1
|
Expression of Concern: Sialidase NEU3 Dynamically Associates to Different Membrane Domains Specifically Modifying Their Ganglioside Pattern and Triggering Akt Phosphorylation. PLoS One 2025; 20:e0317802. [PMID: 39813260 PMCID: PMC11734951 DOI: 10.1371/journal.pone.0317802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
|
2
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Ton Tran HT, Li C, Chakraberty R, Cairo CW. NEU1 and NEU3 enzymes alter CD22 organization on B cells. BIOPHYSICAL REPORTS 2022; 2:100064. [PMID: 36425332 PMCID: PMC9680808 DOI: 10.1016/j.bpr.2022.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (cis-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca2+ levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.
Collapse
Affiliation(s)
- Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
4
|
Bowles WHD, Gloster TM. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 2021; 8:705133. [PMID: 34395532 PMCID: PMC8358268 DOI: 10.3389/fmolb.2021.705133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Sialidases (SAs) and sialyltransferases (STs), the enzymes responsible for removing and adding sialic acid to other glycans, play essential roles in viruses, bacteria, parasites, and humans. Sialic acid is often the terminal sugar on glycans protruding from the cell surface in humans and is an important component for recognition and cell function. Pathogens have evolved to exploit this and use sialic acid to either “cloak” themselves, ensuring they remain undetected, or as a mechanism to enable release of virus progeny. The development of inhibitors against SAs and STs therefore provides the opportunity to target a range of diseases. Inhibitors targeting viral, bacterial, or parasitic enzymes can directly target their pathogenicity in humans. Excellent examples of this can be found with the anti-influenza drugs Zanamivir (Relenza™, GlaxoSmithKline) and Oseltamivir (Tamiflu™, Roche and Gilead), which have been used in the clinic for over two decades. However, the development of resistance against these drugs means there is an ongoing need for novel potent and specific inhibitors. Humans possess 20 STs and four SAs that play essential roles in cellular function, but have also been implicated in cancer progression, as glycans on many cancer cells are found to be hyper-sialylated. Whilst much remains unknown about how STs function in relation to disease, it is clear that specific inhibitors of them can serve both as tools to gain a better understanding of their activity and form the basis for development of anti-cancer drugs. Here we review the recent developments in the design of SA and ST inhibitors against pathogens and humans.
Collapse
Affiliation(s)
- William H D Bowles
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
5
|
Tepeli Büyüksünetçi Y, Anik Ü. Neuraminidase Based Electro‐Nano Diagnostic Platforms: Development of Model Systems for Cancer Diagnosis. ELECTROANAL 2021. [DOI: 10.1002/elan.202060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ülkü Anik
- Muğla Sıtkı Kocman University Faculty of Science, Chemistry Department 48000-Kotekli Mugla Turkey
| |
Collapse
|
6
|
Rodgers J, Sundararaj K, Bruner E, Wolf B, Nowling TK. The role of neuraminidase 1 (NEU1) in cytokine release by primary mouse mesangial cells and disease outcomes in murine lupus nephritis. Autoimmunity 2021; 54:163-175. [PMID: 33749450 DOI: 10.1080/08916934.2021.1897978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of altered glycosphingolipid (GSL) metabolism is increasingly gaining attention as a characteristic of multiple chronic kidney diseases. Previously, we reported elevated levels of GSLs and neuraminidase (NEU) enzyme activity/expression in the urine or kidney of lupus patients and lupus-prone mice, and demonstrated NEU activity mediates the production of cytokines by lupus-prone mouse primary mesangial cells. This mediation occurs in part through TLR4 and p38/ERK MAPK signalling in response to lipopolysaccharide (LPS) and lupus serum (LS). However, the precise role of NEU1, the most abundant NEU in the kidney, is incompletely known. In this study, we investigated the effect of genetically reduced Neu1 levels in vitro and in vivo. Mesangial cells from non-autoimmune prone Neu1+/- C57BL/6 mice had significantly reduced NEU activity, cytokine expression and cytokine secretion in response to LS and LPS, thereby suggesting reducing Neu1 expression may reduce the inflammatory response in lupus nephritis. Disease was assessed in female B6.SLE1/2/3 lupus-prone mice with genetically reduced levels (Neu1+/-) or wild-type levels (Neu1+/+) of Neu1 from 28 to 44 weeks of age along with aged-matched C57BL/6 controls. Renal disease was unexpectedly mild in all B6.SLE1/2/3 mice despite evidence of systemic disease. B6.SLE1/2/3 Neu1+/- mice exhibited significantly reduced levels of renal NEU1 expression and changes in renal α-2,6 linked sialylated N-glycans compared to the Neu1+/+ or healthy C57BL/6 mice, but measures of renal and systemic disease were similar between the B6.SLE1/2/3 Neu1+/+ and Neu1+/- mice. We conclude that NEU1 is the NEU largely responsible for mediating cytokine release by mesangial cells, at least in vitro, but may not be involved in modulating renal GSL levels in vivo or impact onset of nephritis in lupus-prone mice. However, the effect of reduced NEU1 levels on disease may not be appreciated in the mild disease expression in our colony of B6.SLE1/2/3 mice. The impact of the altered renal sialylated N-glycan levels and potential role of NEU1 with respect to established nephritis (late disease) in lupus-prone mice bears further investigation.
Collapse
Affiliation(s)
- Jessalyn Rodgers
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Kamala Sundararaj
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
8
|
Lipničanová S, Chmelová D, Ondrejovič M, Frecer V, Miertuš S. Diversity of sialidases found in the human body - A review. Int J Biol Macromol 2020; 148:857-868. [PMID: 31945439 DOI: 10.1016/j.ijbiomac.2020.01.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Sialidases are enzymes essential for numerous organisms including humans. Hydrolytic sialidases (EC 3.2.1.18), trans-sialidases and anhydrosialidases (intramolecular trans-sialidases, EC 4.2.2.15) are glycoside hydrolase enzymes that cleave the glycosidic linkage and release sialic acid residues from sialyl substrates. The paper summarizes diverse sialidases present in the human body and their potential impact on development of antiviral compounds - inhibitors of viral neuraminidases. It includes a brief overview of catalytic mechanisms of action of sialidases and describes the origin of sialidases in the human body. This is followed by description of the structure and function of sialidase families with a special focus on the GH33 and GH34 families. Various effects of sialidases on human body are also briefly described. Modulation of sialidase activity may be considered a useful tool for effective treatment of various diseases. In some cases, it is desired to completely suppress the activity of sialidases by suitable inhibitors. Specific sialidase inhibitors are useful for the treatment of influenza, epilepsy, Alzheimer's disease, diabetes, different types of cancer, or heart defects. Challenges and future directions are shortly depicted in the final part of the paper.
Collapse
Affiliation(s)
- Sabina Lipničanová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-83232 Bratislava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| |
Collapse
|
9
|
Overexpression of sialidase NEU3 increases the cellular radioresistance potential of U87MG glioblastoma cells. Biochem Biophys Res Commun 2019; 508:31-36. [DOI: 10.1016/j.bbrc.2018.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
|
10
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
11
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
12
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
13
|
Paolini L, Orizio F, Busatto S, Radeghieri A, Bresciani R, Bergese P, Monti E. Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3. Biochemistry 2017; 56:6401-6408. [PMID: 29039925 DOI: 10.1021/acs.biochem.7b00665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 μm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| |
Collapse
|
14
|
Cirillo F, Ghiroldi A, Fania C, Piccoli M, Torretta E, Tettamanti G, Gelfi C, Anastasia L. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes. J Biol Chem 2016; 291:10615-24. [PMID: 26987901 DOI: 10.1074/jbc.m116.719518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.
Collapse
Affiliation(s)
- Federica Cirillo
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Andrea Ghiroldi
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Chiara Fania
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Marco Piccoli
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Enrica Torretta
- the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Guido Tettamanti
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and
| | - Cecilia Gelfi
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Luigi Anastasia
- From the Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, 20097 San Donato Milanese, Milan and the Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
15
|
Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology 2015; 26:111-28. [DOI: 10.1093/glycob/cwv097] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
|
16
|
Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms. FEBS Lett 2015; 589:3221-7. [PMID: 26434718 DOI: 10.1016/j.febslet.2015.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 12/29/2022]
Abstract
Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders.
Collapse
|
17
|
Schengrund CL. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40:397-406. [DOI: 10.1016/j.tibs.2015.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
|
18
|
Role of plasma-membrane-bound sialidase NEU3 in clathrin-mediated endocytosis. Biochem J 2015; 470:131-44. [PMID: 26251452 DOI: 10.1042/bj20141550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids mainly expressed at the outer leaflet of the plasma membrane. Sialidase NEU3 is a key enzyme in the catabolism of gangliosides with its up-regulation having been observed in human cancer cells. In the case of CME (clathrin-mediated endocytosis), although this has been widely studied, the role of NEU3 and gangliosides in this cellular process has not yet been established. In the present study, we found an increased internalization of Tf (transferrin), the archetypical cargo for CME, in cells expressing complex gangliosides with high levels of sialylation. The ectopic expression of NEU3 led to a drastic decrease in Tf endocytosis, suggesting the participation of gangliosides in this process. However, the reduction in Tf endocytosis caused by NEU3 was still observed in glycosphingolipid-depleted cells, indicating that NEU3 could operate in a way that is independent of its action on gangliosides. Additionally, internalization of α2-macroglobulin and low-density lipoprotein, other typical ligands in CME, was also decreased in NEU3-expressing cells. In contrast, internalization of cholera toxin β-subunit, which is endocytosed by both clathrin-dependent and clathrin-independent mechanisms, remained unaltered. Kinetic assays revealed that NEU3 caused a reduction in the sorting of endocytosed Tf to early and recycling endosomes, with the Tf binding at the cell surface being also reduced. NEU3-expressing cells showed an altered subcellular distribution of clathrin adaptor AP-2 (adaptor protein 2), but did not reveal any changes in the membrane distribution of clathrin, PtdIns(4,5)P2 or caveolin-1. Overall, these results suggest a specific and novel role of NEU3 in CME.
Collapse
|
19
|
Lipina C, Nardi F, Grace H, Hundal HS. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell Signal 2015; 27:1742-50. [PMID: 26022181 DOI: 10.1016/j.cellsig.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Grace
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Hakomori SI, Handa K. GM3 and cancer. Glycoconj J 2015; 32:1-8. [DOI: 10.1007/s10719-014-9572-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/13/2023]
|