1
|
Ferguson JN, Caproni L, Walter J, Shaw K, Arce-Cubas L, Baines A, Thein MS, Mager S, Taylor G, Cackett L, Mathan J, Vath RL, Martin L, Genty B, Pè ME, Lawson T, Dell’Acqua M, Kromdijk J. A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. THE PLANT CELL 2025; 37:koaf063. [PMID: 40132112 PMCID: PMC12018801 DOI: 10.1093/plcell/koaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.
Collapse
Affiliation(s)
- John N Ferguson
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Leonardo Caproni
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Julia Walter
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Katie Shaw
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lucia Arce-Cubas
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Alice Baines
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Min Soe Thein
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Svenja Mager
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Georgia Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Jyotirmaya Mathan
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Leo Martin
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Bernard Genty
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Mario Enrico Pè
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Matteo Dell’Acqua
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Ma L, Zhang N, Liu P, Liang Y, Li R, Yuan G, Zou C, Chen Z, Lübberstedt T, Pan G, Shen Y. Single-cell RNA sequencing reveals a key regulator ZmEREB14 affecting shoot apex development and yield formation in maize. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:766-779. [PMID: 39630144 PMCID: PMC11869190 DOI: 10.1111/pbi.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 03/01/2025]
Abstract
Shoot apical meristem (SAM) is the origin of aerial structure formation in the plant life cycle. However, the mechanisms underlying the maize SAM development are still obscure. Here, approximately 12 700 cells were captured from the 5-day-old shoot apex of maize using a high-throughput single-cell transcriptome sequencing. According to the gene expression patterns, we partitioned the cells into 8 cell types with 13 transcriptionally distinct cell clusters and traced the developmental trajectory of shoot apex. Regulatory network analysis of transcription factors (TFs) showed that three core TFs, AP2-EREBP-transcription factor 14 (ZmEREB14, Zm00001d052087), MYB histone 4 (ZmMYB4) and HSF-transcription factor 8 (ZmHSF8) potentially regulated the SAM development. Functional validation revealed that ZmEREB14 affected the SAM development and thereby regulated the maize yield formation. Our results characterised the inherent heterogeneity of SAM at single-cell resolution and provided new insights into the mechanisms of SAM development.
Collapse
Affiliation(s)
- Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Na Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
- College of Life Science & BiotechnologyMianyang Teachers' CollegeMianyangChina
| | - Yuru Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Ran Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | | | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaMaize Research Institute, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
3
|
Ding X, Wang S, Cui X, Zhong H, Zou H, Zhao P, Guo Z, Chen H, Li C, Zhu L, Li J, Fu Y. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Curr Biol 2024; 34:3102-3115.e6. [PMID: 38944035 DOI: 10.1016/j.cub.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.
Collapse
Affiliation(s)
- Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyu Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zonglin Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haoyang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Cai W, Tao Y, Cheng X, Wan M, Gan J, Yang S, Okita TW, He S, Tian L. CaIAA2-CaARF9 module mediates the trade-off between pepper growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2054-2074. [PMID: 38450864 PMCID: PMC11182598 DOI: 10.1111/pbi.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.
Collapse
Affiliation(s)
- Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Xingge Cheng
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Meiyun Wan
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| | - Sheng Yang
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Thomas W. Okita
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuilin He
- Agricultural CollegeFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture ScienceZhejiang A&F UniversityHangzhouZhejiangChina
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural AffairsZhejiang A&F UniversityHangzhouZhejiangChina
| |
Collapse
|
5
|
Kwon H, Kim MY, Yang X, Lee SH. Unveiling synergistic QTLs associated with slow wilting in soybean (Glycine max [L.] Merr.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:85. [PMID: 38502238 PMCID: PMC10951030 DOI: 10.1007/s00122-024-04585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/17/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE A stable QTL qSW_Gm10 works with a novel locus, qSW_Gm01, in a synergistic manner for controlling slow-wilting traits at the early vegetative stage under drought stress in soybean. Drought is one of the major environmental factors which limits soybean yield. Slow wilting is a promising trait that can enhance drought resilience in soybean without additional production costs. Recently, a Korean soybean cultivar SS2-2 was reported to exhibit slow wilting at the early vegetative stages. To find genetic loci responsible for slow wilting, in this study, quantitative trait loci (QTL) analysis was conducted using a recombinant inbred line (RIL) population derived from crossing between Taekwangkong (fast-wilting) and SS2-2 (slow-wilting). Wilting score and leaf moisture content were evaluated at the early vegetative stages for three years. Using the ICIM-MET module, a novel QTL on Chr01, qSW_Gm01 was identified, together with a previously known QTL, qSW_Gm10. These two QTLs were found to work synergistically for slow wilting of the RILs under the water-restricted condition. Furthermore, the SNP markers from the SoySNP50K dataset, located within these QTLs, were associated with the wilting phenotype in 30 diverse soybean accessions. Two genes encoding protein kinase 1b and multidrug resistance-associated protein 4 were proposed as candidate genes for qSW_Gm01 and qSW_Gm10, respectively, based on a comprehensive examination of sequence variation and gene expression differences in the parental lines under drought conditions. These genes may play a role in slow wilting by optimally regulating stomatal aperture. Our findings provide promising genetic resources for improving drought resilience in soybean and give valuable insights into the genetic mechanisms governing slow wilting.
Collapse
Affiliation(s)
- Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Xuefei Yang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ohata M, Takada Y, Sato Y, Okamoto T, Murase K, Takayama S, Suzuki G, Watanabe M. MLPK function is not required for self-incompatibility in the S 29 haplotype of Brassica rapa L. PLANT REPRODUCTION 2023:10.1007/s00497-023-00463-w. [PMID: 37099188 PMCID: PMC10363064 DOI: 10.1007/s00497-023-00463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
S29 haplotype does not require the MLPK function for self-incompatibility in Brassica rapa. Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S29 we tested need the MLPK function, but the S29 haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular mechanism of SI in Brassicaceae.
Collapse
Affiliation(s)
- Mayu Ohata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshinobu Takada
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| | - Yui Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Takumi Okamoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kohji Murase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Seiji Takayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
7
|
Li G, Chen Q, Bai Q, Feng Y, Mao K, Yang M, He L, Liu M, Liu J, Wan D. LncRNA expression analysis by comparative transcriptomics among closely related poplars and their regulatory roles in response to salt stress. TREE PHYSIOLOGY 2023:tpad041. [PMID: 37017317 DOI: 10.1093/treephys/tpad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in regulating key biological processes; however, our knowledge of lncRNAs' roles in plant adaptive evolution is still limited. Here, we determined the divergence of conserved lncRNAs in closely related poplar species that were either tolerant or sensitive to salt stress by comparative transcriptome analysis. Among the 34,363 identified lncRNAs, approximately 3% were shared among poplar species with conserved sequences but diversified in their function, copy number, originating genomic region and expression patterns. Further cluster analysis revealed that the conserved lncRNAs showed more similar expression patterns within salt-tolerant poplars (P. euphratica and P. pruinosa) than between salt-tolerant and salt-sensitive poplars. Among these lncRNAs, the antisense lncRNA lncERF024 was induced by salt and differentiated expression between salt-sensitive and salt-tolerant poplars. Overexpression of lncERF024 in P. alba var. pyramidalis enhanced poplar tolerance to salt stress. Furthermore, RNA pull-down and RNA-seq analysis showed that numerous candidate genes or proteins associated with stress response and photosynthesis might be involved in salt resistance in PeulncERF024-OE poplars. Altogether, our study provided novel insight into how the diversification of lncRNA expression contributes to plant adaptation traits and showed that lncERF024 may be involved in the regulation both of gene expression and protein function conferring salt tolerance in Populus.
Collapse
Affiliation(s)
- Guiting Li
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingyuan Chen
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qiuxian Bai
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Department of Pharmacology, Ningxia Medical University, Yinchuan,750004, China
| | - Yannan Feng
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Kaili Mao
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Mengran Yang
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ling He
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meijun Liu
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianquan Liu
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Yamamoto M, Kitashiba H, Nishio T. Generation of Arabidopsis thaliana transformants showing the self-recognition activity of Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:496-507. [PMID: 35560670 DOI: 10.1111/tpj.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Self-incompatibility in the Brassicaceae family is governed by SRK and SCR, which are two highly polymorphic genes located at the S-locus. Previously, the Arabidopsis lyrata SRK and SCR genes were introduced into Arabidopsis thaliana to generate self-incompatible lines. However, there are no reports showing that Brassica SRK and SCR genes confer self-incompatibility in A. thaliana. Doing so would further advance the mechanistic understanding of self-incompatibility in Brassicaceae. Therefore, we attempted to generate A. thaliana transformants showing the self-recognition activity of Brassica rapa by introducing BrSCR along with a chimeric BrSRK (BrSRK chimera, in which the kinase domain of BrSRK was replaced with that of AlSKR-b). We found that the BrSRK chimera and BrSCR of B. rapa S-9 and S-46 haplotypes, but not those of S-29, S-44, and S-60 haplotypes, conferred self-recognition activity in A. thaliana. Analyses of A. thaliana transformants expressing mutant variants of the BrSRK-9 chimera and BrSCR-9 revealed that mutations at the amino acid residues involved in BrSRK9-BrSCR9 interaction caused defects in the self-incompatibility response. The method developed in this study for generating self-incompatible A. thaliana transformants showing B. rapa self-recognition activity will be useful for analysis of self-recognition mechanisms in Brassicaceae.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba Aobaku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
9
|
Leroy T, Louvet JM, Lalanne C, Le Provost G, Labadie K, Aury JM, Delzon S, Plomion C, Kremer A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. THE NEW PHYTOLOGIST 2020; 226:1171-1182. [PMID: 31394003 PMCID: PMC7166132 DOI: 10.1111/nph.16095] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 05/10/2023]
Abstract
Latitudinal and elevational gradients provide valuable experimental settings for studies of the potential impact of global warming on forest tree species. The availability of long-term phenological surveys in common garden experiments for traits associated with climate, such as bud flushing for sessile oaks (Quercus petraea), provide an ideal opportunity to investigate this impact. We sequenced 18 sessile oak populations and used available sequencing data for three other closely related European white oak species (Quercus pyrenaica, Quercus pubescens, and Quercus robur) to explore the evolutionary processes responsible for shaping the genetic variation across latitudinal and elevational gradients in extant sessile oaks. We used phenotypic surveys in common garden experiments and climatic data for the population of origin to perform genome-wide scans for population differentiation and genotype-environment and genotype-phenotype associations. The inferred historical relationships between Q. petraea populations suggest that interspecific gene flow occurred between Q. robur and Q. petraea populations from cooler or wetter areas. A genome-wide scan of differentiation between Q. petraea populations identified single nucleotide polymorphisms (SNPs) displaying strong interspecific relative divergence between these two species. These SNPs followed genetic clines along climatic or phenotypic gradients, providing further support for the likely contribution of introgression to the adaptive divergence of Q. petraea populations. Overall, the results indicate that outliers and associated SNPs are Q. robur ancestry-informative. We discuss the results of this study in the framework of the postglacial colonization scenario, in which introgression and diversifying selection have been proposed as essential drivers of Q. petraea microevolution.
Collapse
Affiliation(s)
- Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
- ISEM, Univ. Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| | - Jean-Marc Louvet
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Céline Lalanne
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Grégoire Le Provost
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sylvain Delzon
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
- Corresponding author : Antoine Kremer, Phone number: +33(0)5 57 12 38 32,
| |
Collapse
|
10
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
11
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020. [PMID: 32080762 DOI: 10.1007/s00697-020-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
12
|
Moseley RC, Tuskan GA, Yang X. Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Kalanchoë fedtschenkoi. FRONTIERS IN PLANT SCIENCE 2019; 10:292. [PMID: 30930922 PMCID: PMC6425862 DOI: 10.3389/fpls.2019.00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/22/2019] [Indexed: 05/03/2023]
Abstract
CO2 uptake and water loss in plants are regulated by microscopic pores on the surface of leaves, called stomata. This enablement of gas exchange by the opening and closing of stomata is one of the most essential processes in plant photosynthesis and transpiration, affecting water-use efficiency (WUE) and thus drought susceptibility. In plant species with crassulacean acid metabolism (CAM) photosynthesis, diel stomatal movement pattern is inverted relative to C3 and C4 photosynthesis species, resulting in much higher WUE and drought tolerance. However, little is known about the molecular basis of stomatal movement in CAM species. The goal of this study is to identify candidate genes that could play a role in stomatal movement in an obligate CAM species, Kalanchoë fedtschenkoi. By way of a text-mining approach, proteins were identified in various plant species, spanning C3, C4, and CAM photosynthetic types, which are orthologous to proteins known to be involved in stomatal movement. A comparative analysis of diel time-course gene expression data was performed between K. fedtschenkoi and two C3 species (i.e., Arabidopsis thaliana and Solanum lycopersicum) to identify differential gene expression between the dusk and dawn phases of the 24-h cycle. A rescheduled catalase gene known to be involved in stomatal movement was identified, suggesting a role for H2O2 in CAM-like stomatal movement. Overall, these results provide new insights into the molecular regulation of stomatal movement in CAM plants, facilitating genetic improvement of drought resistance in agricultural crops through manipulation of stomata-related genes.
Collapse
Affiliation(s)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Xiaohan Yang,
| |
Collapse
|
13
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019; 6:21. [PMID: 30729011 PMCID: PMC6355785 DOI: 10.1038/s41438-018-0101-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 05/05/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
14
|
Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. HORTICULTURE RESEARCH 2019. [PMID: 30729011 DOI: 10.1038/s41438-018-0101-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chrysanthemums are sensitive to waterlogging stress, and the development of screening methods for tolerant germplasms or genes and the breeding of tolerant new varieties are of great importance in chrysanthemum breeding. To understand the genetic basis of waterlogging tolerance (WT) in chrysanthemums, we performed a genome-wide association study (GWAS) using 92,811 single nucleotide polymorphisms (SNPs) in a panel of 88 chrysanthemum accessions, including 64 spray cut and 24 disbud chrysanthemums. The results showed that the average MFVW (membership function value of waterlogging) of the disbud type (0.65) was significantly higher than that of the spray type (0.55) at P < 0.05, and the MFVW of the Asian accessions (0.65) was significantly higher than that of the European accessions (0.48) at P < 0.01. The GWAS performed using the general linear model (GLM) and mixed linear model (MLM) identified 137 and 14 SNP loci related to WT, respectively, and 11 associations were commonly predicted. By calculating the phenotypic effect values for 11 common SNP loci, six highly favorable SNP alleles that explained 12.85-21.85% of the phenotypic variations were identified. Furthermore, the dosage-pyramiding effects of the favorable alleles and the significant linear correlations between the numbers of highly favorable alleles and phenotypic values were identified (r 2 = 0.45; P < 0.01). A major SNP locus (Marker6619-75) was converted into a derived cleaved amplified polymorphic sequence (dCAPS) marker that cosegregated with WT with an average efficiency of 78.9%. Finally, four putative candidate genes in the WT were identified via quantitative real-time PCR (qRT-PCR). The results presented in this study provide insights for further research on WT mechanisms and the application of molecular marker-assisted selection (MAS) in chrysanthemum WT breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, 210095 Nanjing, China
| |
Collapse
|
15
|
Zhu K, Liu H, Chen X, Cheng Q, Cheng ZM(M. The kinome of pineapple: catalog and insights into functions in crassulacean acid metabolism plants. BMC PLANT BIOLOGY 2018; 18:199. [PMID: 30227850 PMCID: PMC6145126 DOI: 10.1186/s12870-018-1389-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) plants use water 20-80% more efficiently by shifting stomata opening and primary CO2 uptake and fixation to the nighttime. Protein kinases (PKs) play pivotal roles in this biological process. However, few PKs have been functionally analyzed precisely due to their abundance and potential functional redundancy (caused by numerous gene duplications). RESULTS In this study, we systematically identified a total of 758 predicted PK genes in the genome of a CAM plant, pineapple (Ananas comosus). The pineapple kinome was classified into 20 groups and 116 families based on the kinase domain sequences. The RLK was the largest group, containing 480 members, and over half of them were predicted to locate at the plasma membrane. Both segmental and tandem duplications make important contributions to the expansion of pineapple kinome based on the synteny analysis. Ka/Ks ratios showed all of the duplication events were under purifying selection. The global expression analysis revealed that pineapple PKs exhibit different tissue-specific and diurnal expression patterns. Forty PK genes in a cluster performed higher expression levels in green leaf tip than in white leaf base, and fourteen of them had strong differential expression patterns between the photosynthetic green leaf tip and the non-photosynthetic white leaf base tissues. CONCLUSIONS Our findings provide insights into the evolution and biological function of pineapple PKs and a foundation for further functional analysis of PKs in CAM plants. The gene duplication, expression, and coexpression analysis helped us to rapidly identify the key candidates in pineapple kinome, which may play roles in the carbon fixation process in pineapple and help engineering CAM pathway into C3 crops for improved drought tolerance.
Collapse
Affiliation(s)
- Kaikai Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Qunkang Cheng
- Department of Botany and Plant Pathology, Central Oregon Agricultural Research Center, Oregon State University, Madras, OR 97741 USA
| | - Zong-Ming (Max) Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
16
|
Detection of Epistasis for Flowering Time Using Bayesian Multilocus Estimation in a Barley MAGIC Population. Genetics 2017; 208:525-536. [PMID: 29254994 PMCID: PMC5788519 DOI: 10.1534/genetics.117.300546] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Gene-by-gene interactions, also known as epistasis, regulate many complex traits in different species. With the availability of low-cost genotyping it is now possible to study epistasis on a genome-wide scale. However, identifying genome-wide epistasis is a high-dimensional multiple regression problem and needs the application of dimensionality reduction techniques. Flowering Time (FT) in crops is a complex trait that is known to be influenced by many interacting genes and pathways in various crops. In this study, we successfully apply Sure Independence Screening (SIS) for dimensionality reduction to identify two-way and three-way epistasis for the FT trait in a Multiparent Advanced Generation Inter-Cross (MAGIC) barley population using the Bayesian multilocus model. The MAGIC barley population was generated from intercrossing among eight parental lines and thus, offered greater genetic diversity to detect higher-order epistatic interactions. Our results suggest that SIS is an efficient dimensionality reduction approach to detect high-order interactions in a Bayesian multilocus model. We also observe that many of our findings (genomic regions with main or higher-order epistatic effects) overlap with known candidate genes that have been already reported in barley and closely related species for the FT trait.
Collapse
|
17
|
Gao Q, Shi S, Liu Y, Pu Q, Liu X, Zhang Y, Zhu L. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea. PLANT REPRODUCTION 2016; 29:239-250. [PMID: 27342989 DOI: 10.1007/s00497-016-0287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of BoMLPKf1/2 (BrMLPKf1/2) was found in the A. thaliana genome. We speculated that Brassica MLPKf1/2 might have emerged after speciation of Brassica and A. thailiana, and that it was recruited to the SRK-triggered SI signaling cascade in Brassica.
Collapse
Affiliation(s)
- Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yudong Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Quanming Pu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiaohuan Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ying Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Liquan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Zhang Z, Wang Y, Chang L, Zhang T, An J, Liu Y, Cao Y, Zhao X, Sha X, Hu T, Yang P. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:439-53. [PMID: 26573680 DOI: 10.1007/s00299-015-1895-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yafang Wang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leqin Chang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie An
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yushi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuman Cao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xia Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuyang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tianming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peizhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Sicard P, De Marco A, Dalstein-Richier L, Tagliaferro F, Renou C, Paoletti E. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:729-741. [PMID: 26437347 DOI: 10.1016/j.scitotenv.2015.09.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Southern forests are at the highest ozone (O3) risk in Europe where ground-level O3 is a pressing sanitary problem for ecosystem health. Exposure-based standards for protecting vegetation are not representative of actual field conditions. A biologically-sound stomatal flux-based standard has been proposed, although critical levels for protection still need to be validated. This innovative epidemiological assessment of forest responses to O3 was carried out in 54 plots in Southeastern France and Northwestern Italy in 2012 and 2013. Three O3 indices, namely the accumulated exposure AOT40, and the accumulated stomatal flux with and without an hourly threshold of uptake (POD1 and POD0) were compared. Stomatal O3 fluxes were modeled (DO3SE) and correlated to measured forest-response indicators, i.e. crown defoliation, crown discoloration and visible foliar O3 injury. Soil water content, a key variable affecting the severity of visible foliar O3 injury, was included in DO3SE. Based on flux-effect relationships, we developed species-specific flux-based critical levels (CLef) for forest protection against visible O3 injury. For O3 sensitive conifers, CLef of 19 mmol m(-2) for Pinus cembra (high O3 sensitivity) and 32 mmol m(-2) for Pinus halepensis (moderate O3 sensitivity) were calculated. For broadleaved species, we obtained a CLef of 25 mmol m(-2) for Fagus sylvatica (moderate O3 sensitivity) and of 19 mmol m(-2) for Fraxinus excelsior (high O3 sensitivity). We showed that an assessment based on PODY and on real plant symptoms is more appropriated than the concentration-based method. Indeed, POD0 was better correlated with visible foliar O3 injury than AOT40, whereas AOT40 was better correlated with crown discoloration and defoliation (aspecific indicators). To avoid an underestimation of the real O3 uptake, we recommend the use of POD0 calculated for hours with a non-null global radiation over the 24-h O3 accumulation window.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France.
| | - Alessandra De Marco
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 76, Lungotevere Thaon de Revel, Rome, Italy
| | - Laurence Dalstein-Richier
- GIEFS (Groupe International d'Etudes des Forêts Sud-européennes), 60, Avenue des Hespérides, 06300 Nice, France
| | - Francesco Tagliaferro
- IPLA (Istituto per le Piante da Legno e l'Ambiente), Corso Casale 476, 10132 Turin, Italy
| | - Camille Renou
- ACRI-HE, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France
| | - Elena Paoletti
- IPSP-CNR (Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
20
|
Yamamoto M, Nishio T. Commonalities and differences between Brassica and Arabidopsis self-incompatibility. HORTICULTURE RESEARCH 2014; 1:14054. [PMID: 26504553 PMCID: PMC4596330 DOI: 10.1038/hortres.2014.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 05/12/2023]
Abstract
In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase (SRK) with the pollen coat-localized ligand (SCR/SP11). All self-incompatible Brassicaceae plants analyzed have been found to have the SRK and SCR/SP11 genes in the S-locus region. Although Arabidopsis thaliana is self-compatible, transformation with functional SRK-SCR genes from self-incompatible Arabidopsis species confers the self-incompatibility phenotype to A. thaliana. The allele-specific interaction between SRK and SCR activates the downstream signaling cascade of self-incompatibility. Yeast two-hybrid analysis with a kinase domain of SRK as bait and genetic analysis suggested several candidate components of self-incompatibility signaling in Brassica. Recently, A. thaliana genes orthologous to the identified genes for Brassica self-incompatibility signaling were evaluated by using a self-incompatible transgenic A. thaliana plant and these orthologous genes were found not to be involved in self-incompatibility signaling in the transgenic A. thaliana. In this review, we describe common and different aspects of S-locus genomic regions and self-incompatibility signaling between Brassica and Arabidopsis.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|