurrence. Patients with a GTR and MIB-1 >4.5% had a similar incidence of recurrence as those with STR (18.8 vs. 18.6%). Variables independently associated with early recurrence on binary logistic regression modeling included STR (p = 0.002) and nuclear atypia (p = 0.019). RPA confirmed STR as associated with early recurrence. Conclusion: STR, posterior fossa location, nuclear atypia, and elevated MIB-1 index are prognostic factors for WHO grade I meningioma recurrence. Moreover, MIB-1 index >4.5% is prognostic for recurrence in patients with GTR. Verification of our findings in larger, multi-institutional studies could enable risk stratification and recommendations for adjuvant radiotherapy following resection of WHO grade I meningiomas.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sweta Sudhir
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jia-Shu Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen T Magill
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | | | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Abstract
Radiation therapy (RT) plays an important role in the management of meningioma. Surgery often remains the initial treatment of choice as it reduces mass effect and confirms the diagnosis and grade. However, RT has frequently been successful in the primary setting and is commonly employed as adjuvant therapy for incompletely resected tumors as well as for high-grade meningiomas regardless of resection extent. Some meningiomas develop in locations less amenable to resection or in patients who are poor surgical candidates, in which circumstances RT is particularly appropriate as primary treatment. Recent cooperative group studies including RTOG 0539 have better established the role of RT for meningioma. These studies suggest a role for adjuvant RT for completely resected Grade II meningioma, which was less clear historically. Ongoing clinical trials such as NRG BN 003 and ROAM will further clarify this. This chapter reviews the role of fractionated external beam RT for various grades of meningioma.
Collapse
Affiliation(s)
- Samuel Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States
| | - Leland Rogers
- Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
27
|
Pinzi V, Fariselli L, Marchetti M, Scorsetti M, Navarria P. Stereotactic Radiotherapy for Parasagittal and Parafalcine Meningiomas: Patient Selection and Special Considerations. Cancer Manag Res 2019; 11:10051-10060. [PMID: 31819638 PMCID: PMC6889965 DOI: 10.2147/cmar.s187371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Treatment options for intracranial meningiomas are surgical resection alone, surgery followed by adjuvant radiation therapy (RT), or exclusive RT. Parasagittal and parafalcine meningiomas are a subgroup of meningeal disease located close to the vascular structures. Considering the frequent venous invasion, a complete resection is not possible in the majority of cases, and even if a Simpson Grade I resection can be performed, the risk of recurrence is relevant. To date, few studies are focused on parasagittal and parafalcine meningiomas. Because of their specific related issues, particular considerations on decision-making process, outcome, and toxicity follow-up are mandatory. In fact, parasagittal and parafalcine meningiomas require a clear-cut radiological assessment, as well as a tailored toxicity risk evaluation. Moreover, similarly to other meningioma sites, also for parasagittal and parafalcine ones, a standardization of local control, toxicity, and quality of life evaluation is needed in order to lead to a pooled analysis of the results. In this context, our aim was to review the literature data regarding the role of both single-session and multisession radiosurgery (RS), and stereotactic radiotherapy (SRT) for parasagittal and parafalcine meningioma management, summarizing available data on safety and efficacy. It was also discussed how RS and SRT can be performed in a setting of evolving views concerning the treatment paradigm of the parasagittal and parafalcine meningiomas.
Collapse
Affiliation(s)
- V Pinzi
- Neurosurgery Department, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - L Fariselli
- Neurosurgery Department, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - M Marchetti
- Neurosurgery Department, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Rozzano, Milan, Italy
| | - P Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
28
|
AlSahlawi A, Aljelaify R, Magrashi A, AlSaeed M, Almutairi A, Alqubaishi F, Alturkistani A, AlObaid A, Abouelhoda M, AlMubarak L, AlTassan N, Abedalthagafi M. New insights into the genomic landscape of meningiomas identified FGFR3 in a subset of patients with favorable prognoses. Oncotarget 2019; 10:5549-5559. [PMID: 31565188 PMCID: PMC6756861 DOI: 10.18632/oncotarget.27178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: With a prevalence of 170 000 adults in the US alone, meningiomas are the most common primary intracranial tumors. The management of skull base meningiomas is challenging due to their complexity and proximity to crucial nearby structures. The identification of oncogenic mutations has provided further insights into the tumorigenesis of meningioma and the possibility of targeted therapy.
This study aimed to further investigate the association of mutational profiles with anatomical distribution, histological subtype, WHO grade, and recurrence in patients with meningioma. Methods: Tissue samples were collected from 71 patients diagnosed with meningioma from 2008 to 2016. A total of 51 cases were skull based. Samples were subjected to targeted sequencing using a next generation customized cancer gene panel (n = 66 genes analyzed).
Results: We detected genomic alterations (GAs) in 68 tumors, averaging 1.56 ± 1.07 genomic alterations (GAs) per sample. NF2 was the most frequently altered gene (36/71 cases). Interestingly, we identified a number of mutations in non-NF2 genes, including a hotspot TERTp c.−124: G > A mutation that may be related to poor prognosis and FGFR3 mutations that may represent biomarkers of a favorable prognosis as reported in other cancers.
Conclusions: We demonstrate that comprehensive genomic profiling in our population can reveal a potential new prognostic biomarkers of skull base meningioma. These mutations can enhance diagnostic accuracy and clinical decision-making. Among our findings were the identification of a TERTp mutation and the first report of FGFR3 mutations that may represent biomarkers for the identification of skull base meningioma patients with a favorable prognosis.
Collapse
Affiliation(s)
- Aysha AlSahlawi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Montreal Neurological Institute, Montreal, Canada.,Neurosurgery Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rasha Aljelaify
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Amna Magrashi
- Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mariam AlSaeed
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Amal Almutairi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fatimah Alqubaishi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah AlObaid
- Neurosurgery Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Latifa AlMubarak
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Nada AlTassan
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Genetics Department, King Faisal Specialists Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Jungwirth G, Warta R, Beynon C, Sahm F, von Deimling A, Unterberg A, Herold-Mende C, Jungk C. Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT. Acta Neuropathol Commun 2019; 7:140. [PMID: 31470906 PMCID: PMC6716845 DOI: 10.1186/s40478-019-0793-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Intraventricular meningiomas (IVMs) account for less than 5% of all intracranial meningiomas; hence their molecular phenotype remains unknown. In this study, we were interested whether genetic alterations in IVMs differ from meningiomas in other locations and analyzed our institutional series with respect to clinical and molecular characteristics. A total of 25 patients with surgical removal of an IVM at our department between 1986 and 2018 were identified from our institutional database. Median progression-free survival (PFS) was 79 months (range of 2-319 months) and PFS at 5 years was 86%. Corresponding tumor tissue was available for 18 patients including one matching recurrence and was subjected to targeted panel sequencing of 130 selected genes frequently mutated in brain cancers by applying a custom hybrid capture approach on a NextSeq500 instrument. Loss of chromosome 22q and 1p occurred frequently in 89 and 44% of cases. Deleterious NF2 mutations were found in 44% of IVMs (n = 8/18). In non-NF2-mutated IVMs, previously reported genetic alterations including TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT were lacking, suggesting alternative genes in the pathogenesis of non-NF2 IVMs. In silico analysis revealed possible damaging mutations of APC, GABRA6, GSE1, KDR, and two SMO missense mutations differing from previously reported ones. Interestingly, all WHO°II IVMs (n = 3) harbored SMARCB1 and SMARCA4 mutations, indicating a role of the SWI/SNF chromatin remodeling complex in aggressive IVMs.
Collapse
Affiliation(s)
- Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christopher Beynon
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, INF 224, D-69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, INF 224, D-69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| |
Collapse
|
30
|
Hemmer S, Urbschat S, Oertel J, Ketter R. Deletions in the 17q chromosomal region and their influence on the clonal cytogenetic evolution of recurrent meningiomas. Mol Cytogenet 2019; 12:22. [PMID: 31139260 PMCID: PMC6534836 DOI: 10.1186/s13039-019-0434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/15/2019] [Indexed: 11/16/2022] Open
Abstract
Objective Meningiomas are among the most frequent intracranial tumors. Although the majority of meningiomas can be cured by surgical resection, up to 20% of the patients develop an aggressive clinical course with tumor recurrence or progressive disease. Cytogenetically, meningiomas frequently harbour a normal karyotype or monosomy of chromosome 22 as the sole anomaly. However, progression of meningiomas is associated with a non-random pattern of secondary losses of the chromosomes and chromosomal regions 1p, 6, 10, 14, 18, and 19. There is evidence, that loss of chromosome 17 might be involved in the clonal cytogenetic evolution of recurrent meningiomas. The aim of this study was to determine the role of deletions in the 17q chromosomal region in patients with recurrent meningiomas. Results The authors retrospectively reviewed all patients that underwent repeated surgery for recurrent meningiomas between 1999 and 2015 at the Department of Neurosurgery of the Saarland University Hospital. Patients were included in this study if tumor samples from two or more different meningiomas were available. A total of 7 patients underwent repeated surgery for recurrent meningiomas (4 males, 3 females, mean age: 45.4 years at the date of surgery) between 1999 and 2015. Collectively, 22 biopsies were analyzed with FISH (fluorescence-in-situ-hybridization) for the chromosomal region 17q23.3. In 20/22 (90.1%) specimens, the tumor samples harboured a significant deletion in the chromosomal region 17q (range: 10 to 63% of the cells). In 3/3 (100%) cases, deletion in the 17q chromosomal region was detectable in the primary tumor. In the tumor evolution, there was no steady in- or decrease in the percentage of this deletion. Conclusion Deletion in the 17q chromosomal region was present in the patients’ primary tumors as well as in late recurrences. Overall, a significant deletion in the 17q chromosomal region was detected in 90.1% of the tumors. Thus, the authors assume that deletion in the 17q chromosomal region displays rather an early event in meningioma progression. Accordingly, deletion in the 17q chromosomal region might clinically serve as a potential early marker for malignancy and a higher risk for recurrence in meningiomas.
Collapse
Affiliation(s)
- Sina Hemmer
- Department of Neurosurgery, Saarland University Hospital, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University Hospital, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Hospital, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Ralf Ketter
- Department of Neurosurgery, Saarland University Hospital, Kirrberger Straße, 66421 Homburg/Saar, Germany
| |
Collapse
|
31
|
Linsler S, Ketter R, Oertel J, Urbschat S. Fluorescence imaging of meningioma cells with somatostatin receptor ligands: an in vitro study. Acta Neurochir (Wien) 2019; 161:1017-1024. [PMID: 30877475 DOI: 10.1007/s00701-019-03872-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The use of five-aminolevulinic acid (5-ALA) in the staining of malignant glioma cells has significantly improved intraoperative radicality in the resection of gliomas in the last decade. Currently, there is no comparable selective fluorescent substance available for meningiomas. There is however a demand for intraoperative fluorescent identification of, e.g., invasive skull base meningiomas to help improve safe radical resection. Meningiomas show high expression of the somatostatin receptor type 2, offering the possibility of receptor-targeted imaging. The authors used a somatostatin receptor-labeled fluorescence dye in the identification of meningiomas in vitro. The aim of this study was to evaluate the possibility of selective identification of meningioma cells with fluorescent techniques. METHODS Twenty-four primary human meningioma cell cultures were analyzed. The tumor cells were incubated with FAM-TOC (5,6-Carboxyfluoresceine-Tyr3-Octreotide). As a negative control, four human dura tissues were cultured as well as a mixed cell culture in vitro and incubated with the same somatostatin receptor-labeled fluorescence substance. After incubation, fluorescence signal and intensity in all cell cultures were analyzed at three different time points using a fluorescence microscope with 488 nm epi-illumination. RESULTS Sixteen WHO I, six WHO II, two WHO III meningioma primary cell cultures, and four dura cell cultures were analyzed. Fluorescence was detected in all meningioma cell cultures (22 cell culture stained strongly, 2 cell cultures moderately) directly after incubation up until 4 h later. There were no differences in the quality and quantity of fluorescence signal between the various meningioma grades. The fluorescence signal persisted unchanged during the analyzed period. In the negative control, dura cell cultures remained unstained. CONCLUSIONS This study demonstrates the use of FAM-TOC in the selective fluorescent identification of meningioma cells in vitro. Further evaluation of the chemical kinetics of the applied somatostatin receptor ligand and fluorescence dye is warranted. As a next step, an experimental animal model is needed to evaluate these promising results in vivo.
Collapse
|
32
|
Viaene AN, Zhang B, Martinez-Lage M, Xiang C, Tosi U, Thawani JP, Gungor B, Zhu Y, Roccograndi L, Zhang L, Bailey RL, Storm PB, O’Rourke DM, Resnick AC, Grady MS, Dahmane N. Transcriptome signatures associated with meningioma progression. Acta Neuropathol Commun 2019; 7:67. [PMID: 31039818 PMCID: PMC6489307 DOI: 10.1186/s40478-019-0690-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Meningiomas are the most common primary brain tumor of adults. The majority are benign (WHO grade I), with a mostly indolent course; 20% of them (WHO grade II and III) are, however, considered aggressive and require a more complex management. WHO grade II and III tumors are heterogeneous and, in some cases, can develop from a prior lower grade meningioma, although most arise de novo. Mechanisms leading to progression or implicated in de novo grade II and III tumorigenesis are poorly understood. RNA-seq was used to profile the transcriptome of grade I, II, and III meningiomas and to identify genes that may be involved in progression. Bioinformatic analyses showed that grade I meningiomas that progress to a higher grade are molecularly different from those that do not. As such, we identify GREM2, a regulator of the BMP pathway, and the snoRNAs SNORA46 and SNORA48, as being significantly reduced in meningioma progression. Additionally, our study has identified several novel fusion transcripts that are differentially present in meningiomas, with grade I tumors that did not progress presenting more fusion transcripts than all other tumors. Interestingly, our study also points to a difference in the tumor immune microenvironment that correlates with histopathological grade.
Collapse
|
33
|
Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten HJ, Chaudhary A, Abuzenadah A, Hussein D. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int 2018; 18:77. [PMID: 29849507 PMCID: PMC5970464 DOI: 10.1186/s12935-018-0571-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Successful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs’ in situ spatial distribution, heterogeneity, and relationship with tumor grade, remain unclear. Methods Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluorescence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spatial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive staining. All statistical analyses were completed using Statistical Analysis Software Package. Results The patterns of expression for SC-related markers were determined in the context of two dimensional distribution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relationships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analysis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas. Conclusion The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection for inoperable tumors, and improve follow up of therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0571-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanin Alamir
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mona Alomari
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Abdulla Ahmed A Salwati
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- 4Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- 5Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- 6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
34
|
胡 梅, 刘 家, 陈 宣, 徐 安, 舒 松, 汪 潮, 刘 忆. [Primary culture of human malignant meningioma cells and its intracranial orthotopic transplantation in nude mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:340-345. [PMID: 29643042 PMCID: PMC6744163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To obtain stable primary cultures of human malignant meningioma cells and establish an intracranial in-situ tumor model in nude mice. METHODS Ten surgical specimens of highly suspected malignant meningioma were obtained with postoperative pathological confirmation. Primary malignant meningioma cells were cultured from the tissues using a modified method and passaged. After identification with cell immunofluorescence, the cultured cells were inoculated into the right parietal lobe of 6 nude mice using stereotaxic apparatus and also transplanted subcutaneously in another 6 nude mice. The nude mice were executed after 6 weeks, and HE staining and immunohistochmistry were used to detect tumor growth and the invasion of the adjacent brain tissues. RESULTS The primary malignant meningioma cells were cultured successfully, and postoperative pathology reported anaplastic malignant meningioma. Cell immunofluorescence revealed positivity for vimentin and EMA in the cells, which showed a S-shaped growth curve in culture. Flow cytometry revealed a cell percentage in the Q3 area of (95.99∓2.58)%. Six weeks after transplantation, tumor nodules occurred in the subcutaneous tumor group, and the nude mice bearing the in situ tumor showed obvious body weight loss. The xenografts in both groups contained a mean of (36∓5.35)% cells expressing Ki-67, and the intracranial in situ tumor showed obvious invasion of the adjacent peripheral brain tissues. CONCLUSION We obtained stable primary cultures of malignant meningioma cells and successfully established a nude mouse model bearing in situ human malignant meningioma.
Collapse
Affiliation(s)
- 梅新 胡
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 家乐 刘
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 宣伯 陈
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| | - 安琪 徐
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 松仁 舒
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 潮湖 汪
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| | - 忆 刘
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
胡 梅, 刘 家, 陈 宣, 徐 安, 舒 松, 汪 潮, 刘 忆. [Primary culture of human malignant meningioma cells and its intracranial orthotopic transplantation in nude mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:340-345. [PMID: 29643042 PMCID: PMC6744163 DOI: 10.3969/j.issn.1673-4254.2018.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To obtain stable primary cultures of human malignant meningioma cells and establish an intracranial in-situ tumor model in nude mice. METHODS Ten surgical specimens of highly suspected malignant meningioma were obtained with postoperative pathological confirmation. Primary malignant meningioma cells were cultured from the tissues using a modified method and passaged. After identification with cell immunofluorescence, the cultured cells were inoculated into the right parietal lobe of 6 nude mice using stereotaxic apparatus and also transplanted subcutaneously in another 6 nude mice. The nude mice were executed after 6 weeks, and HE staining and immunohistochmistry were used to detect tumor growth and the invasion of the adjacent brain tissues. RESULTS The primary malignant meningioma cells were cultured successfully, and postoperative pathology reported anaplastic malignant meningioma. Cell immunofluorescence revealed positivity for vimentin and EMA in the cells, which showed a S-shaped growth curve in culture. Flow cytometry revealed a cell percentage in the Q3 area of (95.99∓2.58)%. Six weeks after transplantation, tumor nodules occurred in the subcutaneous tumor group, and the nude mice bearing the in situ tumor showed obvious body weight loss. The xenografts in both groups contained a mean of (36∓5.35)% cells expressing Ki-67, and the intracranial in situ tumor showed obvious invasion of the adjacent peripheral brain tissues. CONCLUSION We obtained stable primary cultures of malignant meningioma cells and successfully established a nude mouse model bearing in situ human malignant meningioma.
Collapse
Affiliation(s)
- 梅新 胡
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 家乐 刘
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 宣伯 陈
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| | - 安琪 徐
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 松仁 舒
- 南方医科大学 第一临床医学院,广东 广州 510515First Clinical College, Department of Neurosurgery, Nanfang Hospital, Guangzhou 510515, China
| | - 潮湖 汪
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| | - 忆 刘
- 南方医科大学 南方医院神经外科,广东 广州 510515First Clinical College, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Leon-Ariza DS, Campero A, Romero Chaparro RJ, Prada DG, Vargas Grau G, Rhoton AL. Key Aspects in Foramen Magnum Meningiomas: From Old Neuroanatomical Conceptions to Current Far Lateral Neurosurgical Intervention. World Neurosurg 2017; 106:477-483. [DOI: 10.1016/j.wneu.2017.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
|
37
|
Wallesch M, Pachow D, Blücher C, Firsching R, Warnke JP, Braunsdorf WE, Kirches E, Mawrin C. Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. J Neurol Sci 2017; 380:112-121. [DOI: 10.1016/j.jns.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
38
|
Dehghan Harati M, Yu A, Magaki SD, Perez-Rosendahl M, Im K, Park YK, Bergsneider M, Yong WH. Clinicopathologic features and pathogenesis of melanocytic colonization in atypical meningioma. Neuropathology 2017; 38:54-61. [PMID: 28833600 DOI: 10.1111/neup.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/15/2023]
Abstract
Only two prior cases of benign dendritic melanocytes colonizing a meningioma have been reported. We add a third case, describe clinicopathologic features shared by the three, and elucidate the risk factors for this very rare phenomenon. A 29 year-old Hispanic woman presented with headache and hydrocephalus. MRI showed a lobulated enhancing pineal region mass measuring 41 mm in greatest dimension. Subtotal resection of the mass demonstrated an atypical meningioma, WHO grade II, and the patient subsequently underwent radiotherapy. She presented 4 years later with diplopia, and MRI showed an enhancing extra-axial mass measuring 47 mm in greatest dimension and centered on the tentorial incisura. Subtotal resection showed a brain-invasive atypical meningioma with melanocytic colonization. The previous two cases in the literature were atypical meningiomas, one of which was also brain invasive. Atypical meningiomas may be at particular risk for melanocytic colonization as they upregulate molecules known to be chemoattractants for melanocytes. We detected c-Kit expression in a minority of the melanocytes as well as stem cell factor and basic fibroblast growth factor in the meningioma cells, suggesting that mechanisms implicated in normal melanocyte migration may be involved. In some cases, brain invasion with disruption of the leptomeningeal barrier may also facilitate migration from the subarachnoid space into the tumor. Whether there is low-level proliferation of the dendritic melanocytes is unclear. Given that all three patients were non-Caucasian, meningiomas in persons and/or brain regions with increased dendritic melanocytes may predispose to colonization. The age range spanned from 6 years old to 70 years old. All three patients were female. The role of gender and estrogen in the pathogenesis of this entity remains to be clarified. Whether melanocytic colonization may also occur in the more common Grade I meningiomas awaits identification of additional cases.
Collapse
Affiliation(s)
- Mitra Dehghan Harati
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Andrew Yu
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Shino D Magaki
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Mari Perez-Rosendahl
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Kyuseok Im
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Young K Park
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - Marvin Bergsneider
- Department of Neurosurgery, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| | - William H Yong
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA University of California, Los Angeles, California, USA
| |
Collapse
|
39
|
Motebejane MS, Kaminsky I, Enicker BC, Esterhuizen T, Choi IS. Intracranial Meningiomas in the Era of Human Immunodeficiency Virus Infection and Antiretroviral Therapies in KwaZulu-Natal, South Africa: An Observational Case-Control Study. Neurosurgery 2017; 64:97-104. [DOI: 10.1093/neuros/nyx284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mogwale Samson Motebejane
- Department of Neurosurgery, Inkosi Albert Luthuli Central Hospital, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ian Kaminsky
- Department of Interventional Neuro-radiology, Lahey Hospital and Medical Center, Tufts University, School of Medicine, Medford, Massachusetts
| | - Basil Claude Enicker
- Department of Neurosurgery, Inkosi Albert Luthuli Central Hospital, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tonya Esterhuizen
- Bio-statistics Unit, Centre for Evidence Based Health Care, Faculty of Health Sci-ences, Stellenbosch University, Stellen-bosch, South Africa
| | - In Sup Choi
- Department of Interventional Neuro-radiology, Lahey Hospital and Medical Center, Tufts University, School of Medicine, Medford, Massachusetts
| |
Collapse
|
40
|
Khan I, Baeesa S, Bangash M, Schulten HJ, Alghamdi F, Qashqari H, Madkhali N, Carracedo A, Saka M, Jamal A, Al-Maghrabi J, AlQahtani M, Al-Karim S, Damanhouri G, Saini K, Chaudhary A, Abuzenadah A, Hussein D. Pleomorphism and drug resistant cancer stem cells are characteristic of aggressive primary meningioma cell lines. Cancer Cell Int 2017; 17:72. [PMID: 28736504 PMCID: PMC5521079 DOI: 10.1186/s12935-017-0441-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background Meningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce. Methods Meningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide. Results Unsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs. Conclusion Collectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0441-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ishaq Khan
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hanadi Qashqari
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Nawal Madkhali
- Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Galician Foundation of Genomic Medicine, Cyber-University of Santiago de Compostela, 15706 Santiago De Compostela, Spain
| | - Mohamad Saka
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Awatif Jamal
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Jaudah Al-Maghrabi
- Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Al-Karim
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Kulvinder Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,School of Biotechnology, Eternal University, Baru Sahib Road, Sirmour, 173101 Himachal Pradesh India
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
41
|
Linsler S, Fischer G, Skliarenko V, Stadie A, Oertel J. Endoscopic Assisted Supraorbital Keyhole Approach or Endoscopic Endonasal Approach in Cases of Tuberculum Sellae Meningioma: Which Surgical Route Should Be Favored? World Neurosurg 2017; 104:601-611. [PMID: 28512043 DOI: 10.1016/j.wneu.2017.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Keyhole approaches are under investigation for skull base tumor surgery. They are expected to have a low complication rate with the same successful resection rate compared with endoscopic endonasal procedures. In this study, we compare our current series of tuberculum sellae meningiomas resected via an endoscopic endonasal or microsurgical supraorbital keyhole approach. METHODS Between 2011 and 2016, 16 patients were treated using the supraorbital keyhole procedure and 6 patients received an endoscopic endonasal procedure. Both surgical techniques were analyzed and compared concerning complications, surgical radicality, endocrinologic, and ophthalmologic outcome and recurrences in patients' follow-up. RESULTS The 2 different approaches yielded similar rates of gross total resection (endonasal 83% [5 of 6] vs. supraorbital 87% [14 of 16]), near total resection (17% [1 of 6] vs. 13% [2 of 16]), and visual recovery (endonasal 66% [2 of 3] vs. supraorbital 60% [3 of 5]). An extension lateral to the internal carotid artery was noted in 81% (13 of 16) of the supraorbital cases and in none of the endonasal cases. Tumor volume was 14.9 cm3 (±8.2 cm3) for supraorbital tumors versus 2.1 cm3 (±0.8 cm3) for the endonasal approach. CONCLUSIONS Both approaches provide minimally invasive surgical routes accessing meningiomas of the sellar region. The ideal approach should be tailored to the individual patient considering the tumor anatomy, lateral extension, and the experience of the surgeon with both surgical approaches. We suggest using the supraorbital approach for larger meningiomas of sellar region with far lateral extension or broad vascular encasement.
Collapse
Affiliation(s)
- Stefan Linsler
- Klinik für Neurochirurgie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Gerrit Fischer
- Klinik für Neurochirurgie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Volodymyr Skliarenko
- Klinik für Neurochirurgie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Axel Stadie
- Klinik für Neurochirurgie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Joachim Oertel
- Klinik für Neurochirurgie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| |
Collapse
|
42
|
Pinzi V, Biagioli E, Roberto A, Galli F, Rizzi M, Chiappa F, Brenna G, Fariselli L, Floriani I. Radiosurgery for intracranial meningiomas: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2017; 113:122-134. [DOI: 10.1016/j.critrevonc.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022] Open
|
43
|
Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, Okonechnikov K, Koelsche C, Reuss DE, Capper D, Sturm D, Wirsching HG, Berghoff AS, Baumgarten P, Kratz A, Huang K, Wefers AK, Hovestadt V, Sill M, Ellis HP, Kurian KM, Okuducu AF, Jungk C, Drueschler K, Schick M, Bewerunge-Hudler M, Mawrin C, Seiz-Rosenhagen M, Ketter R, Simon M, Westphal M, Lamszus K, Becker A, Koch A, Schittenhelm J, Rushing EJ, Collins VP, Brehmer S, Chavez L, Platten M, Hänggi D, Unterberg A, Paulus W, Wick W, Pfister SM, Mittelbronn M, Preusser M, Herold-Mende C, Weller M, von Deimling A. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 2017; 18:682-694. [PMID: 28314689 DOI: 10.1016/s1470-2045(17)30155-9] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. METHODS In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. FINDINGS We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. INTERPRETATION DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. FUNDING German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schefzyk
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Konstantin Okonechnikov
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Haematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Peter Baumgarten
- Neurological Institute (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Annekathrin Kratz
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Huang
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hayley P Ellis
- Brain Tumour Research Group, Institute of Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Ali Fuat Okuducu
- Department of Pathology, University Hospital Nürnberg, Nürnberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthias Schick
- Genomics and Proteomics Core Facility, Micro-Array Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, Micro-Array Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Ralf Ketter
- Department of Neurosurgery, Saarland University, Homburg, Germany
| | - Matthias Simon
- Department of Neurosurgery, Evangelische Krankenhaus Bielefeld, Bielefeld, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Albert Becker
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Arend Koch
- Department of Neuropathology, Charité Medical University, Berlin, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - V Peter Collins
- Department of Molecular Histopathology, University of Cambridge, Cambridge, UK
| | - Stefanie Brehmer
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany; Neurology Clinic, University Hospital Mannheim, Mannheim, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Haematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Matthias Preusser
- Department of Medicine I, CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
Olar A, Wani KM, Wilson CD, Zadeh G, DeMonte F, Jones DTW, Pfister SM, Sulman EP, Aldape KD. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol 2017; 133:431-444. [PMID: 28130639 PMCID: PMC5600514 DOI: 10.1007/s00401-017-1678-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Meningioma is the most common primary brain tumor and carries a substantial risk of local recurrence. Methylation profiles of meningioma and their clinical implications are not well understood. We hypothesized that aggressive meningiomas have unique DNA methylation patterns that could be used to better stratify patient management. Samples (n = 140) were profiled using the Illumina HumanMethylation450BeadChip. Unsupervised modeling on a training set (n = 89) identified 2 molecular methylation subgroups of meningioma (MM) with significantly different recurrence-free survival (RFS) times between the groups: a prognostically unfavorable subgroup (MM-UNFAV) and a prognostically favorable subgroup (MM-FAV). This finding was validated in the remaining 51 samples and led to a baseline meningioma methylation classifier (bMMC) defined by 283 CpG loci (283-bMMC). To further optimize a recurrence predictor, probes subsumed within the baseline classifier were subject to additional modeling using a similar training/validation approach, leading to a 64-CpG loci meningioma methylation predictor (64-MMP). After adjustment for relevant clinical variables [WHO grade, mitotic index, Simpson grade, sex, location, and copy number aberrations (CNAs)] multivariable analyses for RFS showed that the baseline methylation classifier was not significant (p = 0.0793). The methylation predictor, however, was significantly associated with tumor recurrence (p < 0.0001). CNAs were extracted from the 450k intensity profiles. Tumor samples in the MM-UNFAV subgroup showed an overall higher proportion of CNAs compared to the MM-FAV subgroup tumors and the CNAs were complex in nature. CNAs in the MM-UNFAV subgroup included recurrent losses of 1p, 6q, 14q and 18q, and gain of 1q, all of which were previously identified as indicators of poor outcome. In conclusion, our analyses demonstrate robust DNA methylation signatures in meningioma that correlate with CNAs and stratify patients by recurrence risk.
Collapse
Affiliation(s)
- Adriana Olar
- Departments of Pathology and Laboratory Medicine and Neurosurgery, Medical University of South Carolina and Hollings Cancer Center, 171 Ashley Ave., MSC 908, Charleston, SC, 29425, USA.
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX, 77030, USA
| | - Charmaine D Wilson
- Center for Nursing Research, The University of Texas School of Nursing, 6901 Bertner St., Houston, TX, 77030, USA
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, MacFeeters-Hamilton Brain Tumour Centre, College Street 101, Toronto, M5G 1L7, ON, Canada
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Network (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Network (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Erik P Sulman
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX, 77030, USA
- Departments of Radiation Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Kenneth D Aldape
- Princess Margaret Cancer Centre, MacFeeters-Hamilton Brain Tumour Centre, College Street 101, Toronto, M5G 1L7, ON, Canada
| |
Collapse
|
45
|
Och W, Szmuda T, Sikorska B, Springer J, Jaskólski D, Zakrzewska M, Liberski PP. Recurrence-associated chromosomal anomalies in meningiomas: Single-institution study and a systematic review with meta-analysis. Neurol Neurochir Pol 2016; 50:439-448. [DOI: 10.1016/j.pjnns.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 11/26/2022]
|
46
|
The correlation of clinical and chromosomal alterations of benign meningiomas and their recurrences. Neurol Neurochir Pol 2016; 50:395-402. [PMID: 27480481 DOI: 10.1016/j.pjnns.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022]
Abstract
Meningiomas (MGs) are the frequent benign intracranial tumors. Their complete removal does not always guarantee relapse-free survival. Recurrence-associated chromosomal anomalies in MGs haves been proposed as prognostic factors in addition to the World Health Organisation (WHO) grading, tumor size and resection rate. The aim of this study was to evaluate the frequency of deletions on chromosomes in sporadic MGs and to correlate them with the clinical findings and tumor behaviour. Along with survival, the tumor recurrence was the main endpoint. Chromosomal loss of heterozygosity (LOH) was studied. 46 benign MGs were subjected to the analysis, complete tumor resection was intended and no early mortalities were observed. Incomplete removal was related to parasagittal location and psammomatous hisptopathology (p<0.01). Chromosomal alterations were present in 82.6% of cases; LOH at 22q (67.4%) and 1p (34.8%) were the most frequent and associated with male sex (p=0.04). Molecular findings were not specific for any of the histopathologic grade. Tumor recurrence (14 of 46) correlated with tumor size (≥35mm), LOH at 1p, 14q, coexistence of LOH at 1p/14q, 10q/14q, 'complex karyotype' status (≥2 LOHs excluding 22q), patient age (younger <35), and Simpson grading of resection rate (≥3 of worse prognosis). The last 3 variables were independent significant prognostic factors in multivariate analysis and of the same importance in recurrence prediction (Receiver Operating Characteristic curves comparison p>0.05). Among the cases of recurrence, tumor progression was observed in 3 of 14. In 2 cases, LOH on 1p and/or coexistence of LOH 1p/14q correlated with anaplastic transformation.
Collapse
|
47
|
Linsler S, Keller C, Urbschat S, Ketter R, Oertel J. Prognosis of meningiomas in the early 1970s and today. Clin Neurol Neurosurg 2016; 149:98-103. [DOI: 10.1016/j.clineuro.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
48
|
Genetic landscape of meningioma. Brain Tumor Pathol 2016; 33:237-247. [DOI: 10.1007/s10014-016-0271-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
|
49
|
Abbritti RV, Polito F, Cucinotta M, Lo Giudice C, Caffo M, Tomasello C, Germanò A, Aguennouz M. Meningiomas and Proteomics: Focus on New Potential Biomarkers and Molecular Pathways. Cancer Genomics Proteomics 2016; 13:369-379. [PMID: 27566655 PMCID: PMC5070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 06/06/2023] Open
Abstract
Meningiomas are one of the most common tumors affecting the central nervous system, exhibiting a great heterogeneity in grading, treatment and molecular background. This article provides an overview of the current literature regarding the molecular aspect of meningiomas. Analysis of potential biomarkers in serum, cerebrospinal fluid (CSF) and pathological tissues was reported. Applying bioinformatic methods and matching the common proteic profile, arising from different biological samples, we highlighted the role of nine proteins, particularly related to tumorigenesis and grading of meningiomas: serpin peptidase inhibitor alpha 1, ceruloplasmin, hemopexin, albumin, C3, apolipoprotein, haptoglobin, amyloid-P-component serum and alpha-1-beta-glycoprotein. These proteins and their associated pathways, including complement and coagulation cascades, plasma lipoprotein particle remodeling and lipid metabolism could be considered possible diagnostic, prognostic biomarkers, and eventually therapeutic targets. Further investigations are needed to better characterize the role of these proteins and pathways in meningiomas. The role of new therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Rosaria Viola Abbritti
- Biomedical Sciences and Morphological and Functional Imaging, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Francesca Polito
- Biomedical Sciences and Morphological and Functional Imaging, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Maria Cucinotta
- Clinical and Experimental Medicine, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Claudio Lo Giudice
- Clinical and Experimental Medicine, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Maria Caffo
- Biomedical Sciences and Morphological and Functional Imaging, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Chiara Tomasello
- Biomedical Sciences and Morphological and Functional Imaging, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Antonino Germanò
- Biomedical Sciences and Morphological and Functional Imaging, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| | - Mohammed Aguennouz
- Clinical and Experimental Medicine, Gaetano Martino, Polyclinic University Hospital University of Messina, Messina, Italy
| |
Collapse
|
50
|
Och W, Kulbacki K, Szostak B, Sikorska B, Zakrzewska M, Szmuda T, Liberski PP, Budzisz T. The molecular pattern of histopathological progression to anaplastic meningioma – A case report. Neurol Neurochir Pol 2016; 50:288-93. [DOI: 10.1016/j.pjnns.2016.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/28/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
|