1
|
Alehosein L, Hoseini SJ, Bahrami M, Nabavizadeh SM. Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4041-4058. [PMID: 39878764 DOI: 10.1021/acs.langmuir.4c04397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl2(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of p-nitrophenol and o-nitrophenol to p-aminophenol and o-aminophenol. The porous network of the Pd NPs@HOF introduced strong active sites between Mel, TMA, and Pd(0). Kinetic studies showed that the Pd NPs@HOF catalyst exhibited an enhanced rate of p-nitrophenol and o-nitrophenol reduction in comparison with Pd@reduced-graphene oxide (r-GO) with rates that were 1.7 times faster for p-nitrophenol and 1.5 times faster for o-nitrophenol or even 10 times faster than some Pd-based catalysts, with a maximum conversion of 97.1% which was attributed to the higher porosity and greater surface-to-volume ratio of the Pd NPs@HOF material. Furthermore, π-π stacking interactions enhance the catalytic activity of the Pd NPs@HOF catalyst by increasing the active sites, stabilizing the NPs and trapping the nitrophenols, facilitating the electron transfer, and providing the synergistic effect. Also, contributions of hydrogen bonding, van der Waals forces, electrostatic interactions, and π-σ noncovalent interactions are reasons for better performance of Pd NPs@HOF than Pd/r-GO catalyst with the reduced functional groups.
Collapse
Affiliation(s)
- Ladan Alehosein
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| |
Collapse
|
2
|
Xu Y, Wu Y, Wei J, Zhao Y, Xue P. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2888-2896. [PMID: 38646710 DOI: 10.1039/d4ay00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intensity and sensitivity of surface-enhanced Raman scattering (SERS) spectra are highly dependent on the consistency and homogeneity of the nanomaterials. In this study, we developed a large-area three-dimensional (3D) hotspot substrate with good homogeneity and reproducibility in SERS signals. The substrate is based on the synergistic structures of nanoporous gold (NPG) and gold nanoparticles (AuNPs). NPG was combined with a periodic V-shaped nanocavity array to create nanoporous gold with a V-cavity (NPGVC) array featuring uniform hotspots. A nanoporous gold V-shaped resonant cavity (NPGVRC) structure was developed by incorporating AuNPs into the NPGVC array. The coupling action between the AuNPs and NPGVC resulted in a SERS-enhanced electromagnetic field with 3D hotspot distribution. The strategic incorporation of NPG and V-cavity array significantly expanded the surface area available for analyte adsorption and interaction with AuNPs. Using rhodamine 6G (R6G) and malachite green (MG) as probe molecules, the SERS performance was investigated, and the NPGVRC substrate not only showed excellent enhancement with the limit of detection as low as 10-11 M, but also presented good homogeneity. NPGVRC was then used for biological detection of the influenza A virus, where we acquired and examined the characteristic SERS spectra of two spike proteins. It is demonstrated that there is significant potential for our proposed SERS platform to be used in biosensors.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Wu
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Jianjun Wei
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yuanyu Zhao
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Peili Xue
- Sichuan Science City Hospital, Mianyang 621000, China
| |
Collapse
|
3
|
Falamas A, Cuibus D, Tosa N, Brezestean I, Muntean CM, Milenko K, Vereshchagina E, Moldovan R, Bodoki E, Farcau C. Toward microfluidic SERS and EC-SERS applications via tunable gold films over nanospheres. DISCOVER NANO 2023; 18:73. [PMID: 37382835 PMCID: PMC10214914 DOI: 10.1186/s11671-023-03851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 06/30/2023]
Abstract
Many promising applications of surface-enhanced Raman scattering (SERS), such as microfluidic SERS and electrochemical (EC)-SERS, require immersion of plasmonic nanostructured films in aqueous media. Correlational investigations of the optical response and SERS efficiency of solid SERS substrates immersed in water are absent in the literature. This work presents an approach for tuning the efficiency of gold films over nanospheres (AuFoN) as SERS substrates for applications in aqueous environment. AuFoN are fabricated by convective self-assembly of colloidal polystyrene nanospheres of various diameters (300-800 nm), followed by magnetron sputtering of gold films. The optical reflectance of the AuFoN and Finite-Difference Time-Domain simulations in both water and air reveal the dependence of the surface plasmon band on nanospheres' diameter and environment. SERS enhancement of a common Raman reporter on AuFoN immersed in water is analyzed under 785 nm laser excitation, but also using the 633 nm line for the films in air. The provided correlations between the SERS efficiency and optical response in both air and water indicate the best structural parameters for high SERS efficiency and highlight a route for predicting and optimizing the SERS response of AuFoN in water based on the behavior in air, which is more practical. Finally, the AuFoN are successfully tested as electrodes for EC-SERS detection of the thiabendazole pesticide and as SERS substrates integrated in a flow-through microchannel format. The obtained results represent an important step toward the development of microfluidic EC-SERS devices for sensing applications.
Collapse
Grants
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- RO-NO-2019-0517 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Denisa Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Ioana Brezestean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Karolina Milenko
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Elizaveta Vereshchagina
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Cosmin Farcau
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
- Institute for Interdisciplinary Research in Nano-Bio-Sciences, Babes-Bolyai University, 42 T Laurian, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Thanh Nguyen D, Phuong Nguyen L, Duc Luu P, Quoc Vu T, Quynh Nguyen H, Phat Dao T, Nhut Pham T, Quoc Tran T. Surface-enhanced Raman scattering (SERS) from low-cost silver nanoparticle-decorated cicada wing substrates for rapid detection of difenoconazole in potato. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121117. [PMID: 35364411 DOI: 10.1016/j.saa.2022.121117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Potato is one of the most important food crops worldwide in terms of human consumption. However, potato farmers employ a variety of pesticides to protect crops from harmful insects and illnesses, and difenoconazole is a commonly used one that has severe effects on human health and the environment. Therefore, detecting difenoconazole quickly and correctly is critical. In this work, we fabricated AgNPs/cicada wing substrates using natural cicada segments, decorated with silver nanoparticles for surface-enhanced Raman scattering (SERS) measurements to detect trace amounts of difenoconazole in potatoes. Results indicated that a linear relationship with the coefficient of detection (R2) of 0.987 and the detection limit (LOD) of 0.016 ppm was observed by targeting a distinctive peak at 808 cm-1 and logarithmic difenoconazole concentrations of 0.1 to 100 ppm. In addition, difenoconazole LODs in potatoes were 63 μg/kg, lower than those specified by the EU (0.1 mg/kg) and Vietnam (4 mg/kg) utilizing this new technique. Therefore, this proposed SERS method could be used to detect difenoconazole in potatoes at trace levels.
Collapse
Affiliation(s)
- Duong Thanh Nguyen
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam.
| | - Linh Phuong Nguyen
- Hanoi Medical University, 1 Ton That Tung, Dong Da district, Hanoi, Vietnam
| | - Phuong Duc Luu
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam
| | - Thai Quoc Vu
- Intitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
| | - Hoa Quynh Nguyen
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam
| | - Tan Phat Dao
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tri Nhut Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - Toan Quoc Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam; Intitute of Natuaral Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam.
| |
Collapse
|
5
|
Huang CT, Jan FJ, Chang CC. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection. Molecules 2021; 26:molecules26020281. [PMID: 33429970 DOI: 10.3390/molecules26020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/04/2023] Open
Abstract
In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 μM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Protrustech Co., Ltd., 3F.-1, No.293, Sec. 3, Dongmen Rd. East District, Tainan City 701, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung-Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Guo Y, Girmatsion M, Li HW, Xie Y, Yao W, Qian H, Abraha B, Mahmud A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr 2020; 61:3555-3568. [PMID: 32772549 DOI: 10.1080/10408398.2020.1803197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the globalization of food and its complicated networking system, a wide range of food contaminants is introduced into the food system which may happen accidentally, intentionally, or naturally. This situation has made food safety a critical global concern nowadays and urged the need for effective technologies capable of dealing with the detection of food contaminants as efficiently as possible. Hence, Surface-enhanced Raman spectroscopy (SERS) has been taken as one of the primary choices for this case, due to its extremely high sensitivity, rapidity, and fingerprinting interpretation capabilities which account for its competency to detect a molecule up to a single level. Here in this paper, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection of single and multiple chemical and microbial contaminants in food, food products as well as water. The aim of this paper is to arouse the interest of researchers by addressing recent SERS-based, novel achievements and developments related to the investigation of hazardous chemical and microbial contaminants in edible foods and water. The target chemical and microbial contaminants are antibiotics, pesticides, food adulterants, Toxins, bacteria, and viruses. In this paper, different aspects of SERS-based reports have been addressed including synthesis and use of various forms of SERS nanostructures for the detection of a specific analyte, the coupling of SERS with other analytical tools such as chromatographic methods, combining analyte capture and recognition strategies such as molecularly imprinted polymers and aptasensor as well as using multivariate statistical analyses such as principal component analysis (PCA)to distinguish between results. In addition, we also report some strengths and limitations of SERS as well as future viewpoints concerning its application in food safety.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bereket Abraha
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| |
Collapse
|
7
|
Zhuo M, Wang C, Dong P, Chen J, Wu X. Optimization of a hybrid plasmonic configuration: particle on a corrugated film and its SERS application. RSC Adv 2019; 9:35011-35021. [PMID: 35530683 PMCID: PMC9074707 DOI: 10.1039/c9ra02371b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/13/2019] [Indexed: 01/13/2023] Open
Abstract
Hybrid SERS configurations, which combine manufactured metallic chips with nanoparticles, have emerged as powerful and promising SERS substrates because they not only provide cost-effective and high-yield manufacture, but also demonstrate excellent sensitivity and outstanding reproducibility. Herein, a plasmonic hybrid structure, a particle on an Au film over nanoparticles (particle-AuFON) configuration, was studied for SERS application. In a previous study, we constructed a hybrid substrate by grafting Au@Ag core–shell NPs onto the AuFON structure. In this study, the hybrid substrate is designed and simulated to optimize electromagnetic enhancement while also affording exceptional uniformity, repeatability and stability, which are essential factors in SERS applications. This hybrid substrate provides good SERS performance with a detection limit of 1 × 10−10 M, which is 100-fold improvement compared to AuFON substrate or Au@Ag NPs. The excellent signal enhancement originates from the hotspot improvement and densification, as visualized by the FDTD calculations. Additional hotspots were created at the gaps between the Au@Ag NPs and the AuFON, thus improving the density of hotspots. Moreover, the intensity of the hotspots was improved due to EM coupling between the original hotspots and additional hotspots. To validate the feasibility of this hybrid substrate in SERS-based detection, melamine was detected as an example. The detection limit was 10 nM, which was much lower than the maximum limit of melamine in infant formula (1 ppm) legislated by the governments of both the United States and China. A calibration curve was plotted between the SERS intensity and melamine concentration with a correlation coefficient of 0.98. This hybrid SERS substrate shows great potential in SERS-based sensing and imaging, as it provides high sensitivity and outstanding reproducibility with a simple fabrication procedure, facilitating the cost-effective and high-yield manufacture of SERS substrates. A plasmonic hybrid structure of particles on a Au film over nanoparticles (particle-AuFON) configuration was studied for application in SERS. It showed great potential in SERS-based sensing and it provides outstanding uniformity, repeatability and stability.![]()
Collapse
Affiliation(s)
- Ming Zhuo
- College of Mechatronics Engineering and Automation, National University of Defense Technology Changsha Hunan 410073 P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation, National University of Defense Technology Changsha Hunan 410073 P. R. China
| | - Peitao Dong
- College of Mechatronics Engineering and Automation, National University of Defense Technology Changsha Hunan 410073 P. R. China
| | - Jian Chen
- College of Mechatronics Engineering and Automation, National University of Defense Technology Changsha Hunan 410073 P. R. China
| | - Xuezhong Wu
- College of Mechatronics Engineering and Automation, National University of Defense Technology Changsha Hunan 410073 P. R. China
| |
Collapse
|
8
|
Szlag VM, Jung S, Rodriguez RS, Bourgeois M, Bryson S, Schatz GC, Reineke TM, Haynes CL. Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Anal Chem 2018; 90:13409-13418. [DOI: 10.1021/acs.analchem.8b03221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Victoria M. Szlag
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Seyoung Jung
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Marc Bourgeois
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel Bryson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - George C. Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Sharma SK, Kumar P, Barthwal S, Sharma S, Sharma A. Highly Sensitive Surface-Enhanced Raman Scattering (SERS)- Based Multi Gas Sensor : Au Nanoparticles Decorated on Partially Embedded 2D Colloidal Crystals into Elastomer. ChemistrySelect 2017. [DOI: 10.1002/slct.201701204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satinder K. Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
- School of Computing and Electrical Engineering; Indian Institute of Technology (IIT)-Mandi; Mandi, Himachal Pradesh 175001 India
| | - Pawan Kumar
- School of Computing and Electrical Engineering; Indian Institute of Technology (IIT)-Mandi; Mandi, Himachal Pradesh 175001 India
| | - Sumit Barthwal
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| | - Seema Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| | - Ashutosh Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| |
Collapse
|
10
|
Review of SERS Substrates for Chemical Sensing. NANOMATERIALS 2017; 7:nano7060142. [PMID: 28594385 PMCID: PMC5485789 DOI: 10.3390/nano7060142] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review.
Collapse
|
11
|
A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7050475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, Wang S. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19958-67. [PMID: 27420923 DOI: 10.1021/acsami.6b07528] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This study proposes a facile method for synthesis of Au-coated magnetic nanoparticles (AuMNPs) core/shell nanocomposites with nanoscale rough surfaces. MnFe2O4 nanoparticles (NPs) were first modified with a uniform polyethylenimine layer (2 nm) through self-assembly under sonication. The negatively charged Au seeds were then adsorbed on the surface of the MnFe2O4 NPs through electrostatic interaction for Au shell formation. Our newly developed sonochemically assisted hydroxylamine seeding growth method was used to grow the adsorbed gold seeds into large Au nanoparticles (AuNPs) to form a nanoscale rough Au shell. Au-coated magnetic nanoparticles (AuMNPs) were obtained from the intermediate product (Au seeds decorated magnetic core) under sonication within 5 min. The AuMNPs were highly uniform in size and shape and exhibited satisfactory surface-enhanced Raman scattering (SERS) activity and strong magnetic responsivity. PATP was used as a probe molecule to evaluate the SERS performance of the synthesized AuMNPs with a detection limit of 10(-9) M. The synthesized AuMNPs were conjugated with Staphylococcus aureus (S. aureus) antibody for bacteria capture and separation. The synthesized plasmonic AuNR-DTNB NPs, whose LSPR wavelength was adjusted to the given laser excitation wavelength (785 nm), were conjugated with S. aureus antibody to form a SERS tag for specific recognition and report of the target bacteria. S. aureus was indirectly detected through SERS based on sandwich-structured immunoassay, with a detection limit of 10 cells/mL. Moreover, the SERS intensity at Raman peak of 1331 cm(-1) exhibited a linear relationship to the logarithm of bacteria concentrations ranging from 10(1) cells/mL to 10(5) cells/mL.
Collapse
Affiliation(s)
- Junfeng Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, P. R. China
| | | | - Chongwen Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, P. R. China
- College of Life Sciences and Bio-Engineering, Beijing University of Technology , Beijing 100124, P. R. China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine , Beijing 100850, P. R. China
| | - Hongmei Ding
- Beijing Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | - Shaohua Li
- Beijing Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | | | - Rui Xiao
- Beijing Institute of Radiation Medicine , Beijing 100850, P. R. China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, P. R. China
| |
Collapse
|
13
|
Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20919-29. [PMID: 26322791 DOI: 10.1021/acsami.5b06446] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for single-cell detection of S. aureus on the basis of aptamer recognition is reported for the first time. The biosensor consists of two basic elements including a SERS substrate (Ag-coated magnetic nanoparticles, AgMNPs) and a novel SERS tag (AuNR-DTNB@Ag-DTNB core-shell plasmonic NPs or DTNB-labeled inside-and-outside plasmonic NPs, DioPNPs). Uniform, monodisperse, and superparamagnetic AgMNPs with favorable SERS activity and magnetic responsiveness are synthesized by using polymer polyethylenimine. AgMNPs use magnetic enrichment instead of repeated centrifugation to prevent sample sedimentation. DioPNPs are designed and synthesized as a novel SERS tag. The Raman signal of DioPNPs is 10 times stronger than that of the commonly used SERS tag AuNR-DTNB because of the double-layer DTNB and the LSPR position adjustment to match the given laser excitation wavelength. Consequently, a strong SERS enhancement is achieved. Under the optimized aptamer density and linker length, capture by aptamer-modified AgMNPs can achieve favorable bacteria arrest (up to 75%). With the conventional Raman spectroscopy, the limit of detection (LOD) is 10 cells/mL for S. aureus detection, and a good linear relationship is also observed between the SERS intensity at Raman peak 1331 cm(-1) and the logarithm of bacteria concentrations ranging from 10(1) to 10(5) cells/mL. With the help of the newly developed SERS mapping technique, single-cell detection of S. aureus is easily achieved.
Collapse
Affiliation(s)
- Junfeng Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
- State Key Laboratory of Transducer Technology, Chinese Academy of Science , Shanghai 200050, PR China
| | | | - Chongwen Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
- College of Life Sciences & Bio-Engineering, Beijing University of Technology , Beijing 100124, PR China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences , Beijing 100850, PR China
| | - Peitao Dong
- State Key Laboratory of Transducer Technology, Chinese Academy of Science , Shanghai 200050, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| |
Collapse
|
14
|
Rong Z, Xiao R, Wang C, Wang D, Wang S. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8129-37. [PMID: 26132410 DOI: 10.1021/acs.langmuir.5b01713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plasmonic Ag core-satellite nanostructures were synthesized by utilizing the ultrathin silica shell as a spacer to generate a tunable nanogap between the Ag core and satellites. To synthesize the nanoparticles, Ag nanoparticles (Ag NPs) with a diameter of ∼60 nm were synthesized as cores, on which Raman dyes were adsorbed and then tunable ultrathin silica shells from 2.0 to 6.5 nm were coated, followed by the deposition of Ag NPs as satellites onto the silica surface. The relationships between the SERS signal and the important parameters, including the satellite diameter and the nanogap distance, were studied by experimental methods and theoretical calculations. The maximum SERS intensity of the core-satellite nanoparticles was over 14.6 times stronger than that of the isolated Raman-encoded Ag/PATP@SiO2 NP. The theoretical calculations indicated that the local maximum calculated enhancement factor (EF) of the hot spots with a 2.0 nm nanogap was 9.5 × 10(5). The well-defined Ag core-satellite nanostructures have a high structural uniformity and an anomalously strong electromagnetic enhancement for highly quantitative SERS, leading to a better understanding of hot spot formation and providing new insights into the optimal design and synthesis of the hot SERS nanostructures in a controlled manner.
Collapse
Affiliation(s)
- Zhen Rong
- †Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Rui Xiao
- †Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Chongwen Wang
- †Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Donggen Wang
- §Institute of Transfusion Medicine, Beijing 100850, PR China
| | - Shengqi Wang
- †Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
15
|
Silver nanopartical over AuFON substrate for enhanced raman readout and their application in pesticide monitoring. Molecules 2015; 20:6299-309. [PMID: 25859785 PMCID: PMC6272536 DOI: 10.3390/molecules20046299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/01/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022] Open
Abstract
Surface-enhanced Raman detection of thiram is demonstrated by using Ag-nanoparticles (Ag NPs) on Au film over nanosphere (AuFON) substrate as the hybrid substrate. The SERS signal of the Ag NPs attached to solid supports is studied. The close coupling together of thousands of Ag NPs on AuFON leads to the generation of hot spots for SERS. The Ag NPs on AuFON can be applied to detect rhodamine-6G (R6G) with the detection limitation of 10−11 M and the pesticide thiram in acetone with a detection limit of as low as 0.24 ppm, which is much lower than the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). The hybrid substrates are shown to be highly sensitive for the detection of thriam, which produce highly enhanced Raman signals with good uniformity and reproducibility due to having plenty of hot spots on its surface.
Collapse
|