1
|
Contreras‐Ruiz A, Minebois R, Alonso‐del‐Real J, Barrio E, Querol A. Differences in metabolism among Saccharomyces species and their hybrids during wine fermentation. Microb Biotechnol 2024; 17:e14476. [PMID: 38801338 PMCID: PMC11129674 DOI: 10.1111/1751-7915.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.
Collapse
Affiliation(s)
- Alba Contreras‐Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Javier Alonso‐del‐Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
- Departament de GenèticaUniversitat de ValènciaValènciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| |
Collapse
|
2
|
Gan YZ, Yang P, Liu R, Wang YH, Hu YW, Yang Y. Changes in Spectrum of Respiratory Pathogen Infections and Disease Severity Among Children in Hohhot, China: Impact of COVID-19 Prevention Measures. Med Sci Monit 2024; 30:e942845. [PMID: 38451880 DOI: 10.12659/msm.942845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This retrospective study evaluated the effects of specific COVID-19 preventive measures, including the use of medical masks, nucleic acid testing, and patient isolation, on respiratory infections, disease severity, and seasonal patterns among children in Hohhot, located in northern China. Understanding these alterations is pivotal in developing effective strategies to handle pediatric respiratory infections within the context of continuous public health initiatives. MATERIAL AND METHODS At the First Hospital of Hohhot, throat swabs were collected from 605 children with community-acquired respiratory between January 2022 and March 2023 for pathogen infection spectrum detection using microarray testing. RESULTS Among the patients, 56.03% were male, and their average age was 3.45 years. SARS-CoV-2 infections were highest between October 2022 and January 2023. Influenza A peaked in March 2023, and other pathogens such as respiratory syncytial virus and influenza B virus disappeared after December 2022. The proportion of mixed infections was 41.94% among SARS-CoV-2 patients, while other pathogens had mixed infection rates exceeding 57.14%. Before December 2022, the mean WBC count for Streptococcus pneumoniae and Haemophilus influenzae was 8.83×10⁹/L, CRP was 18.36 mg/L, and PCT was 1.11 ng/ml. After December 2022, these values decreased significantly. Coughing, difficulty breathing, running nose, and lower respiratory tract infection diagnoses decreased in December 2022, except for SARS-CoV-2 infections. CONCLUSIONS SARS-CoV-2 peaked around November 2022, influenza A peaked in March 2023, and other pathogens like respiratory syncytial virus and influenza B virus were greatly reduced after December 2022. Inflammatory markers and respiratory symptoms decreased after December 2022, except for SARS-CoV-2.
Collapse
Affiliation(s)
- Yan-Zi Gan
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Peng Yang
- Neurophysiology Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Rui Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China (mainland)
| | - Yan-Hai Wang
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Yu-Wei Hu
- Child Health Department, The First Hospital of Hohhot, Hohhot, Inner Mongolia, China (mainland)
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
3
|
Qin L, Ma D, Lin G, Sun W, Li C. Low temperature promotes the production and efflux of terpenoids in yeast. BIORESOURCE TECHNOLOGY 2024; 395:130376. [PMID: 38278452 DOI: 10.1016/j.biortech.2024.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), β-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.
Collapse
Affiliation(s)
- Lei Qin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dongshi Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guangyuan Lin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Wentao Sun
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Chun Li
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Yan X, Li S, Tu T, Li Y, Niu M, Tong Y, Yang Y, Xu T, Zhao J, Shen C, Wang S. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J Food Sci 2023; 88:988-1003. [PMID: 36691797 DOI: 10.1111/1750-3841.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Greengage wine with low alcohol content is increasing in popularity owing to its fruity taste and rich nutrition. The key to wine aroma and taste is flavor substances like free amino acids (FAAs), volatile fatty acids, higher alcohols, and esters. Amino acid (AA) metabolisms in yeast are an important source of these secondary compounds, which vary with the fermentation conditions. This study explored and optimized the impact of different parameters (carbon source, inoculum, pH, temperature) on FAA contents and dynamics in greengage wine. The results demonstrated that total and essential amino acid (EAA) content rose with a higher proportion of glucose, less yeast inoculation, higher temperature, and higher initial pH. With the results obtained it was concluded that the condition of 22.4°C, pH 4.5, and 3% inoculation was optimum for a 14.9-fold increase of EAAs in fermented greengage wine. In the long run, the research will aid in the development of the greengage brewing industry.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shu Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China.,Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingyao Tu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yiqin Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Mansi Niu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yuqin Tong
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yang Yang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Tao Xu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| |
Collapse
|
5
|
Lola D, Kalloniati C, Dimopoulou M, Kanapitsas A, Papadopoulos G, Dorignac É, Flemetakis E, Kotseridis Y. Impact of Assimilable Nitrogen Supplementation on Saccharomyces cerevisiae Metabolic Response and Aromatic Profile of Moschofilero Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2952-2963. [PMID: 36719992 DOI: 10.1021/acs.jafc.2c07325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The concentration of nitrogen in must is critical to yeast fermentation efficiency and wine aroma profile. The present work determined the effect of the amount of yeast assimilable nitrogen (YAN) on fermentation kinetics, aroma production, and gene expression patterns of the wine yeast Saccharomyces cerevisiae. Fermentations were performed under two different YAN concentrations of must. Acetate esters, linalool, and nerol appeared to be clearly affected by the different YAN levels. Real-time-PCR results revealed that the genes involved in ethyl and acetate esters production recorded, in general, higher transcript levels under high nitrogen supplementation. In addition, an up-regulation of the BGL2 and EXG1 genes, which are related to terpenes production, was observed in the case of high nitrogen content and it is well corresponded to the terpenol concentration found. Our study revealed the impact of nitrogen supplementation on yeast metabolism and its importance to adjust wine's aromatic composition and sensory profile.
Collapse
Affiliation(s)
- Despina Lola
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo 12243, Greece
| | - Alexandros Kanapitsas
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Georgios Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Yorgos Kotseridis
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
6
|
Matukas M, Starkute V, Zokaityte E, Zokaityte G, Klupsaite D, Mockus E, Rocha JM, Ruibys R, Bartkiene E. Effect of Different Yeast Strains on Biogenic Amines, Volatile Compounds and Sensory Profile of Beer. Foods 2022; 11:foods11152317. [PMID: 35954083 PMCID: PMC9368685 DOI: 10.3390/foods11152317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 01/03/2023] Open
Abstract
Nowadays, there are many sorts of beer, however, some of them, despite the good sensory and other quality indicators, could contain high concentrations of undesirable compounds, such biogenic amines (BA). The yeast strain (YS), used for fermentation, can cause desirable as well as undesirable changes in beer. The aim of this study was to evaluate the contribution of different YS (A-Saccharomyces cerevisiae var. diastaticus, B-Saccharomyces cerevisiae var. bayanus, C-Brettanomyces claussenii) on the main quality parameters of beer. In addition, the BA concentration and the volatile compounds (VC, measured by gas chromatography–mass spectrometry) and their relation with beer overall acceptability (OA, evaluated by 20 trained judges) and emotions induced for consumers were analysed. The YS was a significant factor on alcohol formation in beer (p = 0.0001). The highest colour intensity was shown by C beer (10.2 EBC), and the latter beer showed the lowest OA. All of the beer samples induced the highest intensity of the emotion “neutral”, and the main VC of the beer were 3-methyl-1-butanol; L-α-terpineol; hexanoic acid 3-methylbutyl ester; and n-capric acid isobutyl ester. The highest total BAs content was found in beer fermented with C. Finally, all of the tested YS are suitable for beer production, however, taking into consideration the safety aspect of the beer, it should be mentioned that the highest concentration of BAs was found in beer fermented with C strain.
Collapse
Affiliation(s)
- Mazvydas Matukas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (M.M.); (V.S.); (E.Z.)
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (M.M.); (V.S.); (E.Z.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
| | - Egle Zokaityte
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (M.M.); (V.S.); (E.Z.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (M.M.); (V.S.); (E.Z.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (G.Z.); (D.K.); (E.M.)
- Correspondence: ; Tel.: +370-601-35837
| |
Collapse
|
7
|
Pérez D, Jaehde I, Guillamón JM, Heras JM, Querol A. Screening of Saccharomyces strains for the capacity to produce desirable fermentative compounds under the influence of different nitrogen sources in synthetic wine fermentations. Food Microbiol 2021; 97:103763. [PMID: 33653514 DOI: 10.1016/j.fm.2021.103763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source: ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.
Collapse
Affiliation(s)
- Dolores Pérez
- Lallemand Bio S.L., 08028, Barcelona, Spain; Estación Experimental Agropecuaria Mendoza (EEA), Instituto Nacional de Tecnología Agropecuaria (INTA), 5507, Luján de Cuyo, Mendoza, Argentina; Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain
| | - Inés Jaehde
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain; University of Bonn, Regina-Pacis-Weg 3, 53113, Bonn, Germany
| | - José Manuel Guillamón
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain
| | | | - Amparo Querol
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain.
| |
Collapse
|
8
|
Minebois R, Pérez-Torrado R, Querol A. A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation. Food Microbiol 2020; 90:103484. [DOI: 10.1016/j.fm.2020.103484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
|
9
|
Tarko T, Januszek M, Pater A, Sroka P, Duda-Chodak A. The Quality of Ciders Depends on the Must Supplementation with Mineral Salts. Molecules 2020; 25:E3640. [PMID: 32785146 PMCID: PMC7463989 DOI: 10.3390/molecules25163640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/24/2022] Open
Abstract
Providing yeast with the right amount of mineral salts before fermentation can contribute to improving the entire technological process, resulting in a better-quality final product. The aim of this study was to assess the impact of apple must supplementation with mineral salts ((NH4)2SO4, MgSO4, (NH4)3PO4)) on enological parameters, antioxidant activity, total polyphenol content, and the profile of volatile cider compounds fermented with various yeast strains. Rubin cultivar must was inoculated with wine, cider, and distillery or wild yeast strains. Various mineral salts and their mixtures were introduced into the must in doses from 0.167 g/L to 0.5 g/L. The control sample consisted of ciders with no added mineral salts. The basic enological parameters, antioxidant properties, total polyphenol content, and their profile, as well as the composition of volatile compounds, were assessed in ciders. Must supplementation with magnesium salts significantly influenced the use of the analyzed element by yeast cells and was dependent on the yeast strain. In supplemented samples, a decrease in alcohol concentration and total acidity, as well as an increase in the content of extract and total polyphenols, was observed compared to the controls. The addition of ammonium salts caused a decrease in the amount of higher alcohols and magnesium salts, as well as a decrease in the concentration of some esters in ciders.
Collapse
Affiliation(s)
- Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland; (M.J.); (A.P.); (P.S.); (A.D.-C.)
| | | | | | | | | |
Collapse
|
10
|
Minebois R, Pérez‐Torrado R, Querol A. Metabolome segregation of four strains of
Saccharomyces cerevisiae
,
Saccharomyces uvarum
and
Saccharomyces kudriavzevii
conducted under low temperature oenological conditions. Environ Microbiol 2020; 22:3700-3721. [DOI: 10.1111/1462-2920.15135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Romain Minebois
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSIC Paterna E‐46980 Spain
| | - Roberto Pérez‐Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSIC Paterna E‐46980 Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSIC Paterna E‐46980 Spain
| |
Collapse
|
11
|
Saccharomyces bayanus Enhances Volatile Profile of Apple Brandies. Molecules 2020; 25:molecules25143127. [PMID: 32650562 PMCID: PMC7397190 DOI: 10.3390/molecules25143127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Qualitative and quantitative profiles of volatiles in alcoholic beverages depend mainly on the quality of raw materials, yeasts used for fermentation, and processing technique. Saccharomyces bayanus is a yeast species which is not commonly used for the production of alcoholic beverages, but it is able to produce volatiles that add desirable aroma. Since there is little information regarding the application of that microorganism for the production of apple brandies and how it affects volatile profile of finished products, we decided to address that issue. The aim of the study was to determine the impact of S. bayanus on the profile of volatile compounds and sensory properties of apple spirits obtained from three apple cultivars (Topaz, Rubin, and Elise) in comparison to spirits obtained from fermentation carried out spontaneously or with Saccharomyces cerevisiae. Obtained brandies were analysed using gas chromatography-flame ionization detector (GC-FID), solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and sensorially. In our study, brandies produced from musts fermented by S. bayanus demonstrated the highest concentration of ethyl esters and increased concentrations of isoamyl acetate, 2-phenylethyl acetate, ethyl palmitate and hexanol. Moreover, our results support the hypothesis that non-Saccharomyces yeasts which are present during spontaneous fermentation and demonstrate higher β-glucosidase activities enhance aroma of alcoholic beverages through releasing aroma compounds from glycosidic forms, e.g., α-phellandrene, (E)-β-fanesene, (Z,E)-α-farnesene, α-farnesene, and farnesol. Considering results obtained in sensory analysis, we proved that S. bayanus is suitable for the production of apple brandies, improving their flavour. Brandies obtained from musts fermented by S. bayanus obtained the highest average range for "overall note" parameter in sensory analysis.
Collapse
|
12
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
González Flores M, Rodríguez ME, Origone AC, Oteiza JM, Querol A, Lopes CA. Saccharomyces uvarum isolated from patagonian ciders shows excellent fermentative performance for low temperature cidermaking. Food Res Int 2019; 126:108656. [DOI: 10.1016/j.foodres.2019.108656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/14/2023]
|
14
|
Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions. Int J Food Microbiol 2019; 297:51-59. [DOI: 10.1016/j.ijfoodmicro.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/04/2019] [Accepted: 03/10/2019] [Indexed: 12/30/2022]
|
15
|
Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New Trends in the Uses of Yeasts in Oenology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:177-210. [PMID: 29860974 DOI: 10.1016/bs.afnr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.
Collapse
Affiliation(s)
- Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Jiri Stribny
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Bruno M Oliveira
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| |
Collapse
|
16
|
Pérez-Torrado R, Barrio E, Querol A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids. Crit Rev Food Sci Nutr 2017; 58:1780-1790. [DOI: 10.1080/10408398.2017.1285751] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
17
|
Tronchoni J, García-Ríos E, Guillamón JM, Querol A, Pérez-Torrado R. Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyceskudriavzevii hybrids during low temperature winemaking. F1000Res 2017; 6:679. [PMID: 29067162 PMCID: PMC5635440 DOI: 10.12688/f1000research.11550.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. METHODS In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. RESULTS The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. CONCLUSIONS This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phenotype.
Collapse
Affiliation(s)
- Jordi Tronchoni
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), Gobierno de La Rioja-CSIC-Universidad de La Rioja, Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Jose Manuel Guillamón
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
18
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
19
|
Alonso-Del-Real J, Lairón-Peris M, Barrio E, Querol A. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition. Front Microbiol 2017; 8:150. [PMID: 28223968 PMCID: PMC5293751 DOI: 10.3389/fmicb.2017.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSICValencia, Spain; Departament de Genètica, Universitat de ValènciaValència, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC Valencia, Spain
| |
Collapse
|
20
|
Eldarov MA, Kishkovskaia SA, Tanaschuk TN, Mardanov AV. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. BIOCHEMISTRY (MOSCOW) 2017; 81:1650-1668. [DOI: 10.1134/s0006297916130046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Stribny J, Querol A, Pérez-Torrado R. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production. Front Microbiol 2016; 7:897. [PMID: 27375606 PMCID: PMC4894917 DOI: 10.3389/fmicb.2016.00897] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Higher alcohols and acetate esters belong to the most important yeast secondary metabolites that significantly contribute to the overall flavor and aroma profile of fermented products. In Saccharomyces cerevisiae, esterification of higher alcohols is catalyzed mainly by the alcohol acetyltransferases encoded by genes ATF1 and ATF2. Previous investigation has shown other Saccharomyces species, e.g., S. kudriavzevii and S. uvarum, to vary in aroma-active higher alcohols and acetate esters formation when compared to S. cerevisiae. Here, we aimed to analyze the enzymes encoded by the ATF1 and ATF2 genes from S. kudriavzevii (SkATF1, SkATF2) and S. uvarum (SuATF1, SuATF2). The heterologous expression of the individual ATF1 and ATF2 genes in a host S. cerevisiae resulted in the enhanced production of several higher alcohols and acetate esters. Particularly, an increase of 2-phenylethyl acetate production by the strains that harbored ATF1 and ATF2 genes from S. kudriavzevii and S. uvarum was observed. When grown with individual amino acids as the nitrogen source, the strain that harbored SkATF1 showed particularly high 2-phenylethyl acetate production and the strains with introduced SkATF2 or SuATF2 revealed increased production of isobutyl acetate, isoamyl acetate, and 2-phenylethyl acetate compared to the reference strains with endogenous ATF genes. The alcohol acetyltransferase activities of the individual Atf1 and Atf2 enzymes measured in the cell extracts of the S. cerevisiae atf1 atf2 iah1 triple-null strain were detected for all the measured substrates. This indicated that S. kudriavzevii and S. uvarum Atf enzymes had broad range substrate specificity as S. cerevisiae Atf enzymes. Individual Atf1 enzymes exhibited markedly different kinetic properties since SkAtf1p showed c. twofold higher and SuAtf1p c. threefold higher Km for isoamyl alcohol than ScAtf1p. Together these results indicated that the differences found among the three Saccharomyces species during the aroma-active acetate ester formation may be due, to some extent, to the distinct properties of Atf enzymes.
Collapse
Affiliation(s)
- Jiri Stribny
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas, Valencia Spain
| |
Collapse
|
22
|
Gamero A, Belloch C, Querol A. Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Microb Cell Fact 2015; 14:128. [PMID: 26336982 PMCID: PMC4558966 DOI: 10.1186/s12934-015-0314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/10/2015] [Indexed: 11/12/2022] Open
Abstract
Background Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S.cerevisiae × S.kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S.cerevisiae × S.kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. Results The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S.kudriavzevii allele was more expressed than that of S.cerevisiae particularly at 12 °C. Conclusions This study revealed high differences regarding allele composition and gene expression in two S.cerevisiae × S.kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.
Collapse
Affiliation(s)
- Amparo Gamero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| | - Carmela Belloch
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| | - Amparo Querol
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Avda/Agustín Escardino Benlloch, 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
23
|
Barbosa C, Mendes-Faia A, Lage P, Mira NP, Mendes-Ferreira A. Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii. Microb Cell Fact 2015; 14:124. [PMID: 26314747 PMCID: PMC4552253 DOI: 10.1186/s12934-015-0318-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/14/2015] [Indexed: 02/01/2023] Open
Abstract
Background The introduction of yeast starter cultures consisting in a blend of Saccharomyces cerevisiae and non-Saccharomyces yeast strains is emerging for production of wines with improved complexity of flavor. The rational use of this approach is, however, dependent on knowing the impact that co-inoculation has in the physiology of S. cerevisiae. In this work the transcriptome of S.cerevisiae was monitored throughout a wine fermentation, carried out in single culture or in a consortium with Hanseniasporaguilliermondii, this being the first time that this relevant yeast–yeast interaction is examined at a genomic scale. Results Co-inoculation with H. guilliermondii reduced the overall genome-wide transcriptional response of S. cerevisiae throughout the fermentation, which was attributable to a lower fermentative activity of S. cerevisiae while in the mixed-fermentation. Approximately 350 genes S. cerevisiae genes were found to be differently expressed (FDR < 0.05) in response to the presence of H. guilliermondii in the fermentation medium. Genes involved in biosynthesis of vitamins were enriched among those up-regulated in the mixed-culture fermentation, while genes related with the uptake and biosynthesis of amino acids were enriched among those more expressed in the single-culture. The differences in the aromatic profiles of wines obtained in the single and in the mixed-fermentations correlated with the differential expression of S. cerevisiae genes encoding enzymes required for formation of aroma compounds. Conclusions By integrating results obtained in the transcriptomic analysis performed with physiological data our study provided, for the first time, an integrated view into the adaptive responses of S. cerevisiae to the challenging environment of mixed culture fermentation. The availability of nutrients, in particular, of nitrogen and vitamins, stands out as a factor that may determine population dynamics, fermentative activity and by-product formation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0318-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catarina Barbosa
- Escola de Ciências da Vida e Ambiente, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Arlete Mendes-Faia
- Escola de Ciências da Vida e Ambiente, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. .,BioISI-Biosystems and Integrative Sciences Institute, Campo Grande, Lisbon, Portugal.
| | - Patrícia Lage
- Escola de Ciências da Vida e Ambiente, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | - Nuno P Mira
- iBB-Institute for Bioengineering and Biosciences, Avenida Rovisco Pais, 1049-001, Lisbon, Portugal. .,Department of Bioengineering, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001, Lisbon, Portugal.
| | - Ana Mendes-Ferreira
- Escola de Ciências da Vida e Ambiente, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. .,BioISI-Biosystems and Integrative Sciences Institute, Campo Grande, Lisbon, Portugal.
| |
Collapse
|
24
|
Stribny J, Gamero A, Pérez-Torrado R, Querol A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int J Food Microbiol 2015; 205:41-6. [DOI: 10.1016/j.ijfoodmicro.2015.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/14/2015] [Accepted: 04/03/2015] [Indexed: 01/23/2023]
|
25
|
da Silva T, Albertin W, Dillmann C, Bely M, la Guerche S, Giraud C, Huet S, Sicard D, Masneuf-Pomarede I, de Vienne D, Marullo P. Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PLoS One 2015; 10:e0123834. [PMID: 25946464 PMCID: PMC4422614 DOI: 10.1371/journal.pone.0123834] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/21/2015] [Indexed: 11/18/2022] Open
Abstract
Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.
Collapse
Affiliation(s)
- Telma da Silva
- INRA, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Warren Albertin
- ENSCBP—Bordeaux INP, Pessac, France
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
| | - Christine Dillmann
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Marina Bely
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
| | | | | | | | - Delphine Sicard
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Isabelle Masneuf-Pomarede
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Dominique de Vienne
- Université Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | - Philippe Marullo
- Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, Villenave d'Ornon, France
- Biolaffort, Bordeaux, France
- * E-mail:
| |
Collapse
|