1
|
Zaidi SA, Fan Z, Chauhdari T, Ding Y. MicroRNA regulatory dynamic, emerging diagnostic and therapeutic frontier in atherosclerosis. Microvasc Res 2025; 160:104818. [PMID: 40368159 DOI: 10.1016/j.mvr.2025.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are pivotal post-transcriptional regulators of gene expression with profound implications in the pathogenesis of atherosclerosis (AS). As a progressive arterial disease driven by vascular cells dysfunction, lipid dysregulation and subsequent chronic inflammation, AS remains a leading cause of global morbidity. Recent studies have demonstrated how important miRNAs are in regulating central biological processes in the vascular wall, such as endothelial function, vascular smooth muscle cell (VSMC) phenotypic switching, and macrophage polarization. This review provides comprehensive insight into the role of miRNAs in the development and complexity of atherosclerotic plaques according to their effects on endothelial cells, macrophages, and VSMCs. We also go over the growing prospects of miRNAs as therapeutic targets and diagnostic biomarkers, providing information to be used in the study of vascular diseases. Lastly, we address recent complications and potential applications of miRNA-based approaches in clinical practice.
Collapse
Affiliation(s)
- Syeda Armana Zaidi
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Zhiyu Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Talha Chauhdari
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| |
Collapse
|
2
|
Xie H, Xiong T, Guan J, Han Y, Feng H, Xu F, Chen S, Li J, Xie Z, Liu D, Chen R. Induction of mitochondrial damage via the CREB3L1/miR-34c/COX1 axis by porcine epidemic diarrhea virus infection facilitates pathogenicity. J Virol 2025; 99:e0059124. [PMID: 40071922 PMCID: PMC11998543 DOI: 10.1128/jvi.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/23/2024] [Indexed: 03/26/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a primary cause of viral diarrhea in neonatal piglets, leading to substantial economic losses in the swine industry globally. It primarily targets epithelial cells of the small intestine, compromising intestinal function and resulting in the death of affected animals. As mitochondria are essential for maintaining gut health, this study investigates the effects of PEDV infection on mitochondrial function in small intestinal epithelial cells and its subsequent impacts. Using small RNA sequencing, fluorescence in situ hybridization, dual luciferase reporter assay, gene overexpression, and silencing experiments, we investigated the mitochondrial structural and functional impairments induced by PEDV infection in jejunum epithelial cells of piglets and characterized the regulatory pattern of miRNAs in mitochondria of jejunum epithelial cells during PEDV infection. The results indicate that PEDV infection leads to the upregulation and mitochondrial localization of the nuclear-encoded microRNA, miR-34c, which in turn suppresses COX1 expression. The activation of the miR-34c/COX1 axis diminishes mitochondrial complex III, IV, and V activities, depletes ATP, lowers mitochondrial oxygen consumption, induces mitochondrial depolarization, increases the accumulation of mitochondrial reactive oxygen species (mtROS), and stimulates mitophagy. Furthermore, we confirm that CREB3L1 acts as an upstream transcription factor regulating the miR-34c/COX1 axis during PEDV infection, modulating mitochondrial damage in the epithelial cells of the jejunum. These findings demonstrate for the first time that PEDV infection activates the miR-34c/COX1 axis via the transcription factor CREB3L1 and regulates the nuclear-mitochondrial communication and mitochondrial fate, providing a new perspective on the pathogenesis of PEDV.IMPORTANCEThis study reveals the mechanism by which the porcine epidemic diarrhea virus (PEDV) disrupts mitochondrial function in piglets, enhancing viral pathogenicity. By demonstrating how PEDV infection upregulates miR-34c, leading to COX1 suppression and subsequent mitochondrial dysfunction, the research highlights a novel aspect of viral manipulation of host cellular mechanisms. These findings provide a deeper understanding of the PEDV pathogenesis and identify potential targets for therapeutic intervention, advancing efforts to mitigate the economic impact of PEDV on the swine industry.
Collapse
Affiliation(s)
- Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Jinlian Guan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yin Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Haixia Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sixuan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziwei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dingxiang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Beijing, China
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Zhaoqing, China
- Zhaoqing Dahuanong Biology Medicine Co. Ltd., Zhaoqing, China
| |
Collapse
|
3
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
5
|
Chen W, Aminu AJ, Yin Z, Karaesmen I, Atkinson AJ, Kuniewicz M, Holda M, Walocha J, Perde F, Molenaar P, Dobrzynski H. Profiling Reduced Expression of Contractile and Mitochondrial mRNAs in the Human Sinoatrial Node vs. Right Atrium and Predicting Their Suppressed Expression by Transcription Factors and/or microRNAs. Int J Mol Sci 2024; 25:10402. [PMID: 39408732 PMCID: PMC11477614 DOI: 10.3390/ijms251910402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
(1) Background: The sinus node (SN) is the main pacemaker of the heart. It is characterized by pacemaker cells that lack mitochondria and contractile elements. We investigated the possibility that transcription factors (TFs) and microRNAs (miRs) present in the SN can regulate gene expression that affects SN morphology and function. (2) Methods: From human next-generation sequencing data, a list of mRNAs that are expressed at lower levels in the SN compared with the right atrium (RA) was compiled. The mRNAs were then classified into contractile, mitochondrial or glycogen mRNAs using bioinformatic software, RStudio and Ingenuity Pathway Analysis. The mRNAs were combined with TFs and miRs to predict their interactions. (3) Results: From a compilation of the 1357 mRNAs, 280 contractile mRNAs and 198 mitochondrial mRNAs were identified to be expressed at lower levels in the SN compared with RA. TFs and miRs were shown to interact with contractile and mitochondrial function-related mRNAs. (4) Conclusions: In human SN, TFs (MYCN, SOX2, NUPR1 and PRDM16) mainly regulate mitochondrial mRNAs (COX5A, SLC25A11 and NDUFA8), while miRs (miR-153-3p, miR-654-5p, miR-10a-5p and miR-215-5p) mainly regulate contractile mRNAs (RYR2, CAMK2A and PRKAR1A). TF and miR-mRNA interactions provide a further understanding of the complex molecular makeup of the SN and potential therapeutic targets for cardiovascular treatments.
Collapse
Affiliation(s)
- Weixuan Chen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Abimbola J. Aminu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Irem Karaesmen
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Andrew J. Atkinson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
| | - Marcin Kuniewicz
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Mateusz Holda
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- HEART-Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Filip Perde
- National Institute of Legal Medicine, 042122 Bucharest, Romania;
| | - Peter Molenaar
- Northside Clinical School of Medicine, The University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4072, Australia
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK; (W.C.); (A.J.A.); (Z.Y.); (I.K.); (A.J.A.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
6
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y, on behalf of EU-CardioRNA COST Action CA17129, AtheroNET COST Action CA21153. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
8
|
Wang N, Chen C, Ren J, Dai D. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem 2024; 479:1909-1923. [PMID: 37542599 DOI: 10.1007/s11010-023-04821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Chunyan Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jianmin Ren
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
9
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
10
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Boen JRA, Gevaert AB, Dendooven A, Krüger D, Tubeeckx M, Van Fraeyenhove J, Bruyns T, Segers VFM, Van Craenenbroeck EM. Divergent cardiac and renal effects of miR-181c-5p inhibition in a rodent heart failure model. Front Cardiovasc Med 2024; 11:1383046. [PMID: 38725830 PMCID: PMC11079209 DOI: 10.3389/fcvm.2024.1383046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Aims MiR-181c-5p overexpression associates with heart failure (HF) and cardiac damage, but the underlying pathophysiology remains unclear. This study investigated the effect of miR-181c-5p inhibition on cardiac function and fibrosis in a rodent model of diastolic dysfunction, and evaluated additional effects on kidney as relevant comorbid organ. Methods and results Diastolic dysfunction was induced in male C57/BL6J mice (n = 20) by combining high-fat diet, L-NG-nitroarginine methyl ester, and angiotensin II administration, and was compared to sham controls (n = 18). Mice were randomized to subcutaneous miR-181c-5p antagomiR (INH) or scrambled antagomiR injections (40 mg/kg/week). HF mice demonstrated diastolic dysfunction and increased fibrosis, which was attenuated by INH treatment. Remarkably, HF + INH animals had a threefold higher mortality rate (60%) compared to HF controls (20%). Histological examination revealed increased glomerular damage in all INH treated mice, and signs of thrombotic microangiopathy (TMA) in mice who died prematurely. Quantitative polymerase chain reaction demonstrated a miR-181c-5p-related downregulation of cardiac but not renal Tgfbr1 in HF + INH mice, while INH treatment reduced renal but not cardiac Vegfa expression in all mice. Conclusion This study demonstrates cardiac anti-fibrotic effects of miR-181c-5p inhibition in a rodent HF model through targeting of Tgfbr1 in the heart. Despite improved diastolic function, HF + INH mice had higher mortality due to increased predisposition for TMA, increased renal fibrosis and glomerular damage, associated with Vegfa downregulation in kidneys.
Collapse
Affiliation(s)
- Jente R. A. Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Wilrijk, Belgium
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Wilrijk, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Gent, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
| | - Dustin Krüger
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
| | - Michiel Tubeeckx
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
| | - Jens Van Fraeyenhove
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
| | - Tine Bruyns
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, GENCOR Department, University of Antwerp, Wilrijk, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Wilrijk, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| |
Collapse
|
12
|
Xu H, Li W, Wang D. The promising role of miRNAs in radioresistance and chemoresistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1299249. [PMID: 38482204 PMCID: PMC10933132 DOI: 10.3389/fonc.2024.1299249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 01/03/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor that develops in the nasopharynx. It has a distinct ethnic and geographical distribution, and emerging evidence suggests that it is an ecological disease. Most patients respond well to radiation combined with chemotherapy as the primary treatment for NPC. However, some patients will eventually develop radio resistance and chemoresistance, resulting in recurrence and metastasis, which is a primary cause of poor prognosis. The processes underlying radio resistance and chemoresistance in NPC are complex and unknown. MicroRNAs (miRNAs) are endogenic non-coding RNA molecules. They play a role in a variety of cell functions as well as development of disease such as cancer. There has been considerable data demonstrating the existence of numerous aberrant miRNAs in cancer tissues, cells, and biofluids, which indicates the importance of studying the influence of miRNAs on NPC. Therefore, this review comprehensively analyzes the elaborate mechanisms of miRNAs affecting the radio resistance and chemoresistance of NPC. Multiple tumor-specific miRNAs can be employed as therapeutic and prognostic biological indicators.
Collapse
Affiliation(s)
| | | | - Dehui Wang
- Department of Otolaryngology - Head and Neck Surgery, Affiliated Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer's Disease. J Alzheimers Dis 2024; 98:1329-1348. [PMID: 38552115 DOI: 10.3233/jad-231281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background The intricate and complex molecular mechanisms that underlie the progression of Alzheimer's disease (AD) have prompted a concerted and vigorous research endeavor aimed at uncovering potential avenues for therapeutic intervention. Objective This study aims to elucidate the role of miRNA PC-5P-12969 in the pathogenesis of AD. Methods We assessed the differential expression of miRNA PC-5P-12969 in postmortem AD brains, AD animal and cell models using real-time reverse-transcriptase RT-PCR, we also checked the gene and protein expression of GSK3α and APP. Results Our investigation revealed a notable upregulation of miRNA PC-5P-12969 in postmortem brains of AD patients, in transgenic mouse models of AD, and in mutant APP overexpressing-HT22 cells. Additionally, our findings indicate that overexpression of miRNA PC-5P-12969 exerts a protective effect on cell survival, while concurrently mitigating apoptotic cell death. Further-more, we established a robust and specific interaction between miRNA PC-5P-12969 and GSK3α. Our luciferase reporter assays provided confirmation of the binding between miRNA PC-5P-12969 and the 3'-UTR of the GSK3α gene. Manipulation of miRNA PC-5P-12969 levels in cellular models of AD yielded noteworthy alterations in the gene and protein expression levels of both GSK3α and APP. Remarkably, the manipulation of miRNA PC-5P-12969 levels yielded significant enhancements in mitochondrial respiration and ATP production, concurrently with a reduction in mitochondrial fragmentation, thus unveiling a potential regulatory role of miRNA PC-5P-12969 in these vital cellular processes. Conclusions In summary, this study sheds light on the crucial role of miRNA PC-5P-12969 and its direct interaction with GSK3α in the context of AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
17
|
Mongelli A, Mengozzi A, Geiger M, Gorica E, Mohammed SA, Paneni F, Ruschitzka F, Costantino S. Mitochondrial epigenetics in aging and cardiovascular diseases. Front Cardiovasc Med 2023; 10:1204483. [PMID: 37522089 PMCID: PMC10382027 DOI: 10.3389/fcvm.2023.1204483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Mitochondria are cellular organelles which generate adenosine triphosphate (ATP) molecules for the maintenance of cellular energy through the oxidative phosphorylation. They also regulate a variety of cellular processes including apoptosis and metabolism. Of interest, the inner part of mitochondria-the mitochondrial matrix-contains a circular molecule of DNA (mtDNA) characterised by its own transcriptional machinery. As with genomic DNA, mtDNA may also undergo nucleotide mutations that have been shown to be responsible for mitochondrial dysfunction. During physiological aging, the mitochondrial membrane potential declines and associates with enhanced mitophagy to avoid the accumulation of damaged organelles. Moreover, if the dysfunctional mitochondria are not properly cleared, this could lead to cellular dysfunction and subsequent development of several comorbidities such as cardiovascular diseases (CVDs), diabetes, respiratory and cardiovascular diseases as well as inflammatory disorders and psychiatric diseases. As reported for genomic DNA, mtDNA is also amenable to chemical modifications, namely DNA methylation. Changes in mtDNA methylation have shown to be associated with altered transcriptional programs and mitochondrial dysfunction during aging. In addition, other epigenetic signals have been observed in mitochondria, in particular the interaction between mtDNA methylation and non-coding RNAs. Mitoepigenetic modifications are also involved in the pathogenesis of CVDs where oxygen chain disruption, mitochondrial fission, and ROS formation alter cardiac energy metabolism leading to hypertrophy, hypertension, heart failure and ischemia/reperfusion injury. In the present review, we summarize current evidence on the growing importance of epigenetic changes as modulator of mitochondrial function in aging. A better understanding of the mitochondrial epigenetic landscape may pave the way for personalized therapies to prevent age-related diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Martin Geiger
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zürich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Prasad Panda S, Kesharwani A. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden. Mitochondrion 2023; 71:1-16. [PMID: 37172668 DOI: 10.1016/j.mito.2023.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The mitochondrial electron transport chain (mtETC) requires mainly coenzyme Q10 (CoQ10), copper (Cu2+), calcium (Ca2+), and iron (Fe2+) ions for efficient ATP production. According to cross-sectional research, up to 50% of patients with micronutrient imbalances have been linked to oxidative stress, mitochondrial dysfunction, reduced ATP production, and the prognosis of various diseases. The condition of ferroptosis, which is caused by the downregulation of CoQ10 and the activation of non-coding micro RNAs (miRs), is strongly linked to free radical accumulation, cancer, and neurodegenerative diseases. The entry of micronutrients into the mitochondrial matrix depends upon the higher threshold level of mitochondrial membrane potential (ΔΨm), and high cytosolic micronutrients. The elevated micronutrient in the mitochondrial matrix causes the utilization of all ATP, leading to a drop in ATP levels. Mitochondrial calcium uniporter (MCU) and Na+/Ca2+ exchanger (NCX) play a major role in Ca2+ influx in the mitochondrial matrix. The mitochondrial Ca2+ overload is regulated by specific miRs such as miR1, miR7, miR25, miR145, miR138, and miR214, thereby reducing apoptosis and improving ATP production. Cuproptosis is primarily brought on by increased Cu+ build-up and mitochondrial proteotoxic stress, mediated by ferredoxin-1 (FDX1) and long non-coding RNAs. Cu importers (SLC31A1) and exporters (ATP7B) influence intracellular Cu2+ levels to control cuproptosis. According to literature reviews, very few randomized micronutrient interventions have been carried out, despite the identification of a high prevalence of micronutrient deficiencies. In this review, we concentrated on essential micronutrients and specific miRs associated with ATP production that balance oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
19
|
Kong L, Zhou Y, Yuan J, Lv T, Yang J, Shi Y, Yang J. Mitochondrial miR-23b-5p is a new biomarker of warm ischaemic injury in donor livers and a candidate for graft evaluation: experimental studies. Int J Surg 2023; 109:1880-1892. [PMID: 37184476 PMCID: PMC10389456 DOI: 10.1097/js9.0000000000000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Warm ischaemic injury (WII) stems from incorrect energy metabolism and is the main cause of graft dysfunction. Mitochondria, as the centre of cellular metabolic activities, may be the key in identifying accurate indicators for evaluating the quality of grafts. Our research focuses on the screening, clinical application, and mechanism of the optimal WII mitochondrion biomarker. APPROACH AND RESULTS Using a 100% hepatic warm ischaemia mouse model, without reperfusion, transmission electron microscopy demonstrated evident morphological changes of hepatic mitochondria at 15 min of ischaemia. However, all 13 mt-mRNAs could not display continuously upregulated consistency at 0-15-30-60 min during WII. High-throughput analysis of miRNA expression in both purified mitochondria and liver tissues suggested miR-23b-5p was a potential mitochondrial microRNA (mitomiR) biomarker with high sensitivity and 0-15-30-60 min change consistency. Fluorescence in-situ hybridization and reverse transcription quantitative polymerase chain reaction (RT-qPCR) further confirmed the results. Through overexpression and inhibition, the functionality of this mitomiR during WII was identified as a protective regulator in vitro and then verified in Dicer1 fl/fl Alb Cre mice by downregulation of other miRNAs and supplementation of mature mitomiR-23b-5p. Dual-luciferase reporter assay and the Seahorse XF analyzer determined that mitomiR-23b-5p reduced mitochondrial respiratory function by silencing mt-RNR2 (16S). Clinically, mitomiR-23b-5p was positively correlated with serum alanine aminotransferase levels 3 days after the operation ( P =0.032), and the C-statistic for 90-day graft survival rate was 0.698. CONCLUSIONS MitomiR-23b-5p plays a protective regulatory role and implements a special mitochondrial regulation mechanism not yet reported in WII. These clinical results further support the experimental result that the expression of MitomiR-23b-5p is closely related to the prognosis of clinical liver transplantation patients. This is a promising new biomarker for WII evaluation of donor livers.
Collapse
Affiliation(s)
- Lingxiang Kong
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Jingsheng Yuan
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yujun Shi
- Department of Liver transplantation Laboratory
| | - Jiayin Yang
- Department of Liver transplantation Laboratory
- Department of Liver transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Fenimore JM, Springer DA, Romero ME, Edmondson EF, McVicar DW, Yanpallewar S, Sanford M, Spindel T, Engle E, Meyer TJ, Valencia JC, Young HA. IFN-γ and androgens disrupt mitochondrial function in murine myocytes. J Pathol 2023; 260:276-288. [PMID: 37185821 PMCID: PMC10330777 DOI: 10.1002/path.6081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/11/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
The effect of cytokines on non-traditional immunological targets under conditions of chronic inflammation is an ongoing subject of study. Fatigue is a symptom often associated with autoimmune diseases. Chronic inflammatory response and activated cell-mediated immunity are associated with cardiovascular myopathies which can be driven by muscle weakness and fatigue. Thus, we hypothesize that immune dysfunction-driven changes in myocyte mitochondria may play a critical role in fatigue-related pathogenesis. We show that persistent low-level expression of IFN-γ in designated IFN-γ AU-Rich Element deletion mice (ARE mice) under androgen exposure resulted in mitochondrial and metabolic deficiencies in myocytes from male or castrated ARE mice. Most notably, echocardiography unveiled that low ejection fraction in the left ventricle post-stress correlated with mitochondrial deficiencies, explaining how heart function decreases under stress. We report that inefficiencies and structural changes in mitochondria, with changes to expression of mitochondrial genes, are linked to male-biased fatigue and acute cardiomyopathy under stress. Our work highlights how male androgen hormone backgrounds and active autoimmunity reduce mitochondrial function and the ability to cope with stress and how pharmacological blockade of stress signal protects heart function. These studies provide new insight into the diverse actions of IFN-γ in fatigue, energy metabolism, and autoimmunity. © 2023 The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- John M Fenimore
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Elijah F Edmondson
- Pathology and Histology Lab, National Cancer Institute, Frederick, MD, USA
| | - Dan W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sudhirkumar Yanpallewar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael Sanford
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Thea Spindel
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth Engle
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
21
|
Sucharov CC, Neltner B, Pietra AE, Karimpour-Fard A, Patel J, Ho CY, Miyamoto SD. Circulating MicroRNAs Identify Early Phenotypic Changes in Sarcomeric Hypertrophic Cardiomyopathy. Circ Heart Fail 2023; 16:e010291. [PMID: 36880380 PMCID: PMC10293059 DOI: 10.1161/circheartfailure.122.010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. Pathogenic germline variation in genes encoding the sarcomere is the predominant cause of disease. However diagnostic features, including unexplained left ventricular hypertrophy, typically do not develop until late adolescence or after. The early stages of disease pathogenesis and the mechanisms underlying the transition to a clinically overt phenotype are not well understood. In this study, we investigated if circulating microRNAs (miRNAs) could stratify disease stage in sarcomeric HCM. METHODS We performed arrays for 381 miRNAs using serum from HCM sarcomere variant carriers with and without a diagnosis of HCM and healthy controls. To identify differentially expressed circulating miRNAs between groups, multiple approaches were used including random forest, Wilcoxon rank sum test, and logistic regression. The abundance of all miRNAs was normalized to miRNA-320. RESULTS Of 57 sarcomere variant carriers, 25 had clinical HCM and 32 had subclinical HCM with normal left ventricular wall thickness (21 with early phenotypic manifestations and 11 with no discernible phenotypic manifestations). Circulating miRNA profile differentiated healthy controls from sarcomere variant carriers with subclinical and clinical disease. Additionally, circulating miRNAs differentiated clinical HCM from subclinical HCM without early phenotypic changes; and subclinical HCM with and without early phenotypic changes. Circulating miRNA profiles did not differentiate clinical HCM from subclinical HCM with early phenotypic changes, suggesting biologic similarity between these groups. CONCLUSIONS Circulating miRNAs may augment the clinical stratification of HCM and improve understanding of the transition from health to disease in sarcomere gene variant carriers.
Collapse
Affiliation(s)
- Carmen C. Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bonnie Neltner
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley E. Pietra
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO
| | - Joshen Patel
- Department of Medicine, Division of Cardiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Carolyn Y. Ho
- Department of Medicine, Division of Cardiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Shelley D. Miyamoto
- Department of Pediatrics, Division of Cardiology, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO
| |
Collapse
|
22
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|
23
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
24
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
25
|
miR-494-5p mediates the antioxidant activity of EPA by targeting the mitochondrial elongation factor 1 gene MIEF1 in HepG2 cells. J Nutr Biochem 2023; 115:109279. [PMID: 36739098 DOI: 10.1016/j.jnutbio.2023.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Eicosapentaenoic acid (EPA) shows antioxidant activity, which may be attributed to its regulatory effect on microRNA expression. Our preliminary study indicated that EPA upregulated miR-494-5p, which was possibly involved in the regulation of cellular stress responses. The current study aimed to address whether miR-494-5p was targeted by EPA to regulate cellular oxidative stress and its possible functional mechanism. The results showed that miR-494-5p mediated the antioxidant effect of EPA and miR-494-5p reduction deteriorated EPA-induced increase in the cellular antioxidant capacity of HepG2 cells. Moreover, the mitochondrial elongation factor 1 (MIEF1) gene was a target gene of miR-494-5p. Both miR-494-5p overexpression and MIEF1 knockdown significantly enhanced cellular antioxidant capacity, as indicated by a reduction in the reactive oxygen species level and an increase in the total cellular antioxidant capacity, along with enhancing antioxidant enzymes. Thus, miR-494-5p and MIEF1 had opposite effects on cellular antioxidant capacity. Furthermore, their regulatory effects on oxidative stress may have been attributed to modulation of mitochondrial function, biogenesis and homeostasis. Taken together, the findings indicated that miR-494-5p mediated EPA activity and promoted cellular antioxidant capacity by inhibiting the expression of MIEF1, which further modulated mitochondrial structure and activity. This study may provide novel insights into the post-translational regulation of antioxidation reactions, which involves the coordinated control of mitochondria.
Collapse
|
26
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
27
|
Gareev I, Beylerli O, Liang Y, Lu E, Ilyasova T, Sufianov A, Sufianova G, Shi H, Ahmad A, Yang G. The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1065-1080. [PMID: 35524670 PMCID: PMC10286585 DOI: 10.2174/1570159x20666220507021445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ozal Beylerli
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
28
|
Nalavade R, Singh M. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. Microrna 2023; 12:114-130. [PMID: 37638608 DOI: 10.2174/2211536612666230330184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 08/29/2023]
Abstract
Being an integral part of the eukaryotic transcriptome, miRNAs are regarded as vital regulators of diverse developmental and physiological processes. Clearly, miRNA activity is kept in check by various regulatory mechanisms that control their biogenesis and decay pathways. With the increasing technical depth of RNA profiling technologies, novel insights have unravelled the spatial diversity exhibited by miRNAs inside a cell. Compartmentalization of miRNAs adds complexity to the regulatory circuits of miRNA expression, thereby providing superior control over the miRNA function. This review provides a bird's eye view of miRNAs expressed in different subcellular locations, thus affecting the gene regulatory pathways therein. Occurrence of miRNAs in diverse intracellular locales also reveals various unconventional roles played by miRNAs in different cellular organelles and expands the scope of miRNA functions beyond their traditionally known repressive activities.
Collapse
Affiliation(s)
- Rohit Nalavade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
29
|
Shuaib M, Prajapati KS, Gupta S, Kumar S. Natural Steroidal Lactone Induces G1/S Phase Cell Cycle Arrest and Intrinsic Apoptotic Pathway by Up-Regulating Tumor Suppressive miRNA in Triple-Negative Breast Cancer Cells. Metabolites 2022; 13:29. [PMID: 36676955 PMCID: PMC9863888 DOI: 10.3390/metabo13010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with minimal treatment options. In the present work, Withaferin A (WA), a natural steroidal lactone found in Withania somnifera (Solanaceae), was studied to deduce the miRNA expression modulation mediated anticancer mode of action in TNBC cells. Small RNA next generation sequencing (NGS) of WA (2 µM) and vehicle (0.1% DMSO)-treated MDA-MB-231 cells revealed a total of 413 differentially expressed miRNAs (DEMs) and demonstrated that WA potentially up-regulates the miR-181c-5p, miR-15a-5p, miR-500b-5p, miR-191-3p, and miR-34a-5p and down-regulates miR-1275, miR-326, miR-1908-5p, and miR-3940-3p among total DEMs. The NGS and qRT-PCR expression analysis revealed a significantly higher expression of miR-181c-5p among the top 10 DEMs. Predicted target genes of the DEMs showed enrichment in cancer-associated gene ontology terms and KEGG signaling pathways. Transient up-expression of mir-181c-5p showed a time-dependent decrease in MDA-MB-231 and MDA-MB-453 cell viability. Co-treatment of miR-181c-5p mimic and WA (at varying concentration) down-regulated cell cycle progression markers (CDK4 and Cyclin D1) at mRNA and protein levels. The treatment induced apoptosis in MDA-MB-231 cells by modulating the expression/activity of Bax, Bcl2, Caspase 3, Caspase 8, Caspase 3/7, and PARP at mRNA and protein levels. Confocal microscopy and Annexin PI assays revealed apoptotic induction in miRNA- and steroidal-lactone-treated MDA-MB-231 cells. Results indicate that the Withaferin A and miRNA mimic co-treatment strategy may be utilized as a newer therapeutic strategy to treat triple-negative breast cancer.
Collapse
Affiliation(s)
- Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Nutrition, Pharmacology and Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| |
Collapse
|
30
|
Sun W, Lu Y, Zhang H, Zhang J, Fang X, Wang J, Li M. Mitochondrial Non-Coding RNAs Are Potential Mediators of Mitochondrial Homeostasis. Biomolecules 2022; 12:biom12121863. [PMID: 36551291 PMCID: PMC9775270 DOI: 10.3390/biom12121863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the energy production center in cells, which regulate aerobic metabolism, calcium balance, gene expression and cell death. Their homeostasis is crucial for cell viability. Although mitochondria own a nucleus-independent and self-replicating genome, most of the proteins, which fulfill mitochondrial functions and mitochondrial quality control, are encoded by the nuclear genome and are imported into mitochondria. Hence, the regulation of mitochondrial protein expression and translocation is considered essential for mitochondrial homeostasis. By means of high-throughput RNA sequencing and bioinformatic analysis, non-coding RNAs localized in mitochondria have been generally identified. They are either generated from the mitochondrial genome or the nuclear genome. The mitochondrial non-coding RNAs can directly interact with mitochondrial DNAs or transcripts to affect gene expression. They can also bind nuclear genome-encoded mitochondrial proteins to regulate their mitochondrial import, protein level and combination. Generally, mitochondrial non-coding RNAs act as regulators for mitochondrial processes including oxidative phosphorylation and metabolism. In this review, we would like to introduce the latest research progressions regarding mitochondrial non-coding RNAs and summarize their identification, biogenesis, translocation, molecular mechanism and function.
Collapse
|
31
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
32
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
33
|
Chatterjee D, Das P, Chakrabarti O. Mitochondrial Epigenetics Regulating Inflammation in Cancer and Aging. Front Cell Dev Biol 2022; 10:929708. [PMID: 35903542 PMCID: PMC9314556 DOI: 10.3389/fcell.2022.929708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Palamou Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| |
Collapse
|
34
|
Kuthethur R, Shukla V, Mallya S, Adiga D, Kabekkodu SP, Ramachandra L, Saxena PUP, Satyamoorthy K, Chakrabarty S. Expression analysis and function of mitochondrial genome-encoded microRNAs. J Cell Sci 2022; 135:jcs258937. [PMID: 35297485 DOI: 10.1242/jcs.258937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) play a significant role in nuclear and mitochondrial anterograde and retrograde signaling. Most of the miRNAs found inside mitochondria are encoded in the nuclear genome, with a few mitochondrial genome-encoded non-coding RNAs having been reported. In this study, we have identified 13 mitochondrial genome-encoded microRNAs (mitomiRs), which were differentially expressed in breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231), non-malignant breast epithelial cell line (MCF-10A), and normal and breast cancer tissue specimens. We found that mitochondrial DNA (mtDNA) depletion and inhibition of mitochondrial transcription led to reduced expression of mitomiRs in breast cancer cells. MitomiRs physically interacted with Ago2, an RNA-induced silencing complex (RISC) protein, in the cytoplasm and inside mitochondria. MitomiRs regulate the expression of both nuclear and mitochondrial transcripts in breast cancer cells. We showed that mitomiR-5 targets the PPARGC1A gene and regulates mtDNA copy number in breast cancer cells. MitomiRs identified in the present study may be a promising tool for expression and functional analysis in patients with a defective mitochondrial phenotype, including cancer and metabolic syndromes. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P U Prakash Saxena
- Department of Radiation Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, Karnataka, 575001, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
35
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
36
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
37
|
Lim S, Deaver JW, Rosa-Caldwell ME, Lee DE, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Washington TA, Fluckey JD, Greene NP. Muscle miR-16 deletion results in impaired insulin sensitivity and contractile function in a sex-dependent manner. Am J Physiol Endocrinol Metab 2022; 322:E278-E292. [PMID: 35068192 PMCID: PMC8897019 DOI: 10.1152/ajpendo.00333.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
38
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
39
|
Multi-Omics Reveal the Immunological Role and the Theragnostic Value of miR-216a/GDF15 Axis in Human Colon Adenocarcinoma. Int J Mol Sci 2021; 22:ijms222413636. [PMID: 34948431 PMCID: PMC8703770 DOI: 10.3390/ijms222413636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Accurate screening tools for early diagnosis and prediction of prognosis and precision treatment strategies are urgently required to accommodate the unmet medical needs of COAD management. We herein aimed to explore the significance of the microRNA (miR)-216a/growth differentiation factor 15 (GDF15) axis in terms of clinical value, tumor immunity, and potential mechanisms in COAD by using multi-omic analysis. The gene expression levels of miR-216a and GDF15 showed an increase in the COAD group compared to those of the normal group. The expression of miR-216a presented a negative correlation with GDF15 in COAD tumor tissue. The use of an in vitro luciferase reporter assay and bioinformatic prediction revealed that miR-216a-3p acted toward translational inhibition on GDF15 by targeting its 3′untranslated region (UTR) site. High miR-216a expression was associated with decreased overall survival (OS), while the high expression of GDF15 was associated with increased OS. Enriched type 1 T-helper (Th1), enriched regulatory T (Treg), enriched eosinophils, and decreased nature killer T-cells (NKTs) in COAD tumor tissue may play counteracting factors on the tumor-regulatory effects of miR-216a and GDF15. In addition, high GDF15 expression had associations with suppressed immunoinhibitory genes and negative correlations with the infiltration of macrophages and endothelial cells. The enrichment analysis revealed that GDF15 and its co-expression network may be implicated in mitochondrial organization, apoptosis signaling, and endoplasmic reticulum (ER) stress response. The Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) analysis identified that Gemcitabine acted as a precision treatment for COAD when GDF15 expression was low. This study supports the miR-216a/GDF15 axis as a diagnostic/prognostic panel for COAD, identifies Th1, Treg, eosinophils, and NKTs as counteracting factors, indicates potential relationships underlying immunomodulation, mitochondrial organization, apoptotic signaling, and ER stress and unveil Gemcitabine as a potential drug for the development of treatment strategy when combined with targeting GDF15.
Collapse
|
40
|
Akiyoshi K, Boersma GJ, Johnson MD, Velasquez FC, Dunkerly-Eyring B, O’Brien S, Yamaguchi A, Steenbergen C, Tamashiro KLK, Das S. Role of miR-181c in Diet-induced obesity through regulation of lipid synthesis in liver. PLoS One 2021; 16:e0256973. [PMID: 34879063 PMCID: PMC8654194 DOI: 10.1371/journal.pone.0256973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
We recently identified a nuclear-encoded miRNA (miR-181c) in cardiomyocytes that can translocate into mitochondria to regulate mitochondrial gene mt-COX1 and influence obesity-induced cardiac dysfunction through the mitochondrial pathway. Because liver plays a pivotal role during obesity, we hypothesized that miR-181c might contribute to the pathophysiological complications associated with obesity. Therefore, we used miR-181c/d-/- mice to study the role of miR-181c in hepatocyte lipogenesis during diet-induced obesity. The mice were fed a high-fat (HF) diet for 26 weeks, during which indirect calorimetric measurements were made. Quantitative PCR (qPCR) was used to examine the expression of genes involved in lipid synthesis. We found that miR-181c/d-/- mice were not protected against all metabolic consequences of HF exposure. After 26 weeks, the miR-181c/d-/- mice had a significantly higher body fat percentage than did wild-type (WT) mice. Glucose tolerance tests showed hyperinsulinemia and hyperglycemia, indicative of insulin insensitivity in the miR-181c/d-/- mice. miR-181c/d-/- mice fed the HF diet had higher serum and liver triglyceride levels than did WT mice fed the same diet. qPCR data showed that several genes regulated by isocitrate dehydrogenase 1 (IDH1) were more upregulated in miR-181c/d-/- liver than in WT liver. Furthermore, miR-181c delivered in vivo via adeno-associated virus attenuated the lipogenesis by downregulating these same lipid synthesis genes in the liver. In hepatocytes, miR-181c regulates lipid biosynthesis by targeting IDH1. Taken together, the data indicate that overexpression of miR-181c can be beneficial for various lipid metabolism disorders.
Collapse
Affiliation(s)
- Kei Akiyoshi
- Department of Anesthesiology and Critical Care Medicine, Baltimore, MD, United States of America
| | - Gretha J. Boersma
- Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Miranda D. Johnson
- Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | | | - Brittany Dunkerly-Eyring
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Shannon O’Brien
- Department of Psychiatry & Behavioral Sciences, Baltimore, MD, United States of America
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | | | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
41
|
Duroux-Richard I, Apparailly F, Khoury M. Mitochondrial MicroRNAs Contribute to Macrophage Immune Functions Including Differentiation, Polarization, and Activation. Front Physiol 2021; 12:738140. [PMID: 34803730 PMCID: PMC8595120 DOI: 10.3389/fphys.2021.738140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
A subset of microRNA (miRNA) has been shown to play an important role in mitochondrial (mt) functions and are named MitomiR. They are present within or associated with mitochondria. Most of the mitochondrial miRNAs originate from the nucleus, while a very limited number is encoded by mtDNA. Moreover, the miRNA machinery including the Dicer and Argonaute has also been detected within mitochondria. Recent, literature has established a close relationship between miRNAs and inflammation. Indeed, specific miRNA signatures are associated with macrophage differentiation, polarization and functions. Nevertheless, the regulation of macrophage inflammatory pathways governed specifically by MitomiR and their implication in immune-mediated inflammatory disorders remain poorly studied. Here, we propose a hypothesis in which MitomiR play a key role in triggering macrophage differentiation and modulating their downstream activation and immune functions. We sustain this proposition by bioinformatic data obtained from either the human monocytic THP1 cell line or the purified mitochondrial fraction of PMA-induced human macrophages. Interestingly, 22% of the 754 assayed miRNAs were detected in the mitochondrial fraction and are either exclusively or highly enriched cellular miRNA. Furthermore, the in silico analysis performed in this study, identified a specific MitomiR signature associated with macrophage differentiation that was correlated with gene targets within the mitochondria genome or with mitochondrial pathways. Overall, our hypothesis and data suggest a previously unrecognized link between MitomiR and macrophage function and fate. We also suggest that the MitomiR-dependent control could be further enhanced through the transfer of mitochondria from donor to target cells, as a new strategy for MitomiR delivery.
Collapse
Affiliation(s)
| | - Florence Apparailly
- IRMB, INSERM, Université de Montpellier, CHU Montpellier, Montpellier, France.,Clinical Department for Osteoarticular Diseases, University Hospital of Montpellier, Montpellier, France
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
42
|
Gevaert AB, Witvrouwen I, Van Craenenbroeck AH, Van Laere SJ, Boen JRA, Van de Heyning CM, Belyavskiy E, Mueller S, Winzer E, Duvinage A, Edelmann F, Beckers PJ, Heidbuchel H, Wisløff U, Pieske B, Adams V, Halle M, Van Craenenbroeck EM. miR-181c level predicts response to exercise training in patients with heart failure and preserved ejection fraction: an analysis of the OptimEx-Clin trial. Eur J Prev Cardiol 2021; 28:1722-1733. [PMID: 34508569 DOI: 10.1093/eurjpc/zwab151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Indexed: 12/12/2022]
Abstract
AIMS In patients with heart failure with preserved ejection fraction (HFpEF), exercise training improves the quality of life and aerobic capacity (peakV·O2). Up to 55% of HF patients, however, show no increase in peakV·O2 despite adequate training. We hypothesized that circulating microRNAs (miRNAs) can distinguish exercise low responders (LR) from exercise high responders (HR) among HFpEF patients. METHODS AND RESULTS We selected HFpEF patients from the Optimizing Exercise Training in Prevention and Treatment of Diastolic HF (OptimEx) study which attended ≥70% of training sessions during 3 months (n = 51). Patients were defined as HR with a change in peakV·O2 above median (6.4%), and LR as below median (n = 30 and n = 21, respectively). Clinical, ergospirometric, and echocardiographic characteristics were similar between LR and HR. We performed an miRNA array (n = 377 miRNAs) in 14 age- and sex-matched patients. A total of 10 miRNAs were upregulated in LR, of which 4 correlated with peakV·O2. Validation in the remaining 37 patients indicated that high miR-181c predicted reduced peakV·O2 response (multiple linear regression, β = -2.60, P = 0.011), and LR status (multiple logistic regression, odds ratio = 0.48, P = 0.010), independent of age, sex, body mass index, and resting heart rate. Furthermore, miR-181c decreased in LR after exercise training (P-group = 0.030, P-time = 0.048, P-interaction = 0.037). An in silico pathway analysis identified several downstream targets involved in exercise adaptation. CONCLUSIONS Circulating miR-181c is a marker of the response to exercise training in HFpEF patients. High miR-181c levels can aid in identifying LR prior to training, providing the possibility for individualized management.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Amaryllis H Van Craenenbroeck
- Research Group Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Steven J Van Laere
- Translational Cancer Research Unit, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Research Group Physiopharmacology, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Caroline M Van de Heyning
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Evgeny Belyavskiy
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Stephan Mueller
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ephraim Winzer
- Heart Center Dresden - University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - André Duvinage
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paul J Beckers
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ulrik Wisløff
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Volker Adams
- Heart Center Dresden - University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, 2610 Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | | |
Collapse
|
43
|
Giordani C, Silvestrini A, Giuliani A, Olivieri F, Rippo MR. MicroRNAs as Factors in Bidirectional Crosstalk Between Mitochondria and the Nucleus During Cellular Senescence. Front Physiol 2021; 12:734976. [PMID: 34566699 PMCID: PMC8458936 DOI: 10.3389/fphys.2021.734976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are essential organelles that generate most of the chemical energy to power the cell through ATP production, thus regulating cell homeostasis. Although mitochondria have their own independent genome, most of the mitochondrial proteins are encoded by nuclear genes. An extensive bidirectional communication network between mitochondria and the nucleus has been discovered, thus making them semi-autonomous organelles. The nucleus-to-mitochondria signaling pathway, called Anterograde Signaling Pathway can be deduced, since the majority of mitochondrial proteins are encoded in the nucleus, less is known about the opposite pathway, the so-called mitochondria-to-nucleus retrograde signaling pathway. Several studies have demonstrated that non-coding RNAs are essential "messengers" of this communication between the nucleus and the mitochondria and that they might have a central role in the coordination of important mitochondrial biological processes. In particular, the finding of numerous miRNAs in mitochondria, also known as mitomiRs, enabled insights into their role in mitochondrial gene transcription. MitomiRs could act as important mediators of this complex crosstalk between the nucleus and the mitochondria. Mitochondrial homeostasis is critical for the physiological processes of the cell. Disruption at any stage in their metabolism, dynamics and bioenergetics could lead to the production of considerable amounts of reactive oxygen species and increased mitochondrial permeability, which are among the hallmarks of cellular senescence. Extensive changes in mitomiR expression and distribution have been demonstrated in senescent cells, those could possibly lead to an alteration in mitochondrial homeostasis. Here, we discuss the emerging putative roles of mitomiRs in the bidirectional communication pathways between mitochondria and the nucleus, with a focus on the senescence-associated mitomiRs.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
44
|
Solly EL, Psaltis PJ, Bursill CA, Tan JTM. The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications. Front Pharmacol 2021; 12:718679. [PMID: 34483928 PMCID: PMC8414254 DOI: 10.3389/fphar.2021.718679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Collapse
Affiliation(s)
- Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
45
|
Yang M, Wang X, Wang T. Regulation of Mitochondrial Function by Noncoding RNAs in Heart Failure and Its Application in Diagnosis and Treatment. J Cardiovasc Pharmacol 2021; 78:377-387. [PMID: 34132686 DOI: 10.1097/fjc.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
ABSTRACT Heart failure (HF) is the terminal stage of multiple cardiovascular diseases. However, the pathogenesis of HF remains unclear and prompt; appropriate diagnosis and treatment of HF are crucial. Cardiomyocytes isolated from HF subjects frequently present mitochondrial impairment and dysfunction. Many studies have suggested that the regulation by noncoding RNAs (ncRNAs) of mitochondria can affect the occurrence and progression of HF. The regulation by ncRNAs of myocardial mitochondria during HF and the recent applications of ncRNAs in the diagnosis and treatment of HF are summarized in this review that is intended to gain keen insights into the mechanisms of HF and more effective treatments.
Collapse
Affiliation(s)
- Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | | | | |
Collapse
|
46
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
47
|
Li L, Qi R, Zhang L, Yu Y, Hou J, Gu Y, Song D, Wang X. Potential biomarkers and targets of mitochondrial dynamics. Clin Transl Med 2021; 11:e529. [PMID: 34459143 PMCID: PMC8351522 DOI: 10.1002/ctm2.529] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction contributes to the imbalance of cellular homeostasis and the development of diseases, which is regulated by mitochondria-associated factors. The present review aims to explore the process of the mitochondrial quality control system as a new source of the potential diagnostic biomarkers and/or therapeutic targets for diseases, including mitophagy, mitochondrial dynamics, interactions between mitochondria and other organelles (lipid droplets, endoplasmic reticulum, endosomes, and lysosomes), as well as the regulation and posttranscriptional modifications of mitochondrial DNA/RNA (mtDNA/mtRNA). The direct and indirect influencing factors were especially illustrated in understanding the interactions among regulators of mitochondrial dynamics. In addition, mtDNA/mtRNAs and proteomic profiles of mitochondria in various lung diseases were also discussed as an example. Thus, alternations of mitochondria-associated regulators can be a new category of biomarkers and targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Liyang Li
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Ruixue Qi
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yuexin Yu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yutong Gu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
48
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
49
|
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol 2021; 18:2168-2182. [PMID: 34110970 DOI: 10.1080/15476286.2021.1935572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial noncoding RNAs (mt-ncRNAs) include noncoding RNAs inside the mitochondria that are transcribed from the mitochondrial genome or nuclear genome, and noncoding RNAs transcribed from the mitochondrial genome that are transported to the cytosol or nucleus. Recent findings have revealed that mt-ncRNAs play important roles in not only mitochondrial functions, but also other cellular activities. This review proposes a classification of mt-ncRNAs and outlines the emerging understanding of mitochondrial circular RNAs (mt-circRNAs), mitochondrial microRNAs (mitomiRs), and mitochondrial long noncoding RNAs (mt-lncRNAs), with an emphasis on their identification and functions.
Collapse
Affiliation(s)
- Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shicheng Su
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
50
|
Cheng YC, Su LY, Chen LH, Lu TP, Chuang EY, Tsai MH, Chuang LL, Lai LC. Regulatory Mechanisms and Functional Roles of Hypoxia-Induced Long Non-Coding RNA MTORT1 in Breast Cancer Cells. Front Oncol 2021; 11:663114. [PMID: 34141617 PMCID: PMC8204045 DOI: 10.3389/fonc.2021.663114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to participate in multiple genetic pathways in cancer. Also, mitochondria-associated lncRNAs have been discovered to modulate mitochondrial function and metabolism. Previously, we identified oxygen-responsive lncRNAs in MCF-7 breast cancer cells under different oxygen concentrations. Among them, a novel mitochondria-encoded lncRNA, mitochondrial oxygen-responsive transcript 1 (MTORT1), was chosen for further investigation. Nuclear, cytoplasmic, and mitochondrial fractionation assays were performed to evaluate the endogenous expression levels of MTORT1 in breast cancer cells. In vitro proliferation and migration assays were conducted to investigate the functions of MTORT1 in breast cancer cells by knockdown of MTORT1. RNA immunoprecipitation and luciferase reporter assays were used to examine the physical binding between MTORT1 and microRNAs. Our results showed that MTORT1 had low endogenous expression levels in breast cancer cells and was mainly located in the mitochondria. Knockdown of MTORT1 enhanced cell proliferation and migration, implying a tumor suppressor role of this novel mitochondrial lncRNA. MTORT1 served as sponge of miR-26a-5p to up-regulate its target genes, CREB1 and STK4. Our findings shed some light on the characterization, function, and regulatory mechanism of the novel hypoxia-induced mitochondrial lncRNA MTORT1, which functions as a microRNA sponge and may inhibit breast cancer progression. These data suggest that MTORT1 may be a candidate for therapeutic targeting of breast cancer progression.
Collapse
Affiliation(s)
- Yi-Chun Cheng
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Su
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Collage of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Ling Chuang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Liang-Chuan Lai
- Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|