1
|
Chen S, Deng Y, Huang C, Xie X, Long Z, Lao S, Gao X, Wang K, Wang S, Li X, Liu Y, Xu C, Chen X, Huang W, Zhang J, Peng T, Li L, Chen Y, Lv X, Cai M, Li M. BSRF1 modulates IFN-β-mediated antiviral responses by inhibiting NF-κB activity via an IKK-dependent mechanism in Epstein-Barr virus infection. Int J Biol Macromol 2025; 306:141600. [PMID: 40024405 DOI: 10.1016/j.ijbiomac.2025.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The Epstein-Barr virus (EBV) encoded tegument protein BSRF1 plays a significant role in the processes of viral maturation and release, however, it's not clear whether BSRF1 is involved in the modulation of host innate immunity. In this study, we demonstrated that BSRF1 can inhibit interferon β (IFN-β) production by downregulating nuclear factor kappa B (NF-κB) activity and subsequently reducing the yield of inflammatory cytokines, thereby facilitating viral replication. Dual luciferase reporter assays indicated that BSRF1 may inhibit NF-κB signaling at the level of IKK or between IKK and p65, while co-immunoprecipitation experiments revealed its association with multiple critical host adaptor proteins. Mechanistically, BSRF1 hinders the phosphorylation of IκBα at Ser32/36 and K48-linked polyubiquitination, thereby preventing proteasome-mediated degradation of IκBα by disrupting the assembly of the regulatory subunits within the IKK complex. Although BSRF1 interacts with p65 and its N-terminal domain, it does not alter the formation of the p65/p50 heterodimer. Instead, it prevents the nuclear translocation of p65 by inhibiting the dissociation of IκBα from the NF-κB dimer. Collectively, these findings suggested that BSRF1 assists EBV's evasion of host innate immune system by inhibiting the antiviral response to IFN-β through the NF-κB signaling pathway, potentially contributing to the virus's ability to establish persistent infection and its association with tumorigenesis.
Collapse
Affiliation(s)
- Shengwen Chen
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yangxi Deng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Chen Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xiaolei Xie
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Zhiwei Long
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Shuxian Lao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinghong Gao
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shuai Wang
- Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Xiaoqing Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yintao Liu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Chunyan Xu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinru Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Wenzhuo Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Guangdong South China Vaccine, Guangzhou 510663, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Yonger Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xi Lv
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
2
|
DeCotiis-Mauro J, Han SM, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L, Bellofatto V, Lukac DM. The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner. J Virol 2024; 98:e0078824. [PMID: 38975769 PMCID: PMC11334469 DOI: 10.1128/jvi.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Collapse
Affiliation(s)
- Jennifer DeCotiis-Mauro
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Sun M. Han
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Giuseppina Marchesini-Tovar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Lianhua Jin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Vivian Bellofatto
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - David M. Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
3
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|