1
|
Wang N, Xiao Y, Liu X, Li Y, Yu D, Guo J, Lu P, Zhang X. Structural Homology Fails to Predict Secretion Efficiency in Pichia pastoris: Divergent Responses of Architecturally Similar scFvs to Multi-Parametric Genetic Engineering. Int J Mol Sci 2025; 26:4922. [PMID: 40430062 PMCID: PMC12120847 DOI: 10.3390/ijms26104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
AI-driven biologics manufacturing demands an efficient protein production platform. In this study, we optimized scFv secretion in Pichia pastoris through three strategies: gene dosage optimization, expression cassette design, and endoplasmic reticulum (ER) secretory pathway reprogramming. Using two structurally homologous scFv variants-PR961 and PR953-with divergent basal secretion levels (12.35:1 ratio), we demonstrate that protein-specific thresholds govern optimization efficacy. While increasing gene copy numbers yielded limited improvements (PR961: 1.25-fold at four copies; PR953: 2.37-fold at six copies), reconfiguring the expression cassette to a VH-linker-VL orientation significantly enhanced secretion (11.18-fold for PR961; 5.09-fold for PR953). Twenty-one genes in three functional modules of the secretory pathway were knocked out or overexpressed. The pathway reprogramming results revealed distinct regulatory dependencies: PR961 secretion relied on ER-to-Golgi trafficking (SEC23 overexpression: 1.20-fold), whereas PR953 depended more on upstream translocation (SEC62: 1.66-fold) and oxidative folding (ERO1: 1.81-fold) enhancements. Notably, both variants exhibited a glycosylation-dependent regulation through CNE1. Our findings challenge the assumption that structural homology (63% amino acid identity; RMSD 0.47 Å) ensures consistent optimization outcomes, highlighting the imperative for protein-tailored engineering strategies in synthetic biology.
Collapse
Affiliation(s)
- Ningning Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China;
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Yang Xiao
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Xiyu Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China;
| | - Yuanqing Li
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Dehua Yu
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Jia Guo
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Ping Lu
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| | - Xiaopeng Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China;
- Nanhu Laboratory, Jiaxing 314051, China; (Y.X.); (Y.L.); (D.Y.); (J.G.); (P.L.)
| |
Collapse
|
2
|
Xv Z, Lv J, Jiang J, Wang W, Feng F, Zhang L, Xue X, Li W. Effective Neutralizing Antibody Produced in Mice Directly Immunized with Integrated Pichia pastoris Expressing HPV16L1 Protein. Viral Immunol 2019; 32:308-317. [DOI: 10.1089/vim.2019.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Zhen Xv
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jinhui Lv
- Research Center for Translational Medicine, East Hospital Tongji University School of Medicine, Shanghai, China
| | - Jie Jiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenhuan Wang
- Key Laboratory of Uterology of Wenzhou City People's Hospital, Wenzhou, China
| | - Fangfang Feng
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 2017; 36:182-195. [PMID: 29129652 DOI: 10.1016/j.biotechadv.2017.11.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Pichia pastoris has been recognized as one of the most industrially important hosts for heterologous protein production. Despite its high protein productivity, the optimization of P. pastoris cultivation is still imperative due to strain- and product-specific challenges such as promoter strength, methanol utilization type and oxygen demand. To address the issues, strategies involving genetic and process engineering have been employed. Optimization of codon usage and gene dosage, as well as engineering of promoters, protein secretion pathways and methanol metabolic pathways have proved beneficial to innate protein expression levels. Large-scale production of proteins via high cell density fermentation additionally relies on the optimization of process parameters including methanol feed rate, induction temperature and specific growth rate. Recent progress related to the enhanced production of proteins in P. pastoris via various genetic engineering and cultivation strategies are reviewed. Insight into the regulation of the P. pastoris alcohol oxidase 1 (AOX1) promoter and the development of methanol-free systems are highlighted. Novel cultivation strategies such as mixed substrate feeding are discussed. Recent advances regarding substrate and product monitoring techniques are also summarized. Application of P. pastoris to the production of biodiesel and other value-added products via metabolic engineering are also reviewed. P. pastoris is becoming an indispensable platform through the use of these combined engineering strategies.
Collapse
|
4
|
Bai YP, Luo XJ, Zhao YL, Li CX, Xu DS, Xu JH. Efficient Degradation of Malathion in the Presence of Detergents Using an Engineered Organophosphorus Hydrolase Highly Expressed by Pichia pastoris without Methanol Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9094-9100. [PMID: 28949531 DOI: 10.1021/acs.jafc.7b03405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPHM9, an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.8 kU/L and 4.1 gprotein/L after 3 days, with the highest space-time yield (STY) reported so far, 640 U L-1 h-1. PoOPHM9 displayed its high activity and stability in the presence of 0.1% (w/w) plant-derived detergent. Only 0.04 mg/mL enzyme could completely remove 0.15 mM malathion in aqueous solution within 20 min. Furthermore, 12 μmol malathion on apples and cucumbers surfaces was completely removed by 0.05 mg/mL PoOPHM9 in tap water after 35 min washing. The efficient production of the highly active PoOPHM9 has cleared a major barrier to biodegradation of pesticide residues in food industry.
Collapse
Affiliation(s)
- Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Xiao-Jing Luo
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Yu-Lian Zhao
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Dian-Sheng Xu
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and ‡School of Biotechnology, East China University of Science and Technology , Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Marešová H, Palyzová A, Plačková M, Grulich M, Rajasekar VW, Štěpánek V, Kyslíková E, Kyslík P. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol (Praha) 2017; 62:417-424. [PMID: 28281229 DOI: 10.1007/s12223-017-0512-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/24/2017] [Indexed: 02/07/2023]
Abstract
This study deals with the potential of Pichia pastoris X-33 for the production of penicillin G acylase (PGAA) from Achromobacter sp. CCM 4824. Synthetic gene matching the codon usage of P. pastoris was designed for intracellular and secretion-based production strategies and cloned into vectors pPICZ and pPICZα under the control of AOX1 promoter. The simple method was developed to screen Pichia transformants with the intracellularly produced enzyme. The positive correlation between acylase production and pga gene dosage for both expression systems was demonstrated in small scale experiments. In fed-batch bioreactor cultures of X-33/PENS2, an extracellular expression system, total PGAA expressed from five copies reached 14,880 U/L of an active enzyme after 142 h; however, 60% of this amount retained in the cytosol. The maximum PGAA production of 31,000 U/L was achieved intracellularly from nine integrated gene copies of X-33/PINS2 after 90 h under methanol induction. The results indicate that in both expression systems the production level of PGAA is similar but there is a limitation in secretion efficiency.
Collapse
Affiliation(s)
- Helena Marešová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Martina Plačková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague 2, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | | | - Václav Štěpánek
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Eva Kyslíková
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Pavel Kyslík
- Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
6
|
Shen W, Shu M, Ma L, Ni H, Yan H. High level expression of organophosphorus hydrolase in Pichia pastoris by multicopy ophcM assembly. Protein Expr Purif 2016; 119:110-6. [DOI: 10.1016/j.pep.2015.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 02/03/2023]
|
7
|
Enhancing the soluble expression of an amylase in Escherichia coli by the mutations related to its domain interactions. Protein Expr Purif 2015; 120:35-41. [PMID: 26707400 DOI: 10.1016/j.pep.2015.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
The sequence and structure of the target protein exert a marked effect on its soluble expression in Escherichia coli. The effects of the mutation of an amylase isolated from Bacillus licheniformis (BLA) on its soluble expression in E. coli were investigated. A random mutation library of BLA was constructed to screen for mutations that resulted in enhanced soluble expression in E. coli. Two interesting mutations (A390I and D401V) were identified, which are located at the interaction surface between the A and C domains of BLA. The A390I mutation enhanced soluble BLA expression by 2.0-fold compared to wild type, while D401V decreased soluble expression 160-fold. Structural analysis revealed that A390 and D401 residues could affect the interaction between the A and C domains of BLA. Therefore, soluble expression of the target protein in E. coli could be affected by introduction of a mutation in the protein sequence.
Collapse
|
8
|
Wang P, Huang L, Jiang H, Tian J, Chu X, Wu N. Enhanced secretion of a methyl parathion hydrolase in Pichia pastoris using a combinational strategy. Microb Cell Fact 2015; 14:123. [PMID: 26310666 PMCID: PMC4551668 DOI: 10.1186/s12934-015-0315-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Pichia pastoris has been successfully used to produce various recombinant heterologous proteins, the efficiency varies. In this study, we used methyl parathion hydrolase (MPH) from Ochrobactrum sp. M231 as an example to study the effect of protein amino acid sequence on secretion from P. pastoris. RESULTS The results indicated that the protein N-terminal sequence, the endoplasmic reticulum (ER) retention signal (KKXX) at the protein C-terminus, and the acidic stability of the protein could affect its secretion from P. pastoris. Mutations designed based on these sequence features markedly improved secretion from P. pastoris. In addition, we found that the secretion properties of a protein can be cumulative when all of the above strategies are combined. The final mutant (CHBD-DQR) designed by combining all of the strategies greatly improved secretion and the secreted MPH activity of CHBD-DQR was enhanced up to 195-fold compared with wild-type MPH without loss of catalytic efficiency. CONCLUSIONS These results demonstrate that the secretion of heterologous proteins from P. pastoris could be improved by combining changes in multiple protein sequence features.
Collapse
Affiliation(s)
- Ping Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Lu Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Hu Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
9
|
Heiss S, Puxbaum V, Gruber C, Altmann F, Gasser B, Mattanovich D. Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology (Reading) 2015; 161:1356-68. [DOI: 10.1099/mic.0.000105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|