1
|
Grebe T, Sarkari MT, Cherkaoui A, Schaumburg F. Exploration of compounds to inhibit the Panton-Valentine leukocidin of Staphylococcus aureus. Med Microbiol Immunol 2024; 213:19. [PMID: 39297970 PMCID: PMC11413081 DOI: 10.1007/s00430-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
The Panton-Valentine leukocidin (PVL) of Staphylococcus aureus is associated with necrotizing infections. After binding to complement 5a receptor (C5aR/CD88) and CD45 it causes cytolysis in polymorphonuclear neutrophils (PMNs) as well as inflammasome activation in monocytes. The objective of this study was to test if (ant)agonists of C5aR and CD45 can attenuate the effect of PVL on PMNs and monocytes. We tested the effect of various concentrations of six C5aR (ant)agonists (avacopan, BM213, DF2593A, JPE-1375, PMX205 and W-54011) and one CD45 antagonist (NQ301) to attenuate the cytotoxic effect of PVL on human PMNs and monocytes in vitro. Shifts in the half-maximal effective concentration (EC50) of PVL to achieve a cytotoxic effect on PMNs and modulation of inflammatory cytokine response from monocytes were determined by flow cytometry and IL-1β detection. Pre-treatment of PMNs with avacopan, PMX205 and W-54,011 resulted in 3.6- to 4.3-fold shifts in the EC50 for PVL and were able to suppress IL-1β secretion by human monocytes in the presence of PVL. BM213, DF2593A and NQ301 were unable to change the susceptibility of PMNs towards PVL or reduce inflammasome activation in monocytes. Avacopan, PMX205 and W-54,011 showed protection against PVL-induced cytotoxicity and suppressed IL-1β secretion by monocytes. Clinical studies are needed to prove whether these substances can be used therapeutically as repurposed drugs.
Collapse
Affiliation(s)
- Tobias Grebe
- Institute of Medical Microbiology, University of Münster, Domagkstraße 10, 48149, Münster, Germany.
| | - Mithra Tatjana Sarkari
- Institute of Medical Microbiology, University of Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Angelika Cherkaoui
- Institute of Medical Microbiology, University of Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University of Münster, Domagkstraße 10, 48149, Münster, Germany
| |
Collapse
|
2
|
Jeon Y, Chow SH, Stuart I, Weir A, Yeung AT, Hale C, Sridhar S, Dougan G, Vince JE, Naderer T. FBXO11 governs macrophage cell death and inflammation in response to bacterial toxins. Life Sci Alliance 2023; 6:e202201735. [PMID: 36977592 PMCID: PMC10053445 DOI: 10.26508/lsa.202201735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Staphylococcus aureus causes severe infections such as pneumonia and sepsis depending on the pore-forming toxin Panton-Valentine leukocidin (PVL). PVL kills and induces inflammation in macrophages and other myeloid cells by interacting with the human cell surface receptor, complement 5a receptor 1 (C5aR1). C5aR1 expression is tighly regulated and may thus modulate PVL activity, although the mechanisms involved remain incompletely understood. Here, we used a genome-wide CRISPR/Cas9 screen and identified F-box protein 11 (FBXO11), an E3 ubiquitin ligase complex member, to promote PVL toxicity. Genetic deletion of FBXO11 reduced the expression of C5aR1 at the mRNA level, whereas ectopic expression of C5aR1 in FBXO11-/- macrophages, or priming with LPS, restored C5aR1 expression and thereby PVL toxicity. In addition to promoting PVL-mediated killing, FBXO11 dampens secretion of IL-1β after NLRP3 activation in response to bacterial toxins by reducing mRNA levels in a BCL-6-dependent and BCL-6-independent manner. Overall, these findings highlight that FBXO11 regulates C5aR1 and IL-1β expression and controls macrophage cell death and inflammation following PVL exposure.
Collapse
Affiliation(s)
- Yusun Jeon
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Seong H Chow
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ashley Weir
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Amy Ty Yeung
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Vigneron C, Py BF, Monneret G, Venet F. The double sides of NLRP3 inflammasome activation in sepsis. Clin Sci (Lond) 2023; 137:333-351. [PMID: 36856019 DOI: 10.1042/cs20220556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction induced by a dysregulated host immune response to infection. Immune response induced by sepsis is complex and dynamic. It is schematically described as an early dysregulated systemic inflammatory response leading to organ failures and early deaths, followed by the development of persistent immune alterations affecting both the innate and adaptive immune responses associated with increased risk of secondary infections, viral reactivations, and late mortality. In this review, we will focus on the role of NACHT, leucin-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome in the pathophysiology of sepsis. NLRP3 inflammasome is a multiproteic intracellular complex activated by infectious pathogens through a two-step process resulting in the release of the pro-inflammatory cytokines IL-1β and IL-18 and the formation of membrane pores by gasdermin D, inducing a pro-inflammatory form of cell death called pyroptosis. The role of NLRP3 inflammasome in the pathophysiology of sepsis can be ambivalent. Indeed, although it might protect against sepsis when moderately activated after initial infection, excessive NLRP3 inflammasome activation can induce dysregulated inflammation leading to multiple organ failure and death during the acute phase of the disease. Moreover, this activation might become exhausted and contribute to post-septic immunosuppression, driving impaired functions of innate and adaptive immune cells. Targeting the NLRP3 inflammasome could thus be an attractive option in sepsis either through IL-1β and IL-18 antagonists or through inhibition of NLRP3 inflammasome pathway downstream components. Available treatments and results of first clinical trials will be discussed.
Collapse
Affiliation(s)
- Clara Vigneron
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Edouard Herriot Hospital, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
4
|
Boff D, Russo RC, Crijns H, de Oliveira VLS, Mattos MS, Marques PE, Menezes GB, Vieira AT, Teixeira MM, Proost P, Amaral FA. The Therapeutic Treatment with the GAG-Binding Chemokine Fragment CXCL9(74-103) Attenuates Neutrophilic Inflammation and Lung Dysfunction during Klebsiella pneumoniae Infection in Mice. Int J Mol Sci 2022; 23:ijms23116246. [PMID: 35682923 PMCID: PMC9181286 DOI: 10.3390/ijms23116246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74–103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74–103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74–103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1β (IL-1β) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74–103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Vivian Louise Soares de Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Gustavo Batista Menezes
- Center of Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mauro Martins Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
- Correspondence: (P.P.); (F.A.A.)
| | - Flávio Almeida Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Correspondence: (P.P.); (F.A.A.)
| |
Collapse
|
5
|
Chow SH, Naderer T. Visualizing Effector Triggered Immunity in Response to Pore-Forming Toxins by Live-Cell Imaging. Methods Mol Biol 2022; 2523:239-252. [PMID: 35759201 DOI: 10.1007/978-1-0716-2449-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The NLRP3 inflammasome senses the activity of pore-forming toxins secreted by Staphylococcus aureus. The bacterial toxins compromise plasma membrane integrity which activates the NLRP3 inflammasome to induce host pore-forming proteins and cellular suicide, termed pyroptosis. Host cell death rates are routinely determined at pre-defined time points and on whole cell populations. To capture the dynamic interactions between bacterial pore-forming toxins and host cell death factors, we have applied live-cell imaging techniques capable of analyzing single cell events in real time. Here, we describe methods using live-cell imaging to determine the host responses, such as plasma membrane integrity, mitochondrial health, and apoptotic caspases, towards pore-forming toxins.
Collapse
Affiliation(s)
- Seong H Chow
- Infection Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Thomas Naderer
- Infection Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
7
|
Volk CF, Burgdorf S, Edwardson G, Nizet V, Sakoulas G, Rose WE. Interleukin (IL)-1β and IL-10 Host Responses in Patients With Staphylococcus aureus Bacteremia Determined by Antimicrobial Therapy. Clin Infect Dis 2021; 70:2634-2640. [PMID: 31365924 DOI: 10.1093/cid/ciz686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Patient interleukin (IL)-1β and IL-10 responses early in Staphylococcus aureus bacteremia (SaB) are associated with bacteremia duration and mortality. We hypothesized that these responses vary depending on antimicrobial therapy, with particular interest in whether the superiority of β-lactams links to key cytokine pathways. METHODS Three medical centers included 59 patients with SaB (47 methicillin-resistant S. aureus [MRSA], 12 methicillin-sensitive S. aureus [MSSA]) from 2015-2017. In the first 48 hours, patients were treated with either a β-lactam (n = 24), including oxacillin, cefazolin, or ceftaroline, or a glyco-/lipopeptide (n = 35), that is, vancomycin or daptomycin. Patient sera from days 1, 3, and 7 were assayed for IL-1β and IL-10 by enzyme-linked immunosorbent assay and compared using the Mann-Whitney U test. RESULTS On presentation, IL-10 was elevated in mortality (P = .008) and persistent bacteremia (P = .034), while no difference occurred in IL-1β. Regarding treatment groups, IL-1β and IL-10 were similar prior to receiving antibiotic. Patients treated with β-lactam had higher IL-1β on days 3 (median +5.6 pg/mL; P = .007) and 7 (+10.9 pg/mL; P = .016). Ex vivo, addition of the IL-1 receptor antagonist anakinra to whole blood reduced staphylococcal killing, supporting an IL-1β functional significance in SaB clearance. β-lactam-treated patients had sharper declines in IL-10 than vancomycin or daptomycin -treated patients over 7 days. CONCLUSIONS These data underscore the importance of β-lactams for SaB, including consideration that the adjunctive role of β-lactams for MRSA in select patients helps elicit favorable host cytokine responses.
Collapse
Affiliation(s)
- Cecilia F Volk
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| | - Sarah Burgdorf
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | | | - Victor Nizet
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| |
Collapse
|
8
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
9
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
10
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Chow SH, Deo P, Yeung ATY, Kostoulias XP, Jeon Y, Gao ML, Seidi A, Olivier FAB, Sridhar S, Nethercott C, Cameron D, Robertson AAB, Robert R, Mackay CR, Traven A, Jin ZB, Hale C, Dougan G, Peleg AY, Naderer T. Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. J Leukoc Biol 2020; 108:967-981. [PMID: 32531864 DOI: 10.1002/jlb.4ma0420-497r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1β secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1β levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1β secretion after PVL exposure and controls S. aureus lung burdens.
Collapse
Affiliation(s)
- Seong H Chow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Amy T Y Yeung
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xenia P Kostoulias
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yusun Jeon
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Azadeh Seidi
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Françios Alwyn Benson Olivier
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cara Nethercott
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David Cameron
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Remy Robert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Zi-Bing Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medicine, Addenbrookes Hospital, Cambridge, UK
| | - Anton Y Peleg
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Thomas Naderer
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Hao Y, Dong X, Zhang M, Liu H, Zhu L, Wang Y. Effects of hyperbaric oxygen therapy on the expression levels of the inflammatory factors interleukin-12p40, macrophage inflammatory protein-1β, platelet-derived growth factor-BB, and interleukin-1 receptor antagonist in keloids. Medicine (Baltimore) 2020; 99:e19857. [PMID: 32312010 PMCID: PMC7220187 DOI: 10.1097/md.0000000000019857] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Our study aimed to screen and explore the expression of inflammatory factors in keloid patients and to investigate how hyperbaric oxygen (HBO) therapy affects the expression levels of interleukin-12p40 (IL-12p40), macrophage inflammatory protein-1β (MIP-1β), platelet-derived growth factor-BB (PDGF-BB), and interleukin-1 receptor antagonist (IL-1Ra). OBJECTIVE 30 patients were randomly selected and divided into the following 3 groups: keloid samples from keloid patients treated with HBO therapy (A), keloid samples from keloid patients treated without HBO therapy (B), and normal control skin samples derived from individuals who had no clear scarring (C). Each group included 10 samples. METHODS Inflammatory factors in the keloid tissues were measured with the MILLIPLEX multiplexed Luminex system. Hematoxylin and eosin staining, immunohistochemical staining, and Western blotting were used to observe the morphological differences in different tissues and the expression levels. RESULTS The expression levels of inflammatory mediators, including IL-12p40, MIP-1β, PDGF-BB, and IL-1Ra, in keloid tissues were significantly different from those in samples of normal skin. Hematoxylin and eosin staining showed significantly greater inflammatory infiltration in keloid tissue. Significantly different expression levels were observed in group A, B, and C. CONCLUSION Significantly altered levels of inflammatory factors in the samples from keloid patients were observed, suggesting that formation of a keloid is potentially related to inflammatory responses. HBO therapy could significantly affect the expression levels of IL-12p40, MIP-1β, PDGF-BB, and IL-1Ra, indicating that the effects of HBO therapy are associated with the attenuation of inflammatory responses.
Collapse
Affiliation(s)
- Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Xinhang Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| |
Collapse
|
13
|
Oropharyngeal Colostrum Positively Modulates the Inflammatory Response in Preterm Neonates. Nutrients 2020; 12:nu12020413. [PMID: 32033312 PMCID: PMC7071247 DOI: 10.3390/nu12020413] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
During the first days of life, premature infants have physiological difficulties swallowing, thereby missing out on the benefits of breastfeeding. The aim of this study is to assess the effects of oropharyngeal mother’s milk administration in the inflammatory signaling of extremely premature infants. Neonates (n = 100) (<32 week’s gestation and/or <1500 g) were divided into two groups: mother’s milk group (n = 48), receiving 0.2 mL of oropharyngeal mother’s milk every 4 h for the first 15 days of life, and a control group (n = 52), not receiving oropharyngeal mother’s milk. Serum concentrations of interleukin (IL) IL-6, IL-8, IL-10, IL-1ra, tumor necrosis factor alpha (TNF-α), and interferón gamma (IFN-γ) were assessed at 1, 3, 15, and 30 days of postnatal life. Maternal and neonatal outcomes were collected. The rate of common neonatal morbidities in both groups was similar. The mother’s milk group achieved full enteral feeding earlier, and showed a decrease in Il-6 on days 15 and 30, in IL-8 on day 30, and in TNF-α and INF-γ on day 15, as well as an increase in IL-1ra on days 3 and 15 and in IL-10 on day 30. Oropharyngeal mother’s milk administration for 15 days decreases the pro-inflammatory state of preterm neonates and provides full enteral nutrition earlier, which could have a positive influence on the development of the immune system and inflammatory response, thereby positively influencing other developmental outcomes.
Collapse
|
14
|
Ji Y, Bolhuis A, Watson ML. Staphylococcus aureus products subvert the Burkholderia cenocepacia-induced inflammatory response in airway epithelial cells. J Med Microbiol 2019; 68:1813-1822. [PMID: 31674896 DOI: 10.1099/jmm.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Chronic pulmonary infection is associated with colonization with multiple micro-organisms but host-microbe and microbe-microbe interactions are poorly understood.Aim. This study aims to investigate the differences in host responses to mono- and co-infection with S. aureus and B. cenocepacia in human airway epithelial cells.Methodology. We assessed the effect of co-infection with B. cenocepacia and S. aureus on host signalling and inflammatory responses in the human airway epithelial cell line 16HBE, using ELISA and western blot analysis.Results. The results show that B. cenocepacia activates MAPK and NF-κB signalling pathways, subsequently eliciting robust interleukin (IL)-8 production. However, when airway epithelial cells were co-treated with live B. cenocepacia bacteria and S. aureus supernatants (conditioned medium), the pro-inflammatory response was attenuated. This anti-inflammatory effect was widely exhibited in the S. aureus isolates tested and was mediated via reduced MAPK and NF-κB signalling, but not via IL-1 receptor or tumour necrosis factor receptor modulation. The staphylococcal effectors were characterized as small, heat-stable, non-proteinaceous and not cell wall-related factors.Conclusion. This study demonstrates for the first time the host response in a S. aureus/B. cenocepacia co-infection model and provides insight into a staphylococcal immune evasion mechanism, as well as a therapeutic intervention for excessive inflammation.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| |
Collapse
|
15
|
S. aureus Evades Macrophage Killing through NLRP3-Dependent Effects on Mitochondrial Trafficking. Cell Rep 2019; 22:2431-2441. [PMID: 29490278 PMCID: PMC7160668 DOI: 10.1016/j.celrep.2018.02.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/05/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Clinical severity of Staphylococcus aureus respiratory infection correlates with alpha toxin (AT) expression. AT activates the NLRP3 inflammasome; deletion of Nlrp3, or AT neutralization, protects mice from lethal S. aureus pneumonia. We tested the hypothesis that this protection is not due to a reduction in inflammasome-dependent cytokines (IL-1β/IL-18) but increased bactericidal function of macrophages. In vivo, neutralization of AT or NLRP3 improved bacterial clearance and survival, while blocking IL-1β/IL-18 did not. Primary human monocytes were used in vitro to determine the mechanism through which NLRP3 alters bacterial killing. In cells treated with small interfering RNA (siRNA) targeting NLRP3 or infected with AT-null S. aureus, mitochondria co-localize with bacterial-containing phagosomes. Mitochondrial engagement activates caspase-1, a process dependent on complex II of the electron transport chain, near the phagosome, promoting its acidification. These data demonstrate a mechanism utilized by S. aureus to sequester itself from antimicrobial processes within the cell.
Collapse
|
16
|
Li FJ, Starrs L, Burgio G. Tug of war between Acinetobacter baumannii and host immune responses. Pathog Dis 2019; 76:5290314. [PMID: 30657912 DOI: 10.1093/femspd/ftz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance. Acinetobacter baumannii has an exceptional ability to rapidly develop drug resistance and to adhere to abiotic surfaces, including medical equipment, significantly promoting bacterial spread and also limiting our ability to control A. baumannii infections. Consequently, A. baumannii is frequently responsible for ventilator-associated pneumonia in clinical settings. In order to develop an effective treatment strategy, understanding host-pathogen interactions during A. baumannii infection is crucial. Various A. baumannii virulence factors have been identified as targets of host innate pattern-recognition receptors, which leads to activation of downstream inflammasomes to develop inflammatory responses, and the recruitment of innate immune effectors against A. baumannii infection. To counteract host immune attack, A. baumannii regulates its expression of different virulence factors. This review summarizes the significance of mechanisms of host-bacteria interaction, as well as different bacteria and host defense mechanisms during A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Lora Starrs
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| |
Collapse
|
17
|
Robinson KM, Ramanan K, Clay ME, McHugh KJ, Pilewski MJ, Nickolich KL, Corey C, Shiva S, Wang J, Muzumdar R, Alcorn JF. The inflammasome potentiates influenza/Staphylococcus aureus superinfection in mice. JCI Insight 2018; 3:97470. [PMID: 29618653 DOI: 10.1172/jci.insight.97470] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/28/2018] [Indexed: 01/24/2023] Open
Abstract
Secondary bacterial respiratory infections are commonly associated with both acute and chronic lung injury. Influenza complicated by bacterial pneumonia is an effective model to study host defense during pulmonary superinfection due to its clinical relevance. Multiprotein inflammasomes are responsible for IL-1β production in response to infection and drive tissue inflammation. In this study, we examined the role of the inflammasome during viral/bacterial superinfection. We demonstrate that ASC-/- mice are protected from bacterial superinfection and produce sufficient quantities of IL-1β through an apoptosis-associated speck-like protein containing CARD (ASC) inflammasome-independent mechanism. Despite the production of IL-1β by ASC-/- mice in response to bacterial superinfection, these mice display decreased lung inflammation. A neutrophil elastase inhibitor blocked ASC inflammasome-independent production of IL-1β and the IL-1 receptor antagonist, anakinra, confirmed that IL-1 remains crucial to the clearance of bacteria during superinfection. Delayed inhibition of NLRP3 during influenza infection by MCC950 decreases bacterial burden during superinfection and leads to decreased inflammatory cytokine production. Collectively, our results demonstrate that ASC augments the clearance of bacteria, but can also contribute to inflammation and mortality. ASC should be considered as a therapeutic target to decrease morbidity and mortality during bacterial superinfection.
Collapse
Affiliation(s)
- Keven M Robinson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krishnaveni Ramanan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle E Clay
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Matthew J Pilewski
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kara L Nickolich
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Catherine Corey
- Department of Pharmacology and Chemical Biology, and.,Vascular Medical Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, and.,Vascular Medical Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jieru Wang
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Radhika Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Prince A, Wang H, Kitur K, Parker D. Humanized Mice Exhibit Increased Susceptibility to Staphylococcus aureus Pneumonia. J Infect Dis 2017; 215:1386-1395. [PMID: 27638942 DOI: 10.1093/infdis/jiw425] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a highly successful human pathogen that has evolved in response to human immune pressure. The common USA300 methicillin-resistant S. aureus (MRSA) strains express a number of toxins, such as Panton-Valentine leukocidin and LukAB, that have specificity for human receptors. Using nonobese diabetic (NOD)-scid IL2Rγnull (NSG) mice reconstituted with a human hematopoietic system, we were able to discriminate the roles of these toxins in the pathogenesis of pneumonia. We demonstrate that expression of human immune cells confers increased severity of USA300 infection. The expression of PVL but not LukAB resulted in more-severe pulmonary infection by the wild-type strain (with a 30-fold increase in the number of colony-forming units/mL; P < .01) as compared to infection with the lukS/F-PV (Δpvl) mutant. Treatment of mice with anti-PVL antibody also enhanced bacterial clearance. We found significantly greater numbers (by 95%; P < .05) of macrophages in the airways of mice infected with the Δpvl mutant compared with those infected with the wild-type strain, as well as significantly greater expression of human tumor necrosis factor and interleukin 6 (84% and 51% respectively; P < .01). These results suggest that the development of humanized mice may provide a framework to assess the contribution of human-specific toxins and better explore the roles of specific components of the human immune system in protection from S. aureus infection.
Collapse
Affiliation(s)
- Alice Prince
- Department Pediatrics
- Department of Pharmacology, and
| | - Hui Wang
- Humanized Mouse Core Facility, Columbia Center for Translational Immunology, Columbia University, New York
| | | | | |
Collapse
|
19
|
Melehani JH, Duncan JA. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. Curr Top Microbiol Immunol 2016; 397:257-82. [PMID: 27460814 DOI: 10.1007/978-3-319-41171-2_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus is a Gram-positive coccus that interacts with human hosts on a spectrum from quiet commensal to deadly pathogen. S. aureus is capable of infecting nearly every tissue in the body resulting in cellulitis, pneumonia, osteomyelitis, endocarditis, brain abscesses, bacteremia, and more. S. aureus has a wide range of factors that promote infection, and each site of infection triggers a different response in the human host. In particular, the different patterns of inflammasome activation mediate tissue-specific pathogenesis or protection in S. aureus infection. Although still a nascent field, understanding the unique host-pathogen interactions in each infection and the role of inflammasomes in mediating pathogenesis may lead to novel strategies for treating S. aureus infections. Reviews addressing S. aureus virulence and pathogenesis (Thammavongsa et al. 2015), as well as epidemiology and pathophysiology (Tong et al. 2015), have recently been published. This review will focus on S. aureus factors that activate inflammasomes and their impact on innate immune signaling and bacterial survival.
Collapse
Affiliation(s)
- Jason H Melehani
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medicine, Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Zhuang Z, Ju HQ, Aguilar M, Gocho T, Li H, Iida T, Lee H, Fan X, Zhou H, Ling J, Li Z, Fu J, Wu M, Li M, Melisi D, Iwakura Y, Xu K, Fleming JB, Chiao PJ. IL1 Receptor Antagonist Inhibits Pancreatic Cancer Growth by Abrogating NF-κB Activation. Clin Cancer Res 2015; 22:1432-44. [PMID: 26500238 DOI: 10.1158/1078-0432.ccr-14-3382] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/06/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Constitutive NF-κB activation is identified in about 70% of pancreatic ductal adenocarcinoma (PDAC) cases and is required for oncogenic KRAS-induced PDAC development in mouse models. We sought to determine whether targeting IL-1α pathway would inhibit NF-κB activity and thus suppress PDAC cell growth. EXPERIMENTAL DESIGN We determined whether anakinra, a human IL-1 receptor (rhIL-1R) antagonist, inhibited NF-κB activation. Assays for cell proliferation, migration, and invasion were performed with rhIL-1R antagonist using the human PDAC cell lines AsPc1, Colo357, MiaPaCa-2, and HPNE/K-ras(G12V)/p16sh. In vivo NF-κB activation-dependent tumorigenesis was assayed using an orthotopic nude mouse model (n = 20, 5 per group) treated with a combination of gemcitabine and rhIL-1RA. RESULTS rhIL-1R antagonist treatment led to a significant decrease in NF-κB activity. PDAC cells treated with rhIL-1R antagonist plus gemcitabine reduced proliferation, migration, and invasion as compared with single gemcitabine treatment. In nude mice, rhIL-1R antagonist plus gemcitabine significantly reduced the tumor burden (gemcitabine plus rhIL-1RA vs. control, P = 0.014). CONCLUSIONS We found that anakinra, an FDA-approved drug that inhibits IL-1 receptor (IL-1R), when given with or without gemcitabine, can reduce tumor growth by inhibiting IL1α-induced NF-κB activity; this result suggests that it is a useful therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Zhuonan Zhuang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of General Surgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Huai-Qiang Ju
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mitzi Aguilar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takashi Gocho
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Hao Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tomonori Iida
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Harold Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoqiang Fan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haijun Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongkui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Li
- Department of Surgery, The University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, Oklahoma City, Oklahoma
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli studi di Verona, Verona, Italy
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kesen Xu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Cancer Biology Program, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| |
Collapse
|
21
|
Boyer L, Lemichez E. Switching Rho GTPase activation into effective antibacterial defenses requires the caspase-1/IL-1beta signaling axis. Small GTPases 2015; 6:186-8. [PMID: 26492464 DOI: 10.1080/21541248.2015.1095698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The monitoring of the activation state of Rho GTPases has emerged as a potent innate immune mechanism for detecting pathogens. In the March issue of PLOS Pathogens, we show that the activation of Rho GTPases by the CNF1 toxin during E. coli-triggered bacteremia leads to a GR1(+)cell-mediated efficient bacterial clearing and improves host survival. Host alarm requires the Caspase-1/IL-1beta signaling axis. Furthermore, we discover that pathogenic bacteria have the capacity to block immune responses via the expression of the α-hemolysin pore-forming toxin. In this commentary, we will comment on these findings and highlight the questions raised by this example of attack-defense mechanisms used alternatively by the pathogen and the host during blood infection.
Collapse
Affiliation(s)
- Laurent Boyer
- a INSERM; U1065; Center Méditerranéen de Médecine Moléculaire; C3M; Toxines Microbiennes dans la relation hôte pathogènes; Equipe Labellisée Ligue Contre le Cancer ; Nice , France.,b Université de Nice-Sophia-Antipolis; UFR Médecine ; Nice , France
| | - Emmanuel Lemichez
- a INSERM; U1065; Center Méditerranéen de Médecine Moléculaire; C3M; Toxines Microbiennes dans la relation hôte pathogènes; Equipe Labellisée Ligue Contre le Cancer ; Nice , France.,b Université de Nice-Sophia-Antipolis; UFR Médecine ; Nice , France
| |
Collapse
|
22
|
Ali A, Na M, Svensson MND, Magnusson M, Welin A, Schwarze JC, Mohammad M, Josefsson E, Pullerits R, Jin T. IL-1 Receptor Antagonist Treatment Aggravates Staphylococcal Septic Arthritis and Sepsis in Mice. PLoS One 2015; 10:e0131645. [PMID: 26135738 PMCID: PMC4489902 DOI: 10.1371/journal.pone.0131645] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Interleukin-1 receptor antagonist (IL-1Ra) is the primary therapy against autoinflammatory syndromes with robust efficacy in reducing systemic inflammation and associated organ injury. However, patients receiving IL-1Ra might be at increased risk of acquiring serious infections. AIMS To study whether IL-1Ra treatment deteriorates Staphylococcus aureus (S. aureus) septic arthritis and sepsis in mice. METHOD NMRI mice were treated with anakinra (IL-1Ra) daily for 7 days before intravenous inoculation with S. aureus strain Newman in both arthritogenic and lethal doses. The clinical course of septic arthritis, histopathological and radiological changes of the joints, as well as the mortality were compared between IL-1Ra treated and control groups. RESULTS IL-1Ra treated mice developed more frequent and severe clinical septic arthritis. Also, the frequency of polyarthritis was significantly higher in the mice receiving IL-1Ra therapy. In line with the data from clinical arthritis, both histological and radiological signs of septic arthritis were more pronounced in IL-1Ra treated group compared to controls. Importantly, the mortality of IL-1Ra treated mice was significantly higher than PBS treated controls. CONCLUSION IL-1Ra treatment significantly aggravated S. aureus induced septic arthritis and increased the mortality in these mice.
Collapse
Affiliation(s)
- Abukar Ali
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mattias N. D. Svensson
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Magnusson
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan-Christoph Schwarze
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institution of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
|