1
|
Shang L, Roffel S, Slomka V, D'Agostino EM, Metris A, Buijs MJ, Brandt BW, Deng D, Gibbs S, Krom BP. An in vitro model demonstrating homeostatic interactions between reconstructed human gingiva and a saliva-derived multispecies biofilm. MICROBIOME 2025; 13:58. [PMID: 40022258 PMCID: PMC11869481 DOI: 10.1186/s40168-025-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND In the oral cavity, host-microbe interactions (HMI) continuously occur and greatly impact oral health. In contrast to the well-studied disease-associated HMI during, for example, periodontitis, HMI that are essential in maintaining oral health have been rarely investigated, especially in a human-relevant context. The aim of this study was to extensively characterize homeostatic HMI between saliva-derived biofilms and a reconstructed human gingiva (RHG). RHG was reconstructed following the structure of native gingiva, composed of a multilayered epithelium formed by keratinocytes and a fibroblast-populated compartment. To mimic the oral environment, RHG were inoculated with pooled human saliva resuspended in different saliva substitute media and incubated for 2 or 4 days. The co-cultured biofilms were retrieved and characterized by viable bacterial counting and compositional profiling (16S rRNA gene sequencing). RHG was investigated for metabolic activity (MTT assay), tissue histology (hematoxylin and eosin staining), epithelial proliferation (Ki67 staining), antimicrobial peptide expression, and cytokine secretion. RESULTS Viable biofilms were detected up to day 4 of co-culturing. Bacterial counts indicated biofilm growth from the inoculation to day 2 and maintained thereafter at a similar level until day 4. All biofilms shared similar composition throughout 4 days, independent of co-culture time and different saliva substitute media used during inoculation. Biofilms were diverse with Streptococcus, Haemophilus, and Neisseria being the dominating genera. While supporting biofilm development, RHG displayed no significant changes in metabolic activity, tissue histology, or epithelial proliferation. However, in the presence of biofilms, the antimicrobial peptides elafin and human β-defensin-2 were upregulated, and the secretion of cytokines IL-6, CXCL1, CXCL8, CCL5, and CCL20 increased. CONCLUSION This model mimicked homeostatic HMI where a healthy gingiva supported a viable, diverse, and stable microbial community, incorporating bacterial genera found on native gingiva. The gingiva model maintained its tissue integrity and exerted protective responses in the presence of biofilms over time. This study adds to the evidence that shows the important role of the host in maintaining homeostatic HMI that are essential for oral health. Video Abstract.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | - Aline Metris
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedford, UK
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre Location Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
2
|
Balaha M, Cataldi A, Ammazzalorso A, Cacciatore I, De Filippis B, Di Stefano A, Maccallini C, Rapino M, Korona-Glowniak I, Przekora A, di Giacomo V. CAPE derivatives: Multifaceted agents for chronic wound healing. Arch Pharm (Weinheim) 2024; 357:e2400165. [PMID: 39054610 DOI: 10.1002/ardp.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Lublin, Poland
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
AlFatlawi Z, Huang M, Chau DYS, D'Aiuto F. Three dimensional (3D) gingival models in periodontal research: a systematic review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:58. [PMID: 37938480 PMCID: PMC10632299 DOI: 10.1007/s10856-023-06761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The aim of this study is to systematically appraise the evidence on available full thickness 3D gingival and mucosal models (3D culture in scaffold base system) and their application in periodontal and peri-implant research. This study involved a systematic review of twenty-two studies obtained from searching from five electronic databases: MEDLINE-OVID, EMBASE, EBSCOhost, Web of Science Core Collection and LILACS, as well as a hand search of eligible articles up to September 2022. A total of 2338 studies were initially identified, after removal of duplicates (573), abstracts/title selection (1765), and full text screening (95), twenty-two studies were included, thirty-seven models were identified. Several cellular markers were reported by the studies included. The expression of keratinocytes differentiation markers (K4, K5, K10, K13, K14, K16, K17, K18, K19, involucrin, laminin5), proliferation marker (Ki67, CD90), and vimentin, Type I, II and IV collagen produced by fibroblasts were investigated in thirty models. No quantitative analyses were performed, and results of the review confirmed a substantial level of heterogeneity across experiments. In conclusion, there is currently insufficient evidence to conclude that the available 3D gingival and mucosal models can entirely recapitulate the human gingival tissue/mucosa and provide a useful research tool for periodontal and peri-implant research. This review also highlighted the lack of a standardized protocol to construct and characterize 3D gingival models. A new protocol is proposed for the characterization of in vitro gingival models for future research.
Collapse
Affiliation(s)
- Z AlFatlawi
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - M Huang
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| | - D Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| | - F D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| |
Collapse
|
4
|
Al-Odayni AB, Alotaibi DH, Saeed WS, Al-Kahtani A, Assiri A, Alkhtani FM, Alrahlah A. Eugenyl-2-Hydroxypropyl Methacrylate-Incorporated Experimental Dental Composite: Degree of Polymerization and In Vitro Cytotoxicity Evaluation. Polymers (Basel) 2022; 14:polym14020277. [PMID: 35054684 PMCID: PMC8781375 DOI: 10.3390/polym14020277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to evaluate the properties of new dental formulations containing eugenyl-2-hydroxypropyl methacrylate (EgGMA) monomer, as restorative dental material, in terms of their degree of photopolymerization and cytotoxicity. The target model composites (TBEg0, TBEg2.5, and TBEg5) were prepared by mixing 35% organic matrix (TEGDMA/BisGMA (50/50 wt%) of which 0, 2.5, and 5 wt%, respectively, were replaced with EgGMA monomer) with 65% filler (silanized hydroxyapatite (HA)/zinc oxide (ZnO2), 4:3 by weight). The vinylic double-bond conversion (DC) after light-curing was studied using Fourier transform infrared technique whereas cell viability was in vitro tested using primary human gingival fibroblasts cells over 7 days by means of AlamarBlue colorimetric assay. The obtained data were statistically analyzed using ANOVA and Tukey post-hoc tests. The results revealed no significant difference in DC between TBEg2.5 (66.49%) and control (TBEg0; 68.74%), whereas both differ significantly with TBEg5, likely due to the inhibitory effect of eugenol moiety at high concentration. The cell viability test indicated that all the composites are biocompatible. No significant difference was counted between TBEg2.5 and TBEg5, however, both differed significantly from the control (TBEg0). Thus, even though its apparent negative effect on polymerization, EgGMA is potentially safer than bisphenol-derived monomers. Such potential properties may encourage further investigations on term of EgGMA amount optimization, compatibility with other dental resins, and antimicrobial activity.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
- Correspondence:
| | - Dalal H. Alotaibi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
| | - Abdullah Al-Kahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Assiri
- College of Dentistry Research Center (CDRC), College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Fahad M. Alkhtani
- Department of Prosthodontics, College of Dentistry, Prince Sattam Bin Abdulaziz University, Alkharj 11924, Saudi Arabia;
| | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (W.S.S.); (A.A.)
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
5
|
Milutinovici RA, Chioran D, Buzatu R, Macasoi I, Razvan S, Chioibas R, Corlan IV, Tanase A, Horia C, Popovici RA, Dinu S, Dehelean C, Scurtu A, Pinzaru I, Soica C. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. PLANTS (BASEL, SWITZERLAND) 2021; 10:2148. [PMID: 34685957 PMCID: PMC8537575 DOI: 10.3390/plants10102148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Dental pathology remains a global health problem affecting both children and adults. The most important dental diseases are dental caries and periodontal pathologies. The main cause of oral health problems is overpopulation with pathogenic bacteria and for this reason, conventional therapy can often be ineffective due to bacterial resistance or may have unpleasant side effects. For that reason, studies in the field have focused on finding new therapeutic alternatives. Special attention is paid to the plant kingdom, which offers a wide range of plants and active compounds in various pathologies. This review focused on the most used plants in the dental field, especially on active phytocompounds, both in terms of chemical structure and in terms of mechanism of action. It also approached the in vitro study of active compounds and the main types of cell lines used to elucidate the effect and mechanism of action. Thus, medicinal plants and their compounds represent a promising and interesting alternative to conventional therapy.
Collapse
Affiliation(s)
- Raluca-Adriana Milutinovici
- Departament of Orthodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Revolutiei Ave. 1989 No. 9, 300041 Timisoara, Romania
| | - Doina Chioran
- Department of Dento-Alveolar Surgery, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Roxana Buzatu
- Department of Facial Tooth Aesthetics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Susan Razvan
- Department of Family Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Raul Chioibas
- Department of Surgery I, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania;
| | - Ion Virgil Corlan
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Alina Tanase
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Calniceanu Horia
- Department of Periodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Ramona Amina Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.V.C.); (A.T.); (R.A.P.)
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania;
| | - Cristina Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Scurtu
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania; (C.D.); (A.S.); (I.P.); (C.S.)
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| |
Collapse
|
6
|
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci 2021; 22:2485. [PMID: 33801230 PMCID: PMC7957900 DOI: 10.3390/ijms22052485] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been successfully applied in several areas due to their significant antimicrobial activity against several microorganisms. In dentistry, AgNP can be applied in disinfection, prophylaxis, and prevention of infections in the oral cavity. In this work, the use of silver nanoparticles in dentistry and associated technological innovations was analyzed. The scientific literature was searched using PubMed and Scopus databases with descriptors related to the use of silver nanoparticles in dentistry, resulting in 90 open-access articles. The search for patents was restricted to the A61K code (International Patent Classification), using the same descriptors, resulting in 206 patents. The results found were ordered by dental specialties and demonstrated the incorporation of AgNPs in different areas of dentistry. In this context, the search for patents reaffirmed the growth of this technology and the dominance of the USA pharmaceutical industry over AgNPs product development. It could be concluded that nanotechnology is a promising area in dentistry with several applications.
Collapse
Affiliation(s)
- Clara Couto Fernandez
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ana Rita Sokolonski
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Maísa Santos Fonseca
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| | - Danilo Barral Araújo
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ricardo Dias Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| |
Collapse
|
7
|
Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens. Antioxidants (Basel) 2021; 10:antiox10010044. [PMID: 33401488 PMCID: PMC7823476 DOI: 10.3390/antiox10010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. In the present study, the phenolic and terpenophenolic compounds were assayed in the water extract of the hemp variety Futura 75. Protective effects were also investigated in human fibroblast and keratinocytes and isolate mouse skin specimens, which were exposed to hydrogen peroxide and/or to the extract (1-500 µg/mL). The results of phytochemical analysis suggested the cannabidiol, cannabidiolic acid and rutin as the prominent phytocompounds. In the in vitro system represented by human keratinocytes and fibroblasts, the hemp extract was found to be able to protect cells from cytotoxicity and apoptosis induced by oxidative stress. Moreover, modulatory effects on IL-6, a key mediator in skin proliferation, were found. In isolated rat skin, the extract reduced hydrogen peroxide-induced l-dopa turnover, prostaglandin-E2 production and the ratio kynurenine/tryptpophan, thus corroborating anti-inflammatory/antioxidant effects. The in silico docking studies also highlighted the putative interactions between cannabidiol, cannabidiolic acid and rutin with tyrosinase and indoleamine-2,3-dioxygenase, involved in l-dopa turnover and tryptophan conversion in kynurenine, respectively. In conclusion, the present findings showed the efficacy of hemp water extract as a skin protective agent. This could be partly related to the extract content in cannabidiol, cannabidiolic acid and rutin.
Collapse
|
8
|
Taubmann A, Willershausen I, Walter C, Al-Maawi S, Kaina B, Gölz L. Genotoxic and cytotoxic potential of methacrylate-based orthodontic adhesives. Clin Oral Investig 2020; 25:2569-2581. [PMID: 32970196 PMCID: PMC8060203 DOI: 10.1007/s00784-020-03569-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
Objectives The biocompatibility of methacrylate-based adhesives is a topic that is intensively discussed in dentistry. Since only limited evidence concerning the cyto- and genotoxicity of orthodontic adhesives is available, the aim of this study was to measure the genotoxic potential of seven orthodontic methacrylate-based adhesives. Materials and methods The XTT assay was utilized to determine the cytotoxicity of Assure Plus, Assure Bonding Resin, ExciTE F, OptiBond Solo Plus, Scotchbond Universal Adhesive, Transbond MIP, and Transbond XT after an incubation period of 24 h on human gingival fibroblasts. We also performed the γH2AX assay to explore the genotoxic potential of the adhesives within cytotoxic dose ranges after an incubation period of 6 h. Results The XTT assay showed a concentration-dependent reduction in cell viability. The decrease in cellular viability was in the same dose range most significant for Assure Plus, rendering it the adhesive material with the highest cytotoxicity. Employing the γH2AX assay, a concentration-dependent increase in H2AX phosphorylation was detected, indicating induction of DNA damage. Conclusions For most products, a linear correlation between the material concentration and γH2AX foci was observed. The most severe effect on γH2AX focus induction was found for Transbond MIP, which was the only adhesive in the test group containing the co-initiator diphenyliodonium hexafluorophosphate (DPIHP). Clinical relevance The data indicate that orthodontic adhesives, notably Transbond MIP, bear a genotoxic potential. Since the study was performed with in vitro cultivated cells, a direct translation of the findings to in vivo exposure conditions should be considered with great diligence.
Collapse
Affiliation(s)
- Andreas Taubmann
- Department of Operative Dentistry, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Ines Willershausen
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | - Sarah Al-Maawi
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Mountcastle SE, Cox SC, Sammons RL, Jabbari S, Shelton RM, Kuehne SA. A review of co-culture models to study the oral microenvironment and disease. J Oral Microbiol 2020; 12:1773122. [PMID: 32922679 PMCID: PMC7448840 DOI: 10.1080/20002297.2020.1773122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/25/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Co-cultures allow for the study of cell-cell interactions between different eukaryotic species or with bacteria. Such an approach has enabled researchers to more closely mimic complex tissue structures. This review is focused on co-culture systems modelling the oral cavity, which have been used to evaluate this unique cellular environment and understand disease progression. Over time, these systems have developed significantly from simple 2D eukaryotic cultures and planktonic bacteria to more complex 3D tissue engineered structures and biofilms. Careful selection and design of the co-culture along with critical parameters, such as seeding density and choice of analysis method, have resulted in several advances. This review provides a comparison of existing co-culture systems for the oral environment, with emphasis on progression of 3D models and the opportunity to harness techniques from other fields to improve current methods. While filling a gap in navigating this literature, this review ultimately supports the development of this vital technique in the field of oral biology.
Collapse
Affiliation(s)
- Sophie E Mountcastle
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Birmingham, UK
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | | | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy. Int J Mol Sci 2020; 21:ijms21082789. [PMID: 32316424 PMCID: PMC7215394 DOI: 10.3390/ijms21082789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023] Open
Abstract
Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.
Collapse
|
11
|
Gallorini M, Berardi AC, Gissi C, Cataldi A, Osti L. Nrf2-mediated cytoprotective effect of four different hyaluronic acids by molecular weight in human tenocytes. J Drug Target 2019; 28:212-224. [PMID: 31339382 DOI: 10.1080/1061186x.2019.1648476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Non-traumatic rotator cuff tears (RCTs) are a frequent and potentially disabling injury. There is growing evidence that hyaluronic acid (HA) is effective for pain relief and to counteract inflammation in RCTs, however, its effective role in tendinopathies remains poorly studied. This study aims to disclose a possible molecular mechanism underlying the cytoprotective effects of four different HA preparations (Artrosulfur HA®, Synolis VA®, Hyalgan® and Hyalubrix®) under H2O2-induced oxidative stress. Expression-levels of Lactate dehydrogenase (LDH) released were quantified in cell supernatants, CD44 expression levels were analysed by fluorescence microscopy, the mitochondrial membrane depolarisation (TMRE assay) was measured by flow cytometry and the role of the transcription factor Nrf2 was investigated as a potential therapeutic target for RCT treatment. The modulation of extracellular matrix- (ECM) related protein expression (Integrin β1, pro-collagen 1A2 and collagen 1A1) and autophagy occurrence (Erk 1/2 and phosphoErk 1/2 and LC3B), were all investigated by Western Blot. Results demonstrate that Artrosulfur HA, Hyalubrix and Hyalgan improve cell escape from H2O2-induced oxidative stress, decreasing cytotoxicity, reducing Nrf2 expression and enhancing catalase recovery. This study lays the grounds for further investigations insight novel pharmaceutical strategies targeting key effectors involved in the molecular cascade triggered by HA.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Anna C Berardi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Clarissa Gissi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Leonardo Osti
- Unit of Arthroscopy and Sports Medicine, Hesperia Hospital, Modena, Italy
| |
Collapse
|
12
|
Chitlac-coated Thermosets Enhance Osteogenesis and Angiogenesis in a Co-culture of Dental Pulp Stem Cells and Endothelial Cells. NANOMATERIALS 2019; 9:nano9070928. [PMID: 31252684 PMCID: PMC6669739 DOI: 10.3390/nano9070928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Dental pulp stem cells (DPSCs) represent a population of stem cells which could be useful in oral and maxillofacial reconstruction. They are part of the periendothelial niche, where their crosstalk with endothelial cells is crucial in the cellular response to biomaterials used for dental restorations. DPSCs and the endothelial cell line EA.hy926 were co-cultured in the presence of Chitlac-coated thermosets in culture conditions inducing, in turn, osteogenic or angiogenic differentiation. Cell proliferation was evaluated by 3-[4,5-dimethyl-thiazol-2-yl-]-2,5-diphenyl tetrazolium bromide (MTT) assay. DPSC differentiation was assessed by measuring Alkaline Phosphtase (ALP) activity and Alizarin Red S staining, while the formation of new vessels was monitored by optical microscopy. The IL-6 and PGE2 production was evaluated as well. When cultured together, the proliferation is increased, as is the DPSC osteogenic differentiation and EA.hy926 vessel formation. The presence of thermosets appears either not to disturb the system balance or even to improve the osteogenic and angiogenic differentiation. Chitlac-coated thermosets confirm their biocompatibility in the present co-culture model, being capable of improving the differentiation of both cell types. Furthermore, the assessed co-culture appears to be a useful tool to investigate cell response toward newly synthesized or commercially available biomaterials, as well as to evaluate their engraftment potential in restorative dentistry.
Collapse
|
13
|
Di Giulio M, Di Valerio V, Bosco D, Marsich E, Cataldi A, Cellini L, Sancilio S. Molecular mechanisms driving Streptococcus mitis entry into human gingival fibroblasts in presence of chitlac-nAg and saliva. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:36. [PMID: 29556803 DOI: 10.1007/s10856-018-6040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The molecular mechanisms leading to Streptococcus mitis capability of entering oral cells were investigated in a co-culture of S. mitis and Human Gingival Fibroblasts (HGFs) in the presence of saliva. An innovative colloidal solution based on silver nanoparticles (Chitlac-nAg), a promising device for daily oral care, was added to the experimental system in order to study the effects of silver on the bacterial overgrowth and ability to enter non-phagocytic eukaryotic cells. The entry of bacteria into the eukaryotic cells is mediated by a signalling pathway involving FAK, integrin β1, and the two cytoskeleton proteins vinculin and F-actin, and down-regulated by the presence of saliva both at 3 and 48 h of culture, whereas Chitlac-n Ag exposure seems to influence, by incrementing it, the number of bacteria entering the fibroblasts only at 48 h. The formation of fibrillary extrusion from HGFs and the co-localization of bacteria and silver nanoparticles within the fibroblast vacuoles were also recorded. After longer experimental times (72 and 96 h), the number of S. mitis chains inside gingival cells is reduced, mainly in presence of saliva. The results suggest an escape of bacteria from fibroblasts to restore the microbial balance of the oral cavity.
Collapse
Affiliation(s)
- M Di Giulio
- Department of Pharmacy, G. d'Annunzio" University, Chieti-Pescara, Italy
| | - V Di Valerio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - D Bosco
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - E Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - A Cataldi
- Department of Pharmacy, G. d'Annunzio" University, Chieti-Pescara, Italy
| | - L Cellini
- Department of Pharmacy, G. d'Annunzio" University, Chieti-Pescara, Italy
| | - S Sancilio
- Department of Pharmacy, G. d'Annunzio" University, Chieti-Pescara, Italy.
| |
Collapse
|
14
|
Mendoza G, Regiel-Futyra A, Andreu V, Sebastián V, Kyzioł A, Stochel G, Arruebo M. Bactericidal Effect of Gold-Chitosan Nanocomposites in Coculture Models of Pathogenic Bacteria and Human Macrophages. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17693-17701. [PMID: 28225263 DOI: 10.1021/acsami.6b15123] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of pathogenic bacteria to develop resistance mechanisms to avoid the antimicrobial potential of antibiotics has become an increasing problem for the healthcare system. The search for more effective and selective antimicrobial materials, though not harmful to mammalian cells, seems imperative. Herein we propose the use of gold-chitosan nanocomposites as effective bactericidal materials avoiding damage to human cells. Nanocomposites were obtained by taking advantage of the reductive and stabilizing action of chitosan solutions on two different gold precursor concentrations. The resulting nanocomposites were added at different final concentrations to a coculture model formed by Gram-positive (Staphylococcus aureus) or Gram-negative (Escherichia coli) bacteria and human macrophages. Gold-chitosan colloids exhibited superior bactericidal ability against both bacterial models without showing cytotoxicity on human cells at the concentrations tested. Morphological and in vitro viability studies supported the feasibility of the infection model here described to test novel bactericidal nanomaterials. Flow cytometry and scanning electron microscopy analyses pointed to the disruption of the bacterial wall as the lethal mechanism. Data obtained in the present study suggest that gold-chitosan nanocomposites are powerful and promising nanomaterials for reducing bacteria-associated infections, respecting the integrity of mammalian cells, and displaying high selectivity against the studied bacteria.
Collapse
Affiliation(s)
- Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rı́o Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón) , 50009 Zaragoza, Spain
| | - Anna Regiel-Futyra
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland
| | - Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rı́o Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón) , 50009 Zaragoza, Spain
| | - Víctor Sebastián
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rı́o Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , 28029 Madrid, Spain
- Aragon Health Research Institute (IIS Aragón) , 50009 Zaragoza, Spain
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Kraków, Poland
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rı́o Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , 28029 Madrid, Spain
- Aragon Health Research Institute (IIS Aragón) , 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Gallorini M, di Giacomo V, Di Valerio V, Rapino M, Bosco D, Travan A, Di Giulio M, Di Pietro R, Paoletti S, Cataldi A, Sancilio S. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:186. [PMID: 27787811 DOI: 10.1007/s10856-016-5803-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023]
Abstract
Silver-based products have been proven to be effective in retarding and preventing bacterial growth since ancient times. In the field of restorative dentistry, the use of silver ions/nanoparticles has been explored to counteract bacterial infections, as silver can destroy bacterial cell walls by reacting with membrane proteins. However, it is also cytotoxic towards eukaryotic cells, which are capable of internalizing nanoparticles. In this work, we investigated the biological effects of Chitlac-nAg, a colloidal system based on a modified chitosan (Chitlac), administered for 24-48 h to a co-culture of primary human gingival fibroblasts and Streptococcus mitis in the presence of saliva, developed to mimic the microenvironment of the oral cavity. We sought to determine its efficiency to combat oral hygiene-related diseases without affecting eukaryotic cells. Cytotoxicity, reactive oxygen species production, apoptosis induction, nanoparticles uptake, and lysosome and autophagosome metabolism were evaluated. In vitro results show that Chitlac-nAg does not exert cytotoxic effects on human gingival fibroblasts, which seem to survive through a homoeostasis mechanism involving autophagy. That suggests that the novel biomaterial Chitlac-nAg could be a promising tool in the field of dentistry.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Valentina Di Valerio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Domenico Bosco
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Silvia Sancilio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| |
Collapse
|
16
|
Cataldi A, Gallorini M, Di Giulio M, Guarnieri S, Mariggiò MA, Traini T, Di Pietro R, Cellini L, Marsich E, Sancilio S. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:88. [PMID: 26970770 PMCID: PMC4789204 DOI: 10.1007/s10856-016-5701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.
Collapse
Affiliation(s)
- Amelia Cataldi
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Mara Di Giulio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Simone Guarnieri
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Silvia Sancilio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
17
|
Ionescu A, Brambilla E, Travan A, Marsich E, Donati I, Gobbi P, Turco G, Di Lenarda R, Cadenaro M, Paoletti S, Breschi L. Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. J Dent 2015; 43:1483-90. [DOI: 10.1016/j.jdent.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022] Open
|
18
|
Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts. Clin Oral Investig 2015; 20:477-83. [DOI: 10.1007/s00784-015-1537-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
|