1
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Ibrahim ST, Abdelhamid MR, Lewis N, Baddour N, Adam AG. Role of fluid-phase complement system regulation in the development of hepatitis C virus-associated glomerulonephritis. PLoS One 2022; 17:e0276017. [PMID: 36227893 PMCID: PMC9560510 DOI: 10.1371/journal.pone.0276017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES It is not known why only some hepatitis C virus (HCV) infected patients develop glomerulonephritis (GN). Therefore, we investigated the role of soluble complement regulators in the development of HCV associated GN. METHODS Patients with HCV associated GN who were admitted to our nephrology unit between July 2016 and July 2018 were recruited to the study (group 1). Two other age and sex matched groups were studied as control groups: patients with HCV without GN (group 2) and healthy HCV negative volunteers (group 3). There were 26 participants in each of the three groups at the end of the recruitment period. An assay of serum fluid-phase complement regulators was performed using enzyme linked immunosorbent assay technique. Three complement single nucleotide polymorphisms (SNPs) were analyzed using real time polymerase chain reaction (Taqman; thermo fisher scientific): rs2230199 and rs1047286 for complement 3 (C3) and rs800292 for complement factor H (CFH). RESULTS Serum levels of complement 4 binding protein (C4BP) were significantly lower in group 1 (median 70 ng/ml) than in groups 2 (median 88.8 ng/ml) and 3 (median 82.8 ng/ml) with p value of 0.007. The minor allele (allele A) of rs800292 for CFH was significantly higher in group 2 and group 3 (G 54% and A 46%) than in group 1 (G 73% and A 27%), p = 0.04. CONCLUSIONS Low C4BP levels are associated with GN in HCV infected patients. In addition, rs800292 SNP in CFH protects against GN in patients with HCV.
Collapse
Affiliation(s)
- Sara T. Ibrahim
- Department of Internal Medicine and Nephrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt,* E-mail:
| | | | - Neveen Lewis
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed Baddour
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed G. Adam
- Department of Internal Medicine and Nephrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Kumar NA, Kunnakkadan U, Thomas S, Johnson JB. In the Crosshairs: RNA Viruses OR Complement? Front Immunol 2020; 11:573583. [PMID: 33133089 PMCID: PMC7550403 DOI: 10.3389/fimmu.2020.573583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Complement, a part of the innate arm of the immune system, is integral to the frontline defense of the host against innumerable pathogens, which includes RNA viruses. Among the major groups of viruses, RNA viruses contribute significantly to the global mortality and morbidity index associated with viral infection. Despite multiple routes of entry adopted by these viruses, facing complement is inevitable. The initial interaction with complement and the nature of this interaction play an important role in determining host resistance versus susceptibility to the viral infection. Many RNA viruses are potent activators of complement, often resulting in virus neutralization. Yet, another facet of virus-induced activation is the exacerbation in pathogenesis contributing to the overall morbidity. The severity in disease and death associated with RNA virus infections shows a tip in the scale favoring viruses. Growing evidence suggest that like their DNA counterparts, RNA viruses have co-evolved to master ingenious strategies to remarkably restrict complement. Modulation of host genes involved in antiviral responses contributed prominently to the adoption of unique strategies to keep complement at bay, which included either down regulation of activation components (C3, C4) or up regulation of complement regulatory proteins. All this hints at a possible “hijacking” of the cross-talk mechanism of the host immune system. Enveloped RNA viruses have a selective advantage of not only modulating the host responses but also recruiting membrane-associated regulators of complement activation (RCAs). This review aims to highlight the significant progress in the understanding of RNA virus–complement interactions.
Collapse
Affiliation(s)
- Nisha Asok Kumar
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Umerali Kunnakkadan
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
4
|
Ning G, Zhen LM, Xu WX, Li XJ, Wu LN, Liu Y, Xie C, Peng L. Suppression of complement component 2 expression by hepatitis B virus contributes to the viral persistence in chronic hepatitis B patients. J Viral Hepat 2020; 27:1071-1081. [PMID: 32384193 DOI: 10.1111/jvh.13319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Previously, we identified rare missense mutations of complement component 2 (C2) to be associated with chronic hepatitis B (CHB) by exome sequencing. However, up to now, little is known about the role of C2 in CHB. In the present study, we aimed to perform preliminary exploration about the underlying role of C2 in CHB. Serum samples from 113 CHB patients and 30 healthy controls, and liver biopsy samples from 5 CHB patients and 3 healthy controls were obtained from the Third Affiliated Hospital of Sun Yat-sen University between January 2018 and January 2020. HepG2.2.15 and HepG2-NTCP cells infected with HBV were used to examine the influence of HBV infection on C2 expression. IFN-treated HepG2.2.15 cells were used to assess the effect of IFN on C2 expression. C2-overexpressing or C2-silencing HepG2.2.15 cells were constructed to evaluate the effect of C2 on HBV infection. Western blot and RT-qPCR were used to measure C2 expression in biopsy samples. HBeAg and HBsAg in culture medium and C2 of serum samples were measured by ELISA. HBV-DNA was measured by RT-qPCR. GSE84044, GSE54747 and GSE27555 were downloaded from GEO. C2 expression in liver tissue and serum was significantly lower in CHB patients compared to healthy controls, and significantly higher C2 expression was found in CHB patients with lower ALT, AST, Scheuer grade and stages compared to CHB patients with higher ALT, AST, Scheuer grades and Scheuer stage. Besides, HBV infection could decrease C2 expression by increasing expression of Sp1 and reducing expression of HDAC4. Moreover, C2 could enhance the anti-virus effect of IFN on HepG2.2.15 cells and also inhibit HBV replication in HepG2.2.15 cells by inhibition of p38-MAPK signalling pathway. In conclusion, HBV may promote viral persistence in CHB patients by inhibiting C2 expression.
Collapse
Affiliation(s)
- Gang Ning
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Min Zhen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wen-Xiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue-Jun Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Na Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Maloney BE, Perera KD, Saunders DRD, Shadipeni N, Fleming SD. Interactions of viruses and the humoral innate immune response. Clin Immunol 2020; 212:108351. [PMID: 32028020 DOI: 10.1016/j.clim.2020.108351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022]
Abstract
The innate immune response is crucial for defense against virus infections where the complement system, coagulation cascade and natural antibodies play key roles. These immune components are interconnected in an intricate network and are tightly regulated to maintain homeostasis and avoid uncontrolled immune responses. Many viruses in turn have evolved to modulate these interactions through various strategies to evade innate immune activation. This review summarizes the current understanding on viral strategies to inhibit the activation of complement and coagulation cascades, evade natural antibody-mediated clearance and utilize complement regulatory mechanisms to their advantage.
Collapse
Affiliation(s)
- Bailey E Maloney
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Danielle R D Saunders
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Naemi Shadipeni
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Abstract
A prominent role for complement has been identified in the linkage of innate and adaptive immunity. The liver is the main source of complement and hepatocytes are the primary sites for synthesis of complement components in vivo. We have discovered that hepatitis C virus (HCV) impairs C4 and C3 synthesis. Liver damage may diminish capacity of complement synthesis in patients. However, we observed that the changes in measured complement components in chronically HCV infected patients do not correlate with liver fibrosis or rheumatoid factor present in the blood, serum albumin, or alkaline phosphatase levels. Complement component C3 is of critical importance in B cell activation and T cell-dependent antibody responses. C3 activity is required for optimal expansion of CD8+T cells during a systemic viral infection. Deficiencies in complement may predispose patients to infections via ineffective opsonization, and defects in lytic activity via membrane attack complex. Interestingly, C9 is significantly reduced at the mRNA level in chronically HCV infected liver biopsy specimens, while many hepatocyte derived complement components (C6, C8, Factor B, MASP1, and MBL) and unrelated genes remain mostly unaffected. This implies an HCV specific effect, not a global effect from liver disease.
Collapse
Affiliation(s)
- Young-Chan Kwon
- Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
- Institut Pasteur Korea, Daejeon, Republic of Korea
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA.
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Patra T, Ray RB, Ray R. Strategies to Circumvent Host Innate Immune Response by Hepatitis C Virus. Cells 2019; 8:E274. [PMID: 30909456 PMCID: PMC6468774 DOI: 10.3390/cells8030274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Innate immune responses generate interferons, proinflammatory cytokines, complement activation, and natural killer (NK) cell response. Ultimately, this leads to the induction of a robust virus-specific adaptive immunity. Although the host innate immune system senses and responds to eliminate virus infection, hepatitis C virus (HCV) evades immune attack and establishes persistent infection within the liver. Spontaneous clearance of HCV infection is associated with a prompt induction of innate immunity generated in an infected host. In this review, we have highlighted the current knowledge of our understanding of host⁻HCV interactions, especially for endogenous interferon production, proinflammatory response, NK cell response, and complement activation, which may impair the generation of a strong adaptive immune response for establishment of chronicity. The information may provide novel strategies in augmenting therapeutic intervention against HCV.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, MO 63104, USA.
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
- Molecular Microbiology & Immunology, Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
8
|
El-Shamy A, Branch AD, Schiano TD, Gorevic PD. The Complement System and C1q in Chronic Hepatitis C Virus Infection and Mixed Cryoglobulinemia. Front Immunol 2018; 9:1001. [PMID: 29910796 PMCID: PMC5992393 DOI: 10.3389/fimmu.2018.01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
The complement system bridges innate and adaptive immunity against microbial infections, with viral infection being a major trigger. Activation of the classical, alternative, and lectin pathways have been reported in chronic hepatitis C virus (HCV) infection and/or cryoglobulinemia. HCV infection leads to dysregulation of complement-mediated immune responses. Clinical and experimental evidence support involvement of complement in intra- and extrahepatic manifestations of HCV infection, such as liver fibrosis and type II cryoglobulinemia. In this review, we summarize studies that have investigated the interplay between HCV and the complement system to establish chronic infection and autoimmunity, as well as the association between HCV pathogenesis and abnormal complement profiles. Several unanswered questions are highlighted which suggest additional informative lines of investigation.
Collapse
Affiliation(s)
- Ahmed El-Shamy
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pharmaceutical and Biological Sciences, California Northstate University, Elk Grove, CA, United States
| | - Andrea D Branch
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Thomas D Schiano
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter D Gorevic
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Silva AA, Catarino SJ, Boldt ABW, Pedroso MLA, Beltrame MH, Messias-Reason IJ. Effects of MASP2 haplotypes and MASP-2 levels in hepatitis C-infected patients. Int J Immunogenet 2018; 45:118-127. [PMID: 29675993 DOI: 10.1111/iji.12371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Abstract
Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) are components of the lectin pathway, which activate the complement system after binding to the HCV structural proteins E1 and E2. We haplotyped 11 MASP2 polymorphisms in 103 HCV patients and 205 controls and measured MASP-2 levels in 67 HCV patients and 77 controls to better understand the role of MASP-2 in hepatitis C susceptibility and disease severity according to viral genotype and fibrosis levels. The haplotype block MASP2*ARDP was associated with protection against HCV infection (OR = 0.49, p = .044) and lower MASP-2 levels in controls (p = .021), while haplotype block AGTDVRC was significantly increased in patients (OR = 7.58, p = .003). MASP-2 levels were lower in patients than in controls (p < .001) and in patients with viral genotype 1 or 4 (poor responders to treatment) than genotype 3 (p = .022) and correlated inversely with the levels of alkaline phosphatase, especially in individuals with fibrosis 3 or 4 (R = -.7, p = .005). MASP2 gene polymorphisms modulate basal gene expression, which may influence the quality of complement response against HCV. MASP-2 levels decrease during chronic disease, independently of MASP2 genotypes, most probably due to consumption and attenuation mechanisms of viral origin and by the reduced liver function, the site of MASP-2 production.
Collapse
Affiliation(s)
- Amanda A Silva
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sandra J Catarino
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Angelica B W Boldt
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Lucia A Pedroso
- Departamento de Clínica Médica, Hospital de Clínicas, Serviço de Hepatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcia H Beltrame
- Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Iara J Messias-Reason
- Departamento de Patologia Médica, Hospital de Clínicas, Laboratório de Imunopatologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
10
|
Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, Srivastava A, Saha S, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis E Virus. mSystems 2018; 3:e00135-17. [PMID: 29404423 PMCID: PMC5781259 DOI: 10.1128/msystems.00135-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Comprehensive knowledge of host-pathogen interactions is central to understand the life cycle of a pathogen and devise specific therapeutic strategies. Protein-protein interactions (PPIs) are key mediators of host-pathogen interactions. Hepatitis E virus (HEV) is a major cause of viral hepatitis in humans. Recent reports also demonstrate its extrahepatic manifestations in the brain. Toward understanding the molecular details of HEV life cycle, we screened human liver and fetal brain cDNA libraries to identify the host interaction partners of proteins encoded by genotype 1 HEV and constructed the virus-host PPI network. Analysis of the network indicated a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed the presence of multiple host translation regulatory factors in the viral translation/replication complex. Depletion of host translation factors such as eIF4A2, eIF3A, and RACK1 significantly reduced the viral replication, whereas eIF2AK4 depletion had no effect. These findings highlight the ingenuity of the pathogen in manipulating the host machinery to its own benefit, a clear understanding of which is essential for the identification of strategic targets and development of specific antivirals against HEV. IMPORTANCE Hepatitis E virus (HEV) is a pathogen that is transmitted by the fecal-oral route. Owing to the lack of an efficient laboratory model, the life cycle of the virus is poorly understood. During the course of infection, interactions between the viral and host proteins play essential roles, a clear understanding of which is essential to decode the life cycle of the virus. In this study, we identified the direct host interaction partners of all HEV proteins and generated a PPI network. Our functional analysis of the HEV-human PPI network reveals a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed an essential role of several host factors in HEV replication. Collectively, the results from our study provide a vast resource of PPI data from HEV and its human host and identify the molecular components of the viral translation/replication machinery.
Collapse
Affiliation(s)
- Chandru Subramani
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Vidya P. Nair
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | | | - Madhu Pareek
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
11
|
Huang SJ, Cheng CL, Chen JR, Gong HY, Liu W, Wu JL. Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation. Biochem Biophys Res Commun 2017; 490:1052-1058. [PMID: 28668389 DOI: 10.1016/j.bbrc.2017.06.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/30/2022]
Abstract
Liver cancer is the second leading cause of death worldwide. As such, establishing animal models of the disease is important for both basic and translational studies that move toward developing new therapies. Gankyrin is a critical oncoprotein in the genetic control of liver pathology. In order to evaluate the oncogenic role of gankyrin without cancer cell inoculation and drug treatment, we overexpressed gankyrin under the control of the fabp10a promoter. A Tet-Off system was used to drive expression in hepatocytes. At seven to twelve months of age, gankyrin transgenic fish spontaneously incurred persistent hepatocyte damage, steatosis, cholestasis, cholangitis, fibrosis and hepatic tumors. The tumors were both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). ICC is the second most frequent primary liver cancer in human patients and the first to develop in this tumor model. We further investigated the role of complement C3, a central molecule of the complement system, and found the expression levels of both in mRNA and protein are decreased during tumorigenesis. Together, these findings suggest that gankyrin can promote malignant transformation of liver cells in the context of persistent liver injury. This transformation may be related to compensatory proliferation and the inflammatory microenvironment. The observed decrease in complement C3 may allow transforming cells to escape coordinated induction of the immune response. Herein, we demonstrate an excellent zebrafish model for liver cancers that will be useful for studying the molecular mechanisms of tumorgenesis.
Collapse
Affiliation(s)
- Shin-Jie Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Lun Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; College of Medicine, Chang Gung Univeristy, Taoyuan 333, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Leih Wu
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan; Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
12
|
Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. Complement Evasion Strategies of Viruses: An Overview. Front Microbiol 2017; 8:1117. [PMID: 28670306 PMCID: PMC5472698 DOI: 10.3389/fmicb.2017.01117] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation - either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae.
Collapse
Affiliation(s)
- Palak Agrawal
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Renuka Nawadkar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Hina Ojha
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Jitendra Kumar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
13
|
Abou-El-Hassan H, Zaraket H. Viral-derived complement inhibitors: current status and potential role in immunomodulation. Exp Biol Med (Maywood) 2016; 242:397-410. [PMID: 27798122 DOI: 10.1177/1535370216675772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complement system is one of the body's major innate immune defense mechanisms in vertebrates. Its function is to detect foreign bodies and promote their elimination through opsonisation or lysis. Complement proteins play an important role in the immunopathogenesis of several disorders. However, excessive complement activation does not confer more protection but instead leads to several autoimmune and inflammatory diseases. With inappropriate activation of the complement system, activated complement proteins and glycoproteins may damage both healthy and diseased tissues. Development of complement inhibitors represents an effective approach in controlling dysregulated complement activity and reducing disease severity, yet few studies have investigated the nature and role of novel complement inhibitory proteins of viral origin. Viral complement inhibitors have important implications in understanding the importance of complement inhibition and their role as a promising novel therapeutic approach in diseases caused by dysregulated complement function. In this review, we discuss the role and importance of complement inhibitors derived from several viruses in the scope of human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- 1 Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- 2 Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,3 Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Kwon YC, Kim H, Meyer K, Di Bisceglie AM, Ray R. Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus. THE JOURNAL OF IMMUNOLOGY 2016; 197:1127-36. [PMID: 27357152 DOI: 10.4049/jimmunol.1600631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon-harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture-conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells.
Collapse
Affiliation(s)
- Young-Chan Kwon
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104; and
| | - Hangeun Kim
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104; and
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104; and
| | | | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104; and Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63140
| |
Collapse
|
15
|
Evasion and interactions of the humoral innate immune response in pathogen invasion, autoimmune disease, and cancer. Clin Immunol 2015; 160:244-54. [PMID: 26145788 DOI: 10.1016/j.clim.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023]
Abstract
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how Gram positive bacteria, viruses, cancer, and the autoimmune conditions systemic lupus erythematosus and anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that an interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development.
Collapse
|
16
|
Ferrín G, Rodríguez-Perálvarez M, Aguilar-Melero P, Ranchal I, Llamoza C, Linares CI, González-Rubio S, Muntané J, Briceño J, López-Cillero P, Montero-Álvarez JL, de la Mata M. Plasma protein biomarkers of hepatocellular carcinoma in HCV-infected alcoholic patients with cirrhosis. PLoS One 2015; 10:e0118527. [PMID: 25789864 PMCID: PMC4366144 DOI: 10.1371/journal.pone.0118527] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers in the world, with limited options for treatment unless timely diagnosed. Chronic hepatitis C virus (HCV) infection and persistent heavy alcohol consumption are independent risk factors for HCC development, which may induce a specific protein expression pattern different from those caused separately. The aim of the study was to identify protein biomarkers for the detection of HCC in HCV-infected alcoholic patients with cirrhosis in order to improve survival. We compared protein expression profiles of plasma samples from 52 HCV-infected alcoholic patients with and without HCC, using 2-D DIGE coupled with MALDI-TOF/TOF mass spectrometry. The 2-D DIGE results were analyzed statistically using Decyder software, and verified by western-blot and ELISA. In plasma samples from HCV-infected alcoholic patients, we found significantly differential expression profiles of carboxypeptidase-N, ceruloplasmin (CP), complement component 4a (C4a), fibrinogen-alpha (FGA), immunoglobulin mu chain C region, serum albumin, and serum paraoxonase/arylesterase 1 (PON1). Deregulation of plasma/serum levels of the identified proteins was associated to HCV, ethanol consumption, and/or HCC progression. In the validation through ELISA, C4a serum concentration was increased in HCC patients (2.4±1 ng/mg vs 1.8±0.6 ng/mg; p = 0.029), being the only independent predictor of HCC in the multivariate analysis (OR = 2.15; p = 0.015), with an AUROC = 0.70. The combination of C4a, FGA, CP and PON1 improved slightly the predictive ability of C4a alone (AUROC 0.81). In conclusion, we identified proteins related to acute-phase response, oxidative stress, or immune response, whose differential expression in plasma may be attributed to the presence of HCC. Among them, C4a, and its combination with CP, FGA and PON1, could be considered as potentially reliable biomarkers for the detection of HCC in HCV-infected alcoholic patients.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Patricia Aguilar-Melero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Isidora Ranchal
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Camilo Llamoza
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Clara I. Linares
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Sandra González-Rubio
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Jordi Muntané
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Javier Briceño
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro López-Cillero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José Luis Montero-Álvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Manuel de la Mata
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|