1
|
Sahin G, Doğanlar ZB. Extended sub-chronic exposure to heavy metal mixture induced multidrug resistance against chemotherapy agents in ovarian cancer cells. Toxicol Lett 2025; 407:50-62. [PMID: 40158757 DOI: 10.1016/j.toxlet.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent scientific findings suggest that persistent, minimal quantity exposure to heavy metals combinations can instigate negative reactions across various cell types, tissues, and organs. However, the interplay between heavy metals present in blood and cancerous cells remains largely unclear. We aimed to examine the capability of a Pb, Cd, and Co at very low concentrations blend to trigger multidrug resistance against chemotherapeutic remedies such as cisplatin, 5-fluorouracil, and doxorubicin in the NIH-Ovcar3 human ovarian cancer cell line. Additionally, we sought to dissect the molecular mechanisms bolstering this resistance. Our results illustrate that consistent administration of the heavy metal mixture at extraordinarily low concentrations fosters pronounced chemotherapy resistance in Ovcar3 cells via cross resistance. This resistance endured and was propagated through ensuing cell generations. We observed that ATP-binding cassette (ABC) membrane transporters, specifically P-gp/ABCB1, BRCP/ABCG2, and ABCC1-type cellular detoxification functions, were markedly overexpressed, playing a crucial role in multidrug resistance. This finding supports the molecular evidence of the acquired multidrug resistance phenotype and provides preliminary insights into the potential resistance mechanism. We also found decreased mortality rates in the resistant ovarian cancer cells, with the mitochondrial apoptosis pathway activating at a reduced rate post-chemotherapy relative to the non-resistant control cells. Furthermore, multidrug-resistant cells exhibited increased motility and enhanced wound-healing abilities, hinting at a higher metastatic potential. These findings suggest that analysing P-gp, BRCP, and ABCC1 multidrug resistance gene expression and/or protein levels within biopsy samples from ovarian cancer patients at risk of heavy metal exposure could prove advantageous in determining chemotherapy dosage and prolonging patient lifespan.
Collapse
Affiliation(s)
- Gözde Sahin
- Department of Gynecologic Oncology,Basaksehir Çam and Sakura City Hospital, İstanbul 34480, Turkey.
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| |
Collapse
|
2
|
Ma YT, Li C, Shen Y, You WH, Han MX, Mu YF, Han FJ. Mechanisms of the JNK/p38 MAPK signaling pathway in drug resistance in ovarian cancer. Front Oncol 2025; 15:1533352. [PMID: 40352594 PMCID: PMC12063130 DOI: 10.3389/fonc.2025.1533352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal malignancy in the female reproductive system, and chemotherapy drug resistance is the main cause of treatment failure. The Mitogen-Activated Protein Kinases (MAPK) pathway plays a pivotal role in regulating cell proliferation, migration, and invasive capacity in response to extracellular stimuli. This review focuses on the mechanisms and therapeutic strategies related to the JNK/p38 MAPK signaling pathway in OC resistance. The JNK/p38 MAPK pathway plays a dual role in OC chemoresistance. This review examines its role in mediating OC treatment resistance by exploring the mechanisms of action of the JNK/p38 MAPK signaling pathway, particularly its involvement in several key biological processes, including apoptosis, autophagy, DNA damage response, the tumor microenvironment (TME), and drug efflux. Additionally, the review investigates the timing of activation of this pathway and its crosstalk with other signaling pathways such as PI3K/AKT and NF-κB. Targeting JNK/p38 MAPK signaling has shown promise in reversing chemoresistance, with several inhibitors and natural compounds demonstrating potential in preclinical studies. Regulating JNK/p38 MAPK may transform what was once a terminal obstacle into a manageable challenge for OC patients with chemotherapy resistance, ultimately improving survival and quality of life.
Collapse
Affiliation(s)
- Yu-Ting Ma
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wan-Hui You
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ming-Xuan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yi-Fan Mu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Alghamian Y, Soukkarieh C, Aljapawe A, Murad H. Exploring miRNA profile associated with cisplatin resistance in ovarian cancer cells. Biochem Biophys Rep 2025; 41:101906. [PMID: 39830525 PMCID: PMC11741906 DOI: 10.1016/j.bbrep.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation. Here, this study aimed to identify miRNAs expression changes related to cisplatin resistance in ovarian cancer cells. The miRNA expression profiles of a cisplatin-sensitive A2780 cell line and two cisplatin-resistant cell lines, A2780cis and SK-OV-3, were analyzed using PCR array and qPCR. Accordingly, the miRNAs that were differentially expressed were further investigated to identify their biological functions and the target pathways using Gene Ontology (GO) annotation and KEGG pathway analyses. In order to evaluate the clinical significance of the differentially expressed miRNAs, survival analysis was carried out using expression data for ovarian cancer patients available in the Kaplan-Meier (KM) plotter database. The current work demonstrates that Nine miRNAs were found to be upregulated in cells resistant to cisplatin. Clearly, these miRNAs have functions in cell death/survival related processes and treatment response. They may also target pathways involved in treatment response like PI3K-Akt, pathway in cancer and MAPK. Interestingly, High expression of hsa-miR-133b, hsa-miR-512-are, hsa-miR-200b-3p, and hsa-miR-451a is related to poor overall survival in patients diagnosed with ovarian cancer. Our findings suggest that hsa-miR-133b, hsa-miR-512-5p, hsa-miR-200b-3p, and hsa-miR-451a are good candidates for future studies aimed to establishing functional links and exploring therapeutic interventions to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Abdulmunim Aljapawe
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| | - Hossam Murad
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| |
Collapse
|
4
|
Ferreira M, Morais M, Medeiros R, Teixeira AL. MicroRNAs as Promising Therapeutic Agents Against Prostate Cancer Resistant to Castration-Where Are We Now? Pharmaceutics 2024; 16:1347. [PMID: 39598472 PMCID: PMC11597238 DOI: 10.3390/pharmaceutics16111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
MicroRNAs are a conserved class of small, tissue-specific, non-coding RNAs that regulate gene expression to preserve cellular homeostasis. Proper miRNA expression is crucial for physiological balance because it affects numerous genetic pathways, including cell cycle control, proliferation, and apoptosis, through gene expression targeting. Deregulated miRNA expression has been implicated in several cancer types, including prostate cancer (PC), acting as tumor suppressors or oncogenes. Despite the availability of promising therapies to control tumor growth and progression, effective diagnostic and therapeutic strategies for different types of cancer are still lacking. PC continues to be a significant health challenge, particularly its castration-resistant (CRPC) form, which presents major therapeutic obstacles because of its resistance to conventional androgen deprivation treatments. This review explores miRNAs' critical roles in gene regulation and cancer biology, as well as various miRNA delivery systems, highlighting their potential and the challenges in effectively targeting cancer cells. It aims to provide a comprehensive overview of the status of miRNA research in the fight against CRPC, summarizing miRNA-based therapies' successes and limitations. It also highlights the promise of miRNAs as therapeutic agents for CRPC, underlining the need for further research to overcome existing challenges and move these therapies toward clinical applications.
Collapse
Affiliation(s)
- Mariana Ferreira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (M.M.); (R.M.)
| |
Collapse
|
5
|
Castillo Cruz B, Chinapen Barletta S, Ortiz Muñoz BG, Benitez-Reyes AS, Amalbert Perez OA, Cardona Amador AC, Vivas-Mejia PE, Barletta GL. Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium. Pharmaceuticals (Basel) 2024; 17:1344. [PMID: 39458985 PMCID: PMC11510567 DOI: 10.3390/ph17101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome's fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. METHODS We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. RESULTS We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. CONCLUSIONS β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Sandra Chinapen Barletta
- Department of Physiology/Pathology, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico;
| | - Bryan G. Ortiz Muñoz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Adriana S. Benitez-Reyes
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Omar A. Amalbert Perez
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Alexander C. Cardona Amador
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Pablo E. Vivas-Mejia
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 0035, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Gabriel L. Barletta
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| |
Collapse
|
6
|
Putri HMAR, Novianti PW, Pradjatmo H, Haryana SM. MicroRNA‑mediated approaches in ovarian cancer therapy: A comprehensive systematic review. Oncol Lett 2024; 28:491. [PMID: 39185494 PMCID: PMC11342411 DOI: 10.3892/ol.2024.14624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer (OC) poses a significant health risk to women worldwide, with late diagnoses and chemotherapy resistance leading to high mortality rates. Despite several histological subtypes, the primary challenge remains the subtle nature of its symptoms, resulting in advanced-stage diagnosis and reduced treatment success rates. With platinum-based therapies showing relative efficacy but limited survival enhancements, the emergence of chemotherapy resistance during recurrence remains a critical obstacle. Precision medicine development has aimed to address these challenges in the context of the molecular diversity of OC. The present review explored the landscape of microRNA (miRNA)-mediated approaches in OC treatment. miRNAs have emerged as regulators of gene expression, serving as both oncogenes and tumor suppressors in OC. Dysregulated miRNAs are associated with disease progression and chemotherapy resistance, underscoring their significance in diagnosis and tailored treatment strategies. The present review extracted 295 publications from the PUBMED database. Out of the 73 eligible studies, 55 miRNAs were assessed. A total of three of these miRNAs were not associated with any disease or cancer, whilst eight were associated with OC, albeit also associated with other diseases. The present review encompassed three dimensions: i) The role of miRNAs in treatment efficacy; ii) the use of miRNAs to enhance therapy outcomes; and iii) adjunctive strategies for improved treatment results. Furthermore, it offered insights into potential avenues for improving OC treatment using miRNA-based approaches.
Collapse
Affiliation(s)
| | | | - Heru Pradjatmo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Depok, Yogyakarta 55281, Indonesia
- Department of Obstetrics and Gynecology, Sardjito Hospital, Depok, Yogyakarta 55281, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Depok, Yogyakarta 55281, Indonesia
| |
Collapse
|
7
|
Hilal B, Eldem A, Oz T, Pehlivan M, Pirim I. Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells. Biol Trace Elem Res 2024; 202:3614-3622. [PMID: 38015327 DOI: 10.1007/s12011-023-03958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of acute lymphoblastic leukemia from early T-cell progenitors. Interest grows in creating less toxic agents and therapies for chemo-resistant T-ALL cancer. Recently, elemental boron has special properties useful in the creation of new drugs. Studies have revealed the cytotoxic properties of boric acid (BA) on cancer, but not fully understood. We aimed to investigate the effect of BA on cell proliferation, apoptosis, and oxidative stress in the Jurkat cells. The effects of BA on cell viability were determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay for 24-48-72 h. The impact of BA on apoptosis was analyzed by acridine orange/ethidium bromide. Expression of apoptosis regulatory genes (Bcl-2, Bax, Caspase-3-8-9) and apoptotic miRNA (miR-21) was used by real-time quantitative polymerase chain reaction (RT-qPCR). The total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) value were calculated for oxidative stress. We determined the cytotoxic activity of BA on Jurkat cells by using XTT and defined the IC50 concentration (802.7 μg/mL) of BA. The findings clearly show that BA inhibited Jurkat cell proliferation dose-dependently. BA induced apoptosis through downregulated anti-apoptotic genes, and upregulated pro-apoptotic genes. Additionally, we found that BA significantly reduced the expression of miR-21 (p<0.001). Our findings demonstrated that different doses of BA increased TAS levels while decreasing TOS levels in Jurkat cells. Our study suggests that BA might be potential anti-cancer agent candidate in ALL via inhibition of cell proliferation, induced apoptosis, and reducing the amounts of anti-oxidants in cells.
Collapse
Affiliation(s)
- Büşra Hilal
- Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Aslı Eldem
- Faculty of Medicine, Department of Medical Biology, Izmir Katip Celebi University, Izmir, Turkey
| | - Tuba Oz
- Faculty of Medicine, Department of Medical Biology, Izmir Katip Celebi University, Izmir, Turkey
| | - Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Turkey.
| | - Ibrahim Pirim
- Faculty of Medicine, Department of Medical Biology, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
8
|
Zhang Q, Guo F, Liu H, Hong L. Enhancing wound healing and overcoming cisplatin resistance in ovarian cancer. Int Wound J 2024; 21:e14569. [PMID: 38158767 PMCID: PMC10961880 DOI: 10.1111/iwj.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) poses significant oncological challenges, notably impaired wound healing in the context of cisplatin (DDP) resistance. This study investigates the role of miR-200b in OC, emphasizing its impact on wound healing processes through DNMT3A/TGF-β1 pathway. The primary aim was to explore how miR-200b regulates autophagy and its consequential effects on wound healing in OC, alongside its influence on cisplatin resistance. Utilizing DDP-sensitive (A2780) and resistant (A2780/DDP) OC cell lines, along with human fibroblast cultures, the study employed an array of in vitro techniques. These included cell transfection with miR-200b mimic or inhibitor, chromatin immunoprecipitation (ChIP), dual-luciferase reporter (DLR) assays, quantitative PCR, Western blotting, MTT and particularly, wound healing assays. The research highlighted the role of miR-200b in wound healing within OC. Inhibition of miR-200b in A2780 cells and its mimic in A2780/DDP cells affected cell viability, indicating the link with DDP resistance. Crucially, miR-200b mimic significantly delayed fibroblast-mediated wound closure in assays, underscoring its impact on wound healing. Bioinformatics analysis and subsequent DLR assays confirmed miR-200b's interaction with DNMT3A, affecting TGF-β1 expression, the key factor in wound repair. Further, ChIP, quantitative PCR and Western blot analyses validated the interaction and expression changes in DNMT3A and TGF-β1. The study demonstrated that miR-200b played a pivotal role in OC by modulating autophagy, which in turn significantly affected wound healing through the DNMT3A/TGF-β1 pathway.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengqin Guo
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Liu
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Hong
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women's reproductive diseases: an overview. Mol Biol Rep 2024; 51:414. [PMID: 38472662 DOI: 10.1007/s11033-024-09357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors. METHODS The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases. RESULTS We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier. CONCLUSIONS This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohadeseh Azimi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Shima Alavi
- Department of Obstetrics and Gynecology, Ghods Hospital, Arak, Iran
| |
Collapse
|
10
|
Wilczyński J, Paradowska E, Wilczyńska J, Wilczyński M. Prediction of Chemoresistance-How Preclinical Data Could Help to Modify Therapeutic Strategy in High-Grade Serous Ovarian Cancer. Curr Oncol 2023; 31:229-249. [PMID: 38248100 PMCID: PMC10814576 DOI: 10.3390/curroncol31010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the most lethal tumors generally and the most fatal cancer of the female genital tract. The approved standard therapy consists of surgical cytoreduction and platinum/taxane-based chemotherapy, and of targeted therapy in selected patients. The main therapeutic problem is chemoresistance of recurrent and metastatic HGSOC tumors which results in low survival in the group of FIGO III/IV. Therefore, the prediction and monitoring of chemoresistance seems to be of utmost importance for the improvement of HGSOC management. This type of cancer has genetic heterogeneity with several subtypes being characterized by diverse gene signatures and disturbed peculiar epigenetic regulation. HGSOC develops and metastasizes preferentially in the specific intraperitoneal environment composed mainly of fibroblasts, adipocytes, and immune cells. Different HGSOC subtypes could be sensitive to distinct sets of drugs. Moreover, primary, metastatic, and recurrent tumors are characterized by an individual biology, and thus diverse drug responsibility. Without a precise identification of the tumor and its microenvironment, effective treatment seems to be elusive. This paper reviews tumor-derived genomic, mutational, cellular, and epigenetic biomarkers of HGSOC drug resistance, as well as tumor microenvironment-derived biomarkers of chemoresistance, and discusses their possible use in the novel complex approach to ovarian cancer therapy and monitoring.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Justyna Wilczyńska
- Department of Tele-Radiotherapy, Mikolaj Kopernik Provincial Multi-Specialized Oncology and Traumatology Center, 62 Pabianicka Str., 93-513 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
11
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
12
|
Alfaro I, Vega M, Romero C, Garrido MP. Mechanisms of Regulation of the Expression of miRNAs and lncRNAs by Metformin in Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:1515. [PMID: 38004379 PMCID: PMC10674581 DOI: 10.3390/ph16111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological malignancies. The use of biological compounds such as non-coding RNAs (ncRNAs) is being considered as a therapeutic option to improve or complement current treatments since the deregulation of ncRNAs has been implicated in the pathogenesis and progression of OC. Old drugs with antitumoral properties have also been studied in the context of cancer, although their antitumor mechanisms are not fully clear. For instance, the antidiabetic drug metformin has shown pleiotropic effects in several in vitro models of cancer, including OC. Interestingly, metformin has been reported to regulate ncRNAs, which could explain its diverse effects on tumor cells. In this review, we discuss the mechanism of epigenetic regulation described for metformin, with a focus on the evidence of metformin-dependent microRNA (miRNAs) and long non-coding RNA (lncRNAs) regulation in OC.
Collapse
Affiliation(s)
- Ignacio Alfaro
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Independencia 8380453, Chile
- Obstetrics and Gynecology Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
13
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Gao P, Wang H, Li H, Shu L, Han Z, Li S, Cheng H, Dai X. miR-21-5p Inhibits the Proliferation, Migration, and Invasion of Glioma by Targeting S100A10. J Cancer 2023; 14:1781-1793. [PMID: 37476183 PMCID: PMC10355203 DOI: 10.7150/jca.84030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023] Open
Abstract
S100A10, a member of the S100 protein family, is upregulated in multiple human malignancies and plays a key role in regulating tumor progression. This study aimed to reveal the underlying mechanism by which S100A10 in regulates the proliferation, migration, and invasion of glioma. The expression and clinical information data of S100A10 were downloaded from public databases (TCGA, CGGA, and GEPIA2). S100A10 expression levels in glioma tumor tissues and adjacent nontumor tissues were compared by immunohistochemistry (IHC). The functional roles of S100A10 in glioma were assessed by cell counting kit-8 (CCK-8) cell proliferation assay, wound healing assay, transwell assay, and flow cytometry. miRDB and double luciferase assay were used to predict and identify potential S100A10 mRNA-complementary miRNAs, and the roles of miR-21-5p in glioma cell were examined by targeted knockdown or overexpression miR-21-5p in glioma cell lines. We found that S100A10 was overexpressed in glioma tissues and predicted a worse prognosis. S100A10 knockdown significantly inhibited glioma cell proliferation, invasion, and migration. Furthermore, we demonstrated that miR-21-5p inhibits glioma proliferation, migration, and invasion by targeting S100A10. This study showed S100A10 was a new prognostic predictor among glioma patients and provided new insights into the pathogenesis of gliomas, suggesting that miR-21-5p /S100A10 axis may serve as a valuable therapeutic target for glioma.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Haopeng Wang
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Huaixu Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Lei Shu
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhenyu Han
- Department of Medical Imaging Technology, The First Clinical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| |
Collapse
|
16
|
Insight on Non-Coding RNAs from Biofluids in Ovarian Tumors. Cancers (Basel) 2023; 15:cancers15051539. [PMID: 36900328 PMCID: PMC10001105 DOI: 10.3390/cancers15051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Ovarian tumors are the most frequent adnexal mass, raising diagnostic and therapeutic issues linked to a large spectrum of tumors, with a continuum from benign to malignant. Thus far, none of the available diagnostic tools have proven efficient in deciding strategy, and no consensus exists on the best strategy between "single test", "dual testing", "sequential testing", "multiple testing options" and "no testing". In addition, there is a need for prognostic tools such as biological markers of recurrence and theragnostic tools to detect women not responding to chemotherapy in order to adapt therapies. Non-coding RNAs are classified as small or long based on their nucleotide count. Non-coding RNAs have multiple biological functions such as a role in tumorigenesis, gene regulation and genome protection. These ncRNAs emerge as new potential tools to differentiate benign from malignant tumors and to evaluate prognostic and theragnostic factors. In the specific setting of ovarian tumors, the goal of the present work is to offer an insight into the contribution of biofluid non-coding RNAs (ncRNA) expression.
Collapse
|
17
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
18
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
19
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
20
|
Wang Z, Zhou H, Cheng F, Zhang Z, Long S. MiR-21 regulates epithelial-mesenchymal transition in intestinal fibrosis of Crohn's disease by targeting PTEN/mTOR. Dig Liver Dis 2022; 54:1358-1366. [PMID: 35504804 DOI: 10.1016/j.dld.2022.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous studies suggested miR-21 regulated epithelial-mesenchymal transition (EMT) and fibrosis in organs. The aim of this study was to explore the role and mechanism of miR-21 in EMT process of CD(Crohn's disease)-associated intestinal fibrosis. METHODS Tissue biopsies from fibrotic and nonfibrotic intestine of CD patients, and non-CD patients were obtained; chronic intestinal fibrosis model established by TNBS was treated with antagonist of miR-21; human intestinal epithelial cell, NCM460, were transfected with miR-21 mimics or inhibitor. The expressions of PTEN and mTOR, EMT-related markers and severity of colitis and fibrosis were examined. RESULTS Compared to the controls, miR-21 was significantly upregulated in the intestinal tissues from CD patients with fibro stenosis, followed by decreased PTEN expression, increased EMT markers, and mTOR expression, and imbalanced ratio of MMP9(matrix metalloproteinase 9)/TIMP1(tissue inhibitor of metalloproteinase 1). MiR-21 downregulated the expression of PTEN and upregulated mTOR signal in NCM460 cell. Also, knocking miR-21 down reduced EMT in vitro. Inhibiting miR-21 with antagonists reversed TNBS-induced intestinal fibrosis in vivo, through suppressing EMT and balancing MMPs/TIMPs. CONCLUSION We identified the involvement of miR-21 in EMT during intestinal fibrosis via targeting PTEN and mTOR, and miR-21 inhibition relieved intestinal fibrosis by regulating extracellular matrix (ECM) remodeling . Our results indicated miR-21 as a potential new target for the treatment of fibrosis complication in CD.
Collapse
Affiliation(s)
- Zhizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University and China Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Huihui Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University and China Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Fei Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University and China Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Zhendong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University and China Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shunhua Long
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University and China Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
21
|
HPV-Induced MiR-21 Promotes Epithelial Mesenchymal Transformation and Tumor Progression in Cervical Cancer Cells through the TGFβ R2/hTERC Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6297694. [PMID: 36105448 PMCID: PMC9458404 DOI: 10.1155/2022/6297694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Cervical cancer (CC) is a common malignant tumor in women. It ranks first among the malignant tumors of woman reproductive organs and is one of the most important cancers in the world. Current studies suggest that human papillomavirus (HPV) infection, especially high-risk persistent infection, is the basic cause of cervical precancerous lesions and cervical cancer. MicroRNA-21 (miR-21) plays a role similar to oncogenes in the occurrence and growth of malignant tumors and can be developed as a potential target for treating malignant tumors. Recently, the study of the mechanism of malignant invasion and metastasis has made great progress. The current consensus is that the invasion and metastasis of malignant tumors is a complicated biological process with multistep and multigene control; the process of epithelial mesenchymal transition (EMT) may be the initial event of invasion and metastasis of epithelial malignant tumors. EMT means that epithelial cells obtain the characteristics of mesenchymal cells, which has main characteristics such as the loss of epithelial cell characteristics and the achievement of mesenchymal cell features, and then induce epithelial cells to acquire the ability of migration and invasion, and participate in many physiological and pathological processes of human body, including embryogenesis, organ differentiation, tissue inflammation, and wound healing. Research has proved that miR-21 is associated with the invasion and metastasis of cervical cancer, and its specific mechanism has not been completely clear; EMT exerts a significant effect on the invasion and metastasis of epithelial malignant tumors; we speculate whether miR-21 regulates the EMT process of cervical cancer cells. ELISA and RT-PCR studied HPV-induced cervical cancer cells, and it was found that HPV may induce miR-21 to pass through the TGF β R2/hTERC pathway which promotes epithelial stromal transformation and tumor progression of cervical cancer cells.
Collapse
|
22
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
23
|
Noriega-Rivera R, Rivera-Serrano M, Rabelo-Fernandez RJ, Pérez-Santiago J, Valiyeva F, Vivas-Mejía PE. Upregulation of the Long Noncoding RNA CASC10 Promotes Cisplatin Resistance in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2022; 23:7737. [PMID: 35887085 PMCID: PMC9318856 DOI: 10.3390/ijms23147737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Despite initial responses to first-line treatment with platinum and taxane-based combination chemotherapy, most high-grade serous ovarian carcinoma (HGSOC) patients will relapse and eventually develop a cisplatin-resistant fatal disease. Due to the lethality of this disease, there is an urgent need to develop improved targeted therapies against HGSOC. Herein, we identified CASC10, a long noncoding RNA upregulated in cisplatin-resistant ovarian cancer cells and ovarian cancer patients. We performed RNA sequencing (RNA-seq) in total RNA isolated from the HGSOC cell lines OVCAR3 and OV-90 and their cisplatin-resistant counterparts. Thousands of RNA transcripts were differentially abundant in cisplatin-sensitive vs. cisplatin-resistant HGSOC cells. Further data filtering unveiled CASC10 as one of the top RNA transcripts significantly increased in cisplatin-resistant compared with cisplatin-sensitive cells. Thus, we focused our studies on CASC10, a gene not previously studied in ovarian cancer. SiRNA-mediated CASC10 knockdown significantly reduced cell proliferation and invasion; and sensitized cells to cisplatin treatment. SiRNA-mediated CASC10 knockdown also induced apoptosis, cell cycle arrest, and altered the expression of several CASC10 downstream effectors. Multiple injections of liposomal CASC10-siRNA reduced tumor growth and metastasis in an ovarian cancer mouse model. Our results demonstrated that CASC10 levels mediate the susceptibility of HGSOC cells to cisplatin treatment. Thus, combining siRNA-mediated CASC10 knockdown with cisplatin may represent a plausible therapeutic strategy against HGSOC.
Collapse
Affiliation(s)
- Ricardo Noriega-Rivera
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Mariela Rivera-Serrano
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Robert J. Rabelo-Fernandez
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Josué Pérez-Santiago
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- School of Dental Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Fatima Valiyeva
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| |
Collapse
|
24
|
Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers (Basel) 2022; 14:cancers14133238. [PMID: 35805007 PMCID: PMC9265289 DOI: 10.3390/cancers14133238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review discusses all the major advances in gene therapy of gynaecological disorders, highlighting the novel and potentially therapeutic perspectives associated with such an approach. It specifically focuses on the gene therapy strategies against major gynaecological malignant disorders, such as ovarian, cervical, and endometrial cancer, as well as benign disorders, such as uterine leiomyomas, endometriosis, placental, and embryo implantation disorders. The above therapeutic strategies, which employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation approaches, have yielded promising results over the last decade, setting the grounds for successful clinical trials. Abstract Despite the major advances in screening and therapeutic approaches, gynaecological malignancies still present as a leading cause of death among women of reproductive age. Cervical cancer, although largely preventable through vaccination and regular screening, remains the fourth most common and most lethal cancer type in women, while the available treatment schemes still pose a fertility threat. Ovarian cancer is associated with high morbidity rates, primarily due to lack of symptoms and high relapse rates following treatment, whereas endometrial cancer, although usually curable by surgery, it still represents a therapeutic problem. On the other hand, benign abnormalities, such as fibroids, endometriosis, placental, and embryo implantation disorders, although not life-threatening, significantly affect women’s life and fertility and have high socio-economic impacts. In the last decade, targeted gene therapy approaches toward both malignant and benign gynaecological abnormalities have led to promising results, setting the ground for successful clinical trials. The above therapeutic strategies employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation. This review discusses all the major advances in gene therapy of gynaecological disorders and highlights the novel and potentially therapeutic perspectives associated with such an approach.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- Correspondence:
| | - Kalliopi I. Pappa
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
25
|
Sanchez-Cruz P, Vazquez K, Lozada EL, Valiyeva F, Sharma R, Vivas PE, Alegria AE. Photosensitized co-generation of nitric oxide and singlet oxygen Enhanced toxicity against ovarian cancer cells. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:82. [PMID: 37035485 PMCID: PMC10081534 DOI: 10.1007/s11051-022-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 06/19/2023]
Abstract
Near micromolar concentrations of nitric oxide (NO) induce tumor cells death. However, an appropriate NO load has to be delivered selectively to the tumor site in order to avoid NO loss and secondary NO-induced effects. The encapsulation of millimolar concentrations of a NO source and an appropriate trigger of NO release within phospatidylcholine-based liposomes should provide an efficient tool for the selective release of the needed NO payload. In this work we report the photosensitized generation of singlet oxygen and NO from folate-targeted PEGylated liposomes, containing AlPcS4 as the sensitizer and S-nitrosoglutathione (GSNO), in millimolar amounts, as the NO source. Amounts of singlet oxygen detected outside the liposome when using PEGylated liposomes are near 200 % larger when GSNO is present inside the liposomes as compared to its absence. These liposomes, conjugated to folate, were found to enhance the photosensitized cytotoxicity to A2780CP20 ovarian cancer cells as compared to liposomes containing the sensitizer but no GSNO (30 % as compared to 70 % cell viability) under the conditions of this work. Fluorescense of AlPcS4 was observed inside cells incubated with folate-conjugated liposomes but not with liposomes without folate. The photosensitized activity enhancement by GSNO increased when light fluence or liposome concentration were increased. The majority of ovarian cancer patients are initially diagnosed with disseminated intra-abdominal disease (stages III-IV) and have a 5-year survival of less than 20%. This work suggests a novel ovarian cancer nodules treatment via the use of tumor-targeted liposome nanoparticles with the capability of generating simultaneously reactive oxygen and nitrogen species upon illumination with near-infrared light.
Collapse
Affiliation(s)
| | - Katerina Vazquez
- Department of Biochemistry, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Eunice L. Lozada
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Fatima Valiyeva
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Rohit Sharma
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Pablo E. Vivas
- Department of Biochemistry, UPR Medical Sciences Campus, San Juan, PR 00936
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | | |
Collapse
|
26
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
27
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
28
|
Almutairy B, Fu Y, Bi Z, Zhang W, Wadgaonkar P, Qiu Y, Thakur C, Chen F. Arsenic activates STAT3 signaling during the transformation of the human bronchial epithelial cells. Toxicol Appl Pharmacol 2022; 436:115884. [PMID: 35031324 PMCID: PMC9056082 DOI: 10.1016/j.taap.2022.115884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
Abstract
Arsenic (As3+), a metalloid abundant in environment, is classified as a group I carcinogen associated with several common human cancers, including cancers in lung, skin, bladder, liver, and prostate (Wei et al., 2019). The mechanisms of As3+-induced carcinogenesis had been extensively studied, and different mechanisms might be involved in different types of cancer (Wei et al., 2019). Recent studies showed that exposure to a high dose of arsenic is able to induce lung cancer. Meanwhile, prolonged exposure to a low concentration of arsenic can increase the risk of lung cancer also (Liao et al., 2009; Fernández et al., 2012). Emerging evidence indicated that prolonged exposure to arsenic promotes malignant transformation and some of the transformed cells have cancer-stem-like properties (Ngalame et al., 2014). In the present report, we revealed that exposure to As3+ for short time period inhibited tyrosine-705 phosphorylation of signal transducer and activator of transcription 3 (pSTAT3Y705) and induced Src homology region 2 domain-containing phosphatase-1 (SHP-1) in bronchial epithelial cell line, BEAS-2B. In addition, we found that long term exposure of the cells to As3+ activates phosphorylation of STAT3 at serine 727 (pSTAT3S727) as well as pSTAT3Y705. Moreover, As3+ is able to induce the expression of miRNA-21 (miR-21) and decrease the expression of PDCD4. Taken together, our data suggest that activation of STAT3 and induction of miR-21 are important contributing factors to the reduced expression of PDCD4, which may play significant role in As3+-induced transformation of BEAS-2B cells.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O.Box 11961, Riyadh, Saudi Arabia
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| |
Collapse
|
29
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
30
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Ravegnini G, De Iaco P, Gorini F, Dondi G, Klooster I, De Crescenzo E, Bovicelli A, Hrelia P, Perrone AM, Angelini S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021; 9:biomedicines9101316. [PMID: 34680433 PMCID: PMC8533254 DOI: 10.3390/biomedicines9101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers worldwide, mostly due to nonspecific symptoms and a lack of screening tests, which, taken together, contribute to delayed diagnosis and treatment. The current clinical biomarker is serum CA-125, which allows the identification of most advanced primary and relapsed disease and correlates with disease burden; however, as well highlighted in the literature, CA-125 often lacks sensitivity and specificity, and is not helpful in monitoring chemotherapeutic response or in predicting the risk of relapse. Given that, the identification of novel biomarkers able to foster more precise medical approaches and the personalization of patient management represents an unmet clinical requirement. In this context, circulating miRNAs may represent an interesting opportunity as they can be easily detected in all biological fluids. This is particularly relevant when looking for non-invasive approaches that can be repeated over time, with no pain and stress for the oncological patient. Given that, the present review aims to describe the circulating miRNAs currently identified as associated with therapeutic treatments in OC and presents a complete overview of the available evidence.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
- Correspondence:
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Isabella Klooster
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA;
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Alessandro Bovicelli
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| |
Collapse
|
32
|
Patel M, Wang Y, Bartom ET, Dhir R, Nephew KP, Matei D, Murmann AE, Lengyel E, Peter ME. The Ratio of Toxic-to-Nontoxic miRNAs Predicts Platinum Sensitivity in Ovarian Cancer. Cancer Res 2021; 81:3985-4000. [PMID: 34224372 PMCID: PMC8338879 DOI: 10.1158/0008-5472.can-21-0953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Ovarian cancer remains one of the deadliest gynecologic malignancies affecting women, and development of resistance to platinum remains a major barrier to achieving a cure. Multiple mechanisms have been identified to confer platinum resistance. Numerous miRNAs have been linked to platinum sensitivity and resistance in ovarian cancer. miRNA activity occurs mainly when the guide strand of the miRNA, with its seed sequence at position 2-7/8, is loaded into the RNA-induced silencing complex (RISC) and targets complementary short seed matches in the 3' untranslated region of mRNAs. Toxic 6mer seeds, which target genes critical for cancer cell survival, have been found in tumor-suppressive miRNAs. Many siRNAs and short hairpin RNAs (shRNA) can also kill cancer cells via toxic seeds, the most toxic of which carry G-rich 6mer seed sequences. We showed here that treatment of ovarian cancer cells with platinum led to increased RISC-bound miRNAs carrying toxic 6mer seeds and decreased miRNAs with nontoxic seeds. Platinum-tolerant cells did not exhibit this toxicity shift but retained sensitivity to cell death mediated by siRNAs carrying toxic 6mer seeds. Analysis of RISC-bound miRNAs in tumors from patients with ovarian cancer revealed that the ratio between miRNAs with toxic versus nontoxic seeds was predictive of treatment outcome. Application of the 6mer seed toxicity concept to cancer relevant miRNAs provides a new framework for understanding and predicting cancer therapy responses. SIGNIFICANCE: These findings demonstrate that the balance of miRNAs that carry toxic and nontoxic 6mer seeds contributes to platinum resistance in ovarian cancer.
Collapse
Affiliation(s)
- Monal Patel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rohin Dhir
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
33
|
Cabus U, Secme M, Kabukcu C, Cil N, Dodurga Y, Mete G, Fenkci IV. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms. Gene 2021; 796-797:145799. [PMID: 34175401 DOI: 10.1016/j.gene.2021.145799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study is to determine the therapeutic effects of boric acid cell proliferation, invasion, migration, colony formation, cell cycle and apoptosis mechanisms in ovarian cancer cell line under in vitro conditions. METHODS MDAH-2774 ovarian cancer cells were employed. Real-time PCR test was used to investigate changes in genes and proteins of cell cycle and apoptosis and identified miRNAs under the addition of boric acid. The apoptosis rates were calculated by TUNEL assay. Matrigel invasion, colony formation and Wound healing tests were used to determine invasion and migration. Oxidative stress index value was calculated for oxidative stress. RESULTS Boric acid inhibited cell proliferation, invasion, migration and colony formation, but induces apoptosis and oxidative stress. Also, the expression of miRNA-21, miRNA-200a, miRNA-130a and mi-RNA-224 (which are indicators of poor prognosis of ovarian cancer) decreased significantly. CONCLUSION The potential of boric acid as a natural molecule may supports its effectiveness in reducing adverse effects arising from conventional ovarian cancer treatments.
Collapse
Affiliation(s)
- Umit Cabus
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Mucahit Secme
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Cihan Kabukcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nazli Cil
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ibrahim Veysel Fenkci
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
34
|
Liang X, Ju J. Matrine inhibits ovarian cancer cell viability and promotes apoptosis by regulating the ERK/JNK signaling pathway via p38MAPK. Oncol Rep 2021; 45:82. [PMID: 33786627 PMCID: PMC8025149 DOI: 10.3892/or.2021.8033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer displays the highest mortality rate among all types of gynecological cancer worldwide. The survival of patients with ovarian cancer remains poor due to poor responses to anticancer treatments. The present study aimed to investigate the therapeutic effects and potential mechanism underlying matrine in ovarian cancer tissues, ovarian cancer cells and a CAOV‑3‑derived tumor‑bearing mouse model. MTT, migration, invasion, flow cytometry, immunofluorescence and immunohistochemistry assays were performed to assess the inhibitory effects of matrine on ovarian cancer. A xenograft ovarian cancer mouse model was established and treated with matrine or PBS. The results demonstrated that compared with the control group, matrine significantly induced ovarian cancer cell apoptosis by upregulating caspase‑8 and Fas cell surface death receptor (Fas) expression levels, and downregulating Bcl‑2 and Bcl‑xl expression levels. Moreover, compared with the control group, matrine significantly inhibited ovarian cancer cell viability, migration and invasion by downregulating metastasis associated protein‑1, fibronectin, angiotensin II type 2 receptor-interacting protein 3a and H high mobility group AT‑hook 2 expression levels. Compared with the control group, matrine significantly increased p38MAPK, phosphorylated (p)ERK/ERK and pJNK/JNK expression levels in ovarian cancer cells. p38MAPK knockdown significantly downregulated p38MAPK, pERK/ERK and pJNK/JNK expression levels compared with the control group, which significantly promoted ovarian cancer cell viability, migration and invasion. In vivo experiments demonstrated that compared with the control group, matrine significantly suppressed tumor growth by markedly upregulating p38MAPK, ERK and JNK expression levels. The immunohistochemistry results demonstrated that caspase‑8 and Fas expression levels were notably increased, whereas Bcl‑2 and Bcl‑xl expression levels were obviously decreased in matrine‑treated tumors compared with PBS‑treated tumors. In conclusion, the present study demonstrated that matrine inhibited ovarian cancer cell viability, migration and invasion, but induced cell apoptosis, suggesting that matrine may serve as a promising anticancer agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Liang
- Discipline Inspection and Supervision Division, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Jianxin Ju
- Xiangyang Community, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
35
|
Arghiani N, Matin MM. miR-21: A Key Small Molecule with Great Effects in Combination Cancer Therapy. Nucleic Acid Ther 2021; 31:271-283. [PMID: 33891511 DOI: 10.1089/nat.2020.0914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of various cancers indicates the urgent need for finding accurate early diagnostic markers and more effective treatments for these malignancies. MicroRNAs (miRNAs) are small noncoding RNAs with great potentials to enter into cancer clinics as both diagnostic markers and therapeutic targets. miR-21 is elevated in many cancers, and promotes cell proliferation, metastasis, and drug resistance. In recent years, many studies have shown that targeting miR-21 combined with conventional chemotherapeutic agents could enhance their therapeutic efficacy, and overcome drug resistance and cancer recurrence both in vitro and in animal models. In this review, we first summarize the effects and importance of miR-21 in various cancers, and explore its function in drug resistance of cancer cells. Next, the challenges and prospects for clinical translation of anti-miR-21, as a therapeutic agent, will be discussed in combination cancer therapy.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
36
|
Oleuropein reduces cisplatin resistance in ovarian cancer by targeting apoptotic pathway regulators. Life Sci 2021; 278:119525. [PMID: 33894272 DOI: 10.1016/j.lfs.2021.119525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Despite many attempts to treat ovarian cancer, 13,940 individuals perish annually due to this disease worldwide. Chemotherapy is the main approach to ovarian cancer treatment, but the development of drug resistance is a major obstacle to the successful treatment. Oleuropein is a phenolic ingredient with anticancer characteristics. This study was aimed at investigating the effect of oleuropein on cell viability, cisplatin resistance, and apoptosis, as well as the expression levels of miR-34a, miR-125b, miR16, miR-21, and some of their potential target genes in ovarian cancer cells. MAIN METHODS A2780S and A2780/CP cell lines were exposed to different concentrations of oleuropein alone or in combination with cisplatin for 48 h and 72 h. After that, the cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. Bioinformatics analyses were conducted using STRING database and Cytoscape software. The effect of oleuropein and/or cisplatin on the expression of miRNAs and target genes was assessed via Real-time PCR. KEY FINDINGS Upon treatment with oleuropein, the expression of P21, P53, and TNFRSF10B increased while that of Bcl-2 and Mcl1 decreased. Moreover, this is the 1st report of a significant decrease in the expression of miR-21 and increase in the expression of miR-34a, miR-125b, and miR16 by oleuropein and/or cisplatin in ovarian cancer cells. SIGNIFICANCE Altogether, these data revealed that oleuropein regulated the expression of the above-mentioned miRNAs in ovarian cancer cells, which potentially resulted in apoptosis induction, cell proliferation inhibition, and cisplatin resistance decline in ovarian cancer cells. To confirm the results of this study, it is suggested that similar experiments be performed in animal models of ovarian cancer.
Collapse
|
37
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
38
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
39
|
CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors. Chromosome Res 2021; 29:175-188. [PMID: 33638118 DOI: 10.1007/s10577-021-09652-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The most often detected tumor in intact bitches is mammary tumors and represents a significant clinical problem throughout the world. Mammary neoplasms in canine have heterogeneous morphology, so the choice of the most appropriate biomarker is the biggest challenge in CMT detection. We performed a retrospective analysis and evaluated the canine cancer antigens and miRNA expression profiles as potential biomarkers. Sixty dogs based on histological examination divided into three groups, viz., dogs with a benign mammary tumor, malignant mammary tumor, and control/healthy. The CA 15-3 was found more sensitive than CEA but detection of both will increase sensitivity. miR-21 expression differed significantly in all three groups. miR-29b expression differed significantly between the control and benign group and control and malignant group. The miR-21 overexpression and miR-29b downregulation with CMT are associated with clinical stage and can be used as non-invasive diagnostic and prognostic biomarkers. Hence, evaluation of CA 15-3 along with CEA would be a non-invasive technique for detecting canine mammary tumors. Evaluation of deregulated circulating miR-21 could be a valuable prognostic marker for early detection of mammary tumors in canines while miR-29b can add sensitivity in the detection of the canine mammary tumors if evaluated with miR-21.
Collapse
|
40
|
Wang Y, Chen G, Dai F, Zhang L, Yuan M, Yang D, Liu S, Cheng Y. miR-21 Induces Chemoresistance in Ovarian Cancer Cells via Mediating the Expression and Interaction of CD44v6 and P-gp. Onco Targets Ther 2021; 14:325-336. [PMID: 33469309 PMCID: PMC7811474 DOI: 10.2147/ott.s286639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ovarian cancer (OC), a representative female reproductive system tumor, is one of the most malignant tumors in female. The most important reason for its poor prognosis is because of its high rate of chemotherapy resistance. Results This study aims to explore the effects of miR-21 on the chemotherapy resistance of OC cells. The functions of miR-21 on proliferation, migration and invasion of OC cells were assessed by transwell, clonal formation and CCK8 assay. Expression levels of miR-21, P-gp and CD44v6 in SKOV3 (cisplatin sensitive) cells and SKOV3/DDP (cisplatin resistant) cells were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Si-CD44v6 was transfected into OC cells to detect the influence on P-glycoprotein (P-gp) expression. Immunofluorescence was used to detect the localization of CD44v6 and P-gp in cell. Co-immunoprecipitation was used to detect the relationship between CD44v6 and P-gp. Results showed that miR-21 expression in cisplatin-resistant SKOV3/DDP cells was significantly higher than that in SKOV3 cells, at the same time, cells proliferation, as well as invasion and migration ability were enhanced after the miR-21 mimics transfected into SKOV3 cisplatin-sensitive cells. Furthermore, miR-21 expression level affected the CD44v6 and P-gp expression. Immunofluorescence and co-immunoprecipitation showed that CD44v6 and P-gp protein could interact. Conclusion In conclusion, the high miR-21 expression level could increase the proliferation, invasion, and migration ability of OC cells. And the interaction of CD44v6 and P-gp may mediate miR-21 involvement in chemotherapy resistance of OC cells.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Gantao Chen
- Department of Gastroenterology, Third People's Hospital of Xiantao in Hubei Province, Wuhan 433000, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
41
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
42
|
Chen L, Huang K, Yi K, Huang Y, Tian X, Kang C. Premature MicroRNA-Based Therapeutic: A "One-Two Punch" against Cancers. Cancers (Basel) 2020; 12:cancers12123831. [PMID: 33353171 PMCID: PMC7766154 DOI: 10.3390/cancers12123831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The current understanding of miRNA biology is greatly derived from studies on the guide strands and the passenger strands, also called miRNAs*, which are considered as carriers with no sense for long periods. As such, various studies alter the expression of guide strands by manipulating the expression of their primary transcripts or precursors, both of which are premature miRNAs. In this situation, the regulatory miRNA* species may interfere with the phenotypic interpretation against the target miRNA. However, such methods could manipulate the expression of two functionally synergistic miRNAs of the same precursor, leading to therapeutic potential against various diseases, including cancers. Premature miRNAs represent an underappreciated target reservoir and provide molecular targets for “one-two punch” against cancers. Examples of targetable miRNA precursors and available targeting strategies are provided in this review. Abstract Up-to-date knowledge regarding the biogenesis and functioning of microRNAs (miRNAs) has provided a much more comprehensive and concrete view of miRNA biology than anyone ever expected. Diverse genetic origins and biogenesis pathways leading to functional miRNAs converge on the synthesis of ≈21-nucleotide RNA duplex, almost all of which are processed from long premature sequences in a DICER- and/or DROSHA-dependent manner. Formerly, it was assumed that one mature strand of the duplex is preferentially selected for entry into the silencing complex, and the paired passenger strands (miRNA*) are subjected to degradation. However, given the consolidated evidence of substantial regulatory activity of miRNA* species, currently, this preconception has been overturned. Here, we see the caveat and opportunity toward exogenously manipulating the expression of premature miRNA, leading to simultaneous upregulation or downregulation of dual regulatory strands due to altered expressions. The caveat is the overlooked miRNA* interference while manipulating the expression of a target miRNA at the premature stage, wherein lies the opportunity. If the dual strands of a pre-miRNA function synergistically, the overlooked miRNA* interference may inversely optimize the therapeutic performance. Insightfully, targeting the premature miRNAs may serve as the “one-two punch” against diseases, especially cancers, and this has been discussed in detail in this review.
Collapse
Affiliation(s)
- Luyue Chen
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China;
| | - Kaikai Yi
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Yanlin Huang
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Xinhua Tian
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| |
Collapse
|
43
|
Quiñones-Díaz BI, Reyes-González JM, Sánchez-Guzmán V, Conde-Del Moral I, Valiyeva F, Santiago-Sánchez GS, Vivas-Mejía PE. MicroRNA-18a-5p Suppresses Tumor Growth via Targeting Matrix Metalloproteinase-3 in Cisplatin-Resistant Ovarian Cancer. Front Oncol 2020; 10:602670. [PMID: 33392094 PMCID: PMC7774672 DOI: 10.3389/fonc.2020.602670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Cumulating evidence indicates that dysregulation of microRNAs (miRNAs) plays a central role in the initiation, progression, and drug resistance of cancer cells. However, the specific miRNAs contributing to drug resistance in ovarian cancer cells have not been fully elucidated. Aimed to identify potential miRNAs involved in platinum resistance, we performed a miRNA expression profile in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells, and we found several differentially abundant miRNAs in the pair of cell lines. Notably, miR-18a-5p (miR-18a), a member of the oncogenic associated miR-17-92 cluster, was decreased in cisplatin-resistant as compared with cisplatin-sensitive cells. Real-time PCR analysis confirmed these findings. We then studied the biological, molecular, and therapeutic consequences of increasing the miR-18a levels with oligonucleotide microRNA mimics (OMM). Compared with a negative control OMM, transient transfection of a miR-18a-OMM reduced cell growth, cell proliferation, and cell invasion. Intraperitoneal injections of miR-18a-OMM-loaded folate-conjugated liposomes significantly reduced the tumor weight and the number of nodules in ovarian cancer-bearing mice when compared with a control-OMM group. Survival analysis using the Kaplan-Meier plotter database showed that ovarian cancer patients with high miR-18a levels live longer in comparison to patients with lower miR-18a levels. Bioinformatic analyses, real-time-PCR, Western blots, and luciferase reporter assays revealed that Matrix Metalloproteinase-3 (MMP-3) is a direct target of miR-18a. Small-interfering RNA (siRNA)-mediated silencing of MMP-3 reduced cell viability, cell growth, and the invasiveness potential of cisplatin-resistant ovarian cancer cells. Our study suggests that targeting miR-18a is a plausible therapeutic strategy for cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Pablo E Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
44
|
He T, Shen H, Wang S, Wang Y, He Z, Zhu L, Du X, Wang D, Li J, Zhong S, Huang W, Yang H. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:572-583. [PMID: 33230458 PMCID: PMC7562961 DOI: 10.1016/j.omtn.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Aberrant activation of nuclear factor κB (NF-κB)/RELA is often found in lung adenocarcinoma (LUAD). In this study, we determined that microRNA-3613-5p (miR-3613-5p) plays a crucial role in RELA-mediated post-transcriptional regulation of LUAD cell proliferation. Expression of miR-3613-5p in clinical LUAD specimens is associated with poor prognosis in LUAD. Upregulation of miR-3613-5p promotes LUAD cell proliferation in vitro and in vivo. Our results suggested a mechanism whereby miR-3613-5p expression is induced by RELA through its direct interaction with JUN, thereby stimulating the AKT/mitogen-activated protein kinase (MAPK) pathway by directly targeting NR5A2. In addition, we also found that phosphorylation of AKT1 and MAPK3/1 co-transactivates RELA, thus constituting a RELA/JUN/miR-3613-5p/NR5A2/AKT1/MAPK3/1 positive feedback loop, leading to persistent NF-κB activation. Our findings also revealed that miR-3613-5p plays an oncogenic role in LUAD by promoting cell proliferation and acting as a key regulator of the positive feedback loop underlying the link between the NF-κB/RELA and AKT/MAPK pathways.
Collapse
Affiliation(s)
- Tao He
- Department of Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongyou Shen
- Emergency Department, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Shuangmiao Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanfang Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiwei He
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xinyue Du
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Dan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiao Li
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhen Zhong
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
45
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
46
|
Hirschfeld M, Ge I, Rücker G, Waldschmidt J, Mayer S, Jäger M, Voigt M, Kammerer B, Nöthling C, Berner K, Weiss D, Asberger J, Erbes T. Mutually distinguishing microRNA signatures of breast, ovarian and endometrial cancers in vitro. Mol Med Rep 2020; 22:4048-4060. [PMID: 33000259 DOI: 10.3892/mmr.2020.11466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
Early diagnosis and therapy in the first stages of a malignant disease is the most crucial factor for successful cancer treatment and recovery. Currently, there is a high demand for novel diagnostic tools that indicate neoplasms in the first or pre‑malignant stages. MicroRNAs (miRNA or miR) are small non‑coding RNAs that may act as oncogenes and downregulate tumor‑suppressor genes. The detection and mutual discrimination of the three common female malignant neoplasia types breast (BC), ovarian (OC) and endometrial cancer (EC) could be enabled by identification of tumor entity‑specific miRNA expression differences. In the present study, the relative expression levels of 25 BC, EC and OC‑related miRNAs were assessed by reverse transcription‑quantitative PCR and determined using the 2‑ΔΔCq method for normalization against the mean of four housekeeping genes. Expression levels of all miRNAs were analyzed by regression against cell line as a factor. An expression level‑based discrimination between BC and OC cell types was obtained for a subgroup of ten different miRNA types. miR‑30 family genes, as well as three other miRNAs, were found to be uniformly upregulated in OC cells compared with BC cells. BC and EC cells could be distinguished by the expression profiles of six specific miRNAs. In addition, four miRNAs were differentially expressed between EC and OC cells. In conclusion, miRNAs were identified as a potential novel tool to detect and mutually discriminate between BC, OC and EC. Based on a subset of 25 clinically relevant human miRNA types, the present study could significantly discriminate between these three female cancer types by means of their expression levels. For further verification and validation of miRNA‑based biomarker expression signatures that enable valuable tumor detection and characterization in routine screening or potential therapy monitoring, additional and extended in vitro analyses, followed by translational studies utilizing patients' tissue and liquid biopsy materials, are required.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Isabel Ge
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79104 Freiburg, Germany
| | - Julia Waldschmidt
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Jäger
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Matthias Voigt
- Praxis of Plastic and Aesthetic Surgery and Evangelian Deaconry Hospital, D‑79110 Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, University of Freiburg, D‑79104 Freiburg, Germany
| | - Claudia Nöthling
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
47
|
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, Durinikova E, Chovanec M, Mego M, Kucerova L, Looijenga LHJ. Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int 2020; 20:364. [PMID: 32774158 PMCID: PMC7397611 DOI: 10.1186/s12935-020-01458-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. Methods Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. Results Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. Conclusions The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lambert C J Dorssers
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Ad J M Gillis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Svetlana Miklikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Burikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Gercakova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Erika Durinikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Chovanec
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
48
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
49
|
Zhu H, Lan L, Zhang Y, Chen Q, Zeng Y, Luo X, Ren J, Chen S, Xiao M, Lin K, Chen M, Li Q, Chen Y, Xu J, Zheng Z, Chen Z, Xie Y, Hu J, Yang T. Epidermal growth factor stimulates exosomal microRNA-21 derived from mesenchymal stem cells to ameliorate aGVHD by modulating regulatory T cells. FASEB J 2020; 34:7372-7386. [PMID: 32314840 DOI: 10.1096/fj.201900847rrrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs), a subset of CD4+ T cells, may exert inhibitory effects on alloimmune responses including acute graft-versus-host disease (aGVHD), and several microRNAs are implicated in the pathophysiological process of GVHD. Therefore, we aimed in the present study to characterize the functional relevance of epidermal growth factor (EGF)-stimulated microRNA-21 (miR-21) in regulating bone marrow-derived mesenchymal stem cells (BMSCs) in a mouse model of aGVHD. We first isolated and cultured BMSCs and Tregs. Then, we examined effects of miR-21 knockdown or overexpression and EGF on cell activities of BMSCs and the expression of PTEN, Foxp3, AKT phosphorylation, and extent of c-jun phosphorylation by gain- and loss-of-function approaches. The results showed that miR-21 promoted the proliferation, invasion, and migration of BMSCs. Furthermore, miR-21 in BMSCs-derived exosomes inhibited PTEN, but enhanced AKT phosphorylation and Foxp3 expression in Tregs. In addition, EGF enhanced c-jun phosphorylation to elevate the miR-21 expression. Furthermore, EGF significantly increased the efficacy of BMSCs in a mouse model of aGVHD, manifesting in reduced IFN-γ expression and lesser organ damage. Moreover, EGF treatment promoted the Foxp3 expression of Tregs in BMSCs-treated aGVHD mice. Taken together, EGF induced the BMSCs-derived exosomal miR-21 expression, which enhanced Foxp3 expression in Tregs, thereby improving the therapeutic effect of BMSCs on aGVHD.
Collapse
Affiliation(s)
- Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Lingqiong Lan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China.,Department of Hematology, The Second Hospital of Longyan, Longyan, P.R. China
| | - Yuxin Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Qiuru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yanling Zeng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Xiaofeng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jinhua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Shaozhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Min Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Kangni Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Minmin Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Qian Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yongquan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Zhihong Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Zhizhe Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yongxin Xie
- Department of Hematology, The Second Hospital of Longyan, Longyan, P.R. China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
50
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|