1
|
Surman M, Wilczak M, Bzowska M, Tylko G, Przybyło M. The Proangiogenic Effects of Melanoma-Derived Ectosomes Are Mediated by αvβ5 Integrin Rather than αvβ3 Integrin. Cells 2024; 13:1336. [PMID: 39195226 PMCID: PMC11352487 DOI: 10.3390/cells13161336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Ectosomes are carriers of proangiogenic factors during cancer progression. This study investigated whether the proangiogenic effect exerted by melanoma-derived ectosomes on recipient endothelial cells is mediated by ectosomal αvβ3 and αvβ5 integrins. Ectosomes were isolated from the conditioned culture media of four melanoma cell lines and melanocytes. Changes in gene and protein expression of αvβ3 and αvβ5 integrins, as well as VEGF and TNF-α were assessed in ectosome-treated endothelial cells. To confirm the functional involvement of ectosomal integrins in functional tests (Alamar Blue, wound healing and tube formation assays), ectosomes were also pretreated with anti-integrin antibodies and integrin-blocking peptides echistatin and cilengitide. Melanoma-derived ectosomes induced changes in the expression of αvβ3 and αvβ5 integrins in recipient endothelial cells, leading to increased viability, migratory properties, and tube formation potential. The extent of proangiogenic stimulation varied depending on the types of cells releasing ectosomes and the recipient cells. The use of anti-integrin antibodies and integrin-blocking peptides revealed a more significant role for the αvβ5 integrin/VEGF than the αvβ3 integrin/TNF-α pathway in the interactions between ectosomes and endothelial cells. The study demonstrated the functional role of ectosomal αvβ3 and αvβ5 integrins. It also provided a baseline understanding of ectosome-mediated αvβ3 integrin/TNF-α and αvβ5 integrin/VEGF signaling in angiogenesis.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.); (M.W.)
| |
Collapse
|
2
|
Mahmoudi F, Hanachi P, Montaseri A. Extracellular vesicles of immune cells; immunomodulatory impacts and therapeutic potentials. Clin Immunol 2023; 248:109237. [PMID: 36669608 DOI: 10.1016/j.clim.2023.109237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs) are a diverse collection of lipid bilayer-membrane-bound particles which are released from cells into the extracellular space and biologic fluids. In multicellular organisms, these vesicles facilitate the exchange of bioactive compounds such as RNA, DNA, proteins, various metabolites, and lipids between the cells. EVs are produced and released by almost all eukaryotic cells including immune cells and can have immunomodulating effects by either stimulation or suppression of their activities. This immune-modulating feature may provide a promising strategy for treating immune-mediated diseases such as cancer, neurodegenerative diseases, autoimmune disorders and graft-versus-host disease. Moreover, immune cell-derived EVs have received attention as potential biomarkers for being used as diagnostic tools and preventive strategies such as for developing vaccines. In this review, we focus on the EVs produced by different immune cell types, their effects on the immune system, and highlight their potential applications for immunotherapy.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
4
|
Pezzicoli G, Tucci M, Lovero D, Silvestris F, Porta C, Mannavola F. Large Extracellular Vesicles-A New Frontier of Liquid Biopsy in Oncology. Int J Mol Sci 2020; 21:ijms21186543. [PMID: 32906787 PMCID: PMC7555129 DOI: 10.3390/ijms21186543] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular Vesicles (EVs) are emerging as pivotal elements in cancer. Many studies have focused on the role of Small- (S)-EVs but in recent years Large-(L)-EVs have progressively gained increasing interest due to their peculiar content and functions. Tumor-derived L-EVs carry a lot of oncogenic proteins, nucleic acids and lipids to recipient cells and are involved in the reshaping of the tumor microenvironment as well as in the metabolic rewiring and the promotion of the pro-metastatic attitude of cancer cells. Several techniques have been developed for the isolation of L-EVs and commercial kits are also available for efficient and easy recovery of these vesicles. Also, the improvement in DNA sequencing and “omics sciences” profoundly changed the way to analyze and explore the molecular content of L-EVs, thus providing novel and potentially useful cancer biomarkers. Herein, we review the most recent findings concerning the role of L-EVs in cancer and discuss their possible use in oncology as “liquid biopsy” tools as compared to the other classes of EVs.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (G.P.); (M.T.); (D.L.); (F.S.); (C.P.)
- Correspondence:
| |
Collapse
|
5
|
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Front Oncol 2020; 10:396. [PMID: 32266157 PMCID: PMC7105815 DOI: 10.3389/fonc.2020.00396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neoplastic tissues are composed not only by tumor cells but also by several non-transformed stromal cells, such as cancer-associated fibroblasts, endothelial and immune cells, that actively participate to tumor progression. Starting from the very beginning of carcinogenesis, tumor cells, through the release of paracrine soluble factors and vesicles, i.e., exosomes, modify the behavior of the neighboring cells, so that they can give efficient support for cancer cell proliferation and spreading. A mandatory role in tumor progression has been recently acknowledged to metabolic deregulation. Beside undergoing a metabolic reprogramming coherent to their high proliferation rate, tumor cells also rewire the metabolic assets of their stromal cells, educating them to serve as nutrient donors. Hence, an alteration in the composition and in the flow rate of many nutrients within tumor microenvironment has been associated with malignancy progression. This review is focused on metabolic remodeling of the different cell populations within tumor microenvironment, dealing with reciprocal re-education through the symbiotic sharing of metabolites, behaving both as nutrients and as transcriptional regulators, describing their impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Abstract
Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells. They are composed of a lipid bilayer containing transmembrane proteins and enclosing cytosolic proteins and RNA, mediating intercellular communication between different cell types in the body, and thus influencing various physiological and pathological functions of both recipient and parent cells. For their nanolevel structures with a stable nature and various biological functions, studies of exosomes have been the subject of increasing interest in the past few years. It is widely known that different T cell subsets play important roles in cellular and humoral immunity, and their exosomes were also reported to exert similar biological functions. While several groups reported the secretion of exosomes by various T cells, the systematic summary involved in these exosomes are deficient. In this review, we will summarize the structure and functions of exosomes derived from T cells in recent reports, discuss emerging therapeutic opportunities, and consider the associated challenges.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Dianli Road No. 8, Zhenjiang, 212012, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Dianli Road No. 8, Zhenjiang, 212012, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
- Institute of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Dianli Road No. 8, Zhenjiang, 212012, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
7
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
8
|
García Garre E, Luengo Gil G, Montoro García S, Gonzalez Billalabeitia E, Zafra Poves M, García Martinez E, Roldán Schilling V, Navarro Manzano E, Ivars Rubio A, Lip GYH, Ayala de la Peña F. Circulating small-sized endothelial microparticles as predictors of clinical outcome after chemotherapy for breast cancer: an exploratory analysis. Breast Cancer Res Treat 2018; 169:83-92. [PMID: 29340882 DOI: 10.1007/s10549-017-4656-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/30/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Therapeutic exploitation of angiogenesis in breast cancer has been limited by the lack of reliable biomarkers. Circulating small-sized endothelial microparticles (sEMP) are likely to play a significant role as messengers of angiogenesis. Higher levels of EMP have been observed in cancer patients, but their prognostic value in breast cancer is unknown. Our aim was to determine the value of circulating sEMP as a marker of response to chemotherapy in breast cancer. METHODS We included patients with breast cancer treated with neoadjuvant or first-line chemotherapy. Baseline and post-treatment circulating sEMP (CD144+) were quantified using a flow cytometer approach specifically designed for analysis of small-sized particles (0.1-0.5 μm). Small-sized EMP response was defined as a post-treatment decrease of sEMP larger than the median decrease of sEMP after chemotherapy. Baseline and post-chemotherapy VEGFA levels were determined with ELISA. RESULTS Forty-four breast cancer patients were included (19 with metastatic and 25 with locally advanced disease). Median levels of sEMP decreased after chemotherapy (P = 0.005). Response to chemotherapy showed a non-significant trend to associate with sEMP response (P = 0.056). A sEMP response was observed in 51% of patients and was associated with better overall survival (HR 0.18; 95% CI 0.04-0.87; P = 0.02) and progression free survival (HR 0.30; 95% CI 0.09-0.99; P = 0.04) in the group of women with metastatic disease. Post-chemotherapy decrease of VEGFA levels was not associated with breast cancer prognosis. CONCLUSIONS Our results did not support sEMP as a marker of response to chemotherapy. However, our exploratory analysis suggests that in patients with metastatic breast cancer, the decrease of sEMP levels after chemotherapy is associated with better overall and disease free survival and might be superior to VEGFA levels as an angiogenesis-related prognostic marker.
Collapse
Affiliation(s)
- Elisa García Garre
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Ginés Luengo Gil
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,Universidad de Murcia, Murcia, Spain
| | - Silvia Montoro García
- Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain.,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Enrique Gonzalez Billalabeitia
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Marta Zafra Poves
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Elena García Martinez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Vanessa Roldán Schilling
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,Universidad de Murcia, Murcia, Spain
| | - Esther Navarro Manzano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain.,Universidad de Murcia, Murcia, Spain
| | - Alejandra Ivars Rubio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Francisco Ayala de la Peña
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Avda. Marqués de los Velez, s/n, 30008, Murcia, Spain. .,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain. .,Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
9
|
Lu CC, Ma KL, Ruan XZ, Liu BC. The Emerging Roles of Microparticles in Diabetic Nephropathy. Int J Biol Sci 2017; 13:1118-1125. [PMID: 29104503 PMCID: PMC5666327 DOI: 10.7150/ijbs.21140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022] Open
Abstract
Microparticles (MPs) are a type of extracellular vesicles (EVs) shed from the outward budding of plasma membranes during cell apoptosis and/or activation. These microsized particles then release specific contents (e.g., lipids, proteins, microRNAs) which are active participants in a wide range of both physiological and pathological processes at the molecular level, e.g., coagulation and angiogenesis, inflammation, immune responses. Research limitations, such as confusing nomenclature and overlapping classification, have impeded our comprehension of these tiny molecules. Diabetic nephropathy (DN) is currently the greatest contributor to end-stage renal diseases (ESRD) worldwide, and its public health impact will continue to grow due to the persistent increase in the prevalence of diabetes mellitus (DM). MPs have recently been considered as potentially involved in DN onset and progression, and this review juxtaposes some of the research updates about the possible mechanisms from several relevant aspects and insights into the therapeutic perspectives of MPs in clinical management and pharmacological treatment of DN patients.
Collapse
Affiliation(s)
- Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
10
|
Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis 2017; 20:385-398. [DOI: 10.1007/s10456-017-9554-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
11
|
Surman M, Stępień E, Hoja-Łukowicz D, Przybyło M. Deciphering the role of ectosomes in cancer development and progression: focus on the proteome. Clin Exp Metastasis 2017; 34:273-289. [PMID: 28317069 PMCID: PMC5442264 DOI: 10.1007/s10585-017-9844-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/11/2017] [Indexed: 12/11/2022]
Abstract
Ectosomes are small heterogeneous membrane vesicles generated by budding from the plasma membrane in a variety of cell types and, more frequently, in tumor cells. They are shed into the extracellular space and are proposed as a novel form of intracellular communication in which information is transmitted from the originating cell to recipient cells without direct cell-to-cell contact. This review focuses on a single population of extracellular vesicles-ectosomes. We summarize recent studies of tumor-derived ectosomes which examine their biogenesis and protein cargo, and their influence on different aspects of cancer progression. We discuss possible clinical implications involving ectosomes as potential biomarkers, diagnostic tools and treatment targets in oncology. The unique composition of the molecules (cargo) that ectosomes carry, and their functional role, depends largely on the state of their originating cell. Through horizontal transfer of a variety of biologically active molecules (including proteins, lipids and nucleic acids) between donor and recipient cells, tumor-derived ectosomes may play functional roles in oncogenic transformation, tumor progression, invasion, metastasis, angiogenesis promotion, escape from immune surveillance, and drug resistance, thereby facilitating disease progression. The presence of tumor-derived ectosomes in body fluids such as the blood and urine of cancer patients makes them potentially useful prognostic and predictive biomarkers. Tumor-derived ectosomes also offer possible targets for multiple therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
12
|
Abstract
The ability of cells to transmit bioactive molecules to recipient cells and the extracellular environment is a fundamental requirement for both normal physiology and disease pathogenesis. It has traditionally been thought that soluble factors released from cells were responsible for this cellular signaling but recent research has revealed a fundamental role for microvesicles in this process. Microvesicles are heterogeneous membrane-bound sacs that are shed from the surface of cells into the extracellular environment in a highly regulated process. They are shed following the selective incorporation of a host of molecular cargo including multiple types of proteins and nucleic acids. In addition to providing new insight into the etiology of complex human diseases, microvesicles also show great promise as a tool for advanced diagnosis and therapy as we move forward into a new age of personalized medicine. Here we review current status of the rapidly evolving field of microvesicle biology, highlighting critical regulatory roles for several small GTPases in the biology and biogenesis of shed microvesicles.
Collapse
Affiliation(s)
- Christopher Tricarico
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| | - James Clancy
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| | | |
Collapse
|
13
|
Clancy JW, Tricarico CJ, D'Souza-Schorey C. Tumor-derived microvesicles in the tumor microenvironment: How vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays 2015; 37:1309-16. [DOI: 10.1002/bies.201500068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- James W. Clancy
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
| | | | | |
Collapse
|
14
|
Julich H, Willms A, Lukacs-Kornek V, Kornek M. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front Immunol 2014; 5:413. [PMID: 25225495 PMCID: PMC4150251 DOI: 10.3389/fimmu.2014.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/14/2014] [Indexed: 01/03/2023] Open
Abstract
Cell-derived vesicles in particular extracellular vesicles (EVs) such as microparticles (MPs) and microvesicles besides exosomes are raising more and more attention as a novel and unique approach to detect diseases. It has recently become apparent that disease specific MP signatures or profiles might be beneficial to differentiate chronic liver diseases such as non-alcoholic fatty liver disease and chronic hepatitis C, to monitor their progression or possibly to assess treatment outcome. Therefore EVs might serve as a novel inexpensive and minimally invasive method to screen risk patients for the outbreak of a disease even before the initial symptoms, to follow up treatment complications and disease relapse. The purpose of the current review is to summarize already published EVs signatures for a limited number of exemplary diseases and to discuss their possible impact. Additionally, it will be discussed if the combination of EV profiling and miRNA profiling could be a future joint tool for the purpose of detecting cancer and from far larger interest to ultimately distinguish among various tumor entities. EVs might increase the chance of early detection of chronic diseases or cancers especially if applied as part of yearly health screenings in the future.
Collapse
Affiliation(s)
- Henrike Julich
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Arnulf Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital , Koblenz , Germany
| | | | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany ; Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital , Koblenz , Germany
| |
Collapse
|