1
|
Liu C, Song Y, Wang X, Lai Z, Li C, Wan P, Xu N, Huang D, Liu Y, Wang Z. The Key Role of VEGF in the Cross Talk between Pterygium and Dry Eye and Its Clinical Significance. Ophthalmic Res 2020; 63:320-331. [PMID: 31927552 DOI: 10.1159/000503636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine whether dry eye severity is a risk factor for pterygium activity and whether vascular endothelial growth factor (VEGF) is crucial in the cross talk between pterygium and dry eye. METHODS A total of 103 patients with primary pterygium (Pteg) were included in the study group; they were divided into 2 groups according to the complication of dry eye (DE) (Pteg + DE group, Pteg - DE group). Further, 60 patients with just dry eye (DE group) and 60 normal individuals (normal) were included as 2 control groups. DE severity and pterygium activity were measured, and unstimulated tear samples and pterygium tissues were collected for cytokine detection. RESULTS (1) Tear detection: VEGF expression increased in the Pteg + DE group compared to the Pteg - DE, DE, and normal control groups; VEGF was especially increased in the active Pteg + DE group. VEGF concentration was positively correlated with pterygium activity. (2) Tissue detection: the mRNA expression of VEGF was upregulated in the active pterygium group. CONCLUSIONS Inflammation played an important role in the development of dry eye and pterygium. VEGF was the core molecule in the cross talk, which might explain the high incidence of the coexistence of these 2 diseases.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoguang Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pengxia Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nuo Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China,
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Retraction: Nuclear factor kappa-B signaling is integral to ocular neovascularization in ischemia-independent microenvironment. PLoS One 2019; 14:e0227327. [PMID: 31887204 PMCID: PMC6936779 DOI: 10.1371/journal.pone.0227327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
3
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
4
|
Zavorins A, Silova A, Voicehovska J, Kisis J. Rubeosis faciei diabeticorum is not associated with oxidative stress and skin autofluorescence. An Bras Dermatol 2019; 94:561-566. [PMID: 31777357 PMCID: PMC6857565 DOI: 10.1016/j.abd.2019.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Rubeosis faciei diabeticorum is a persistent facial erythema in patients with diabetes mellitus. The actual pathogenesis has not been studied. However, it is speculated to be a cutaneous diabetic microangiopathy. Objective Examine the correlation between the severity of facial erythema and the possible causes of microvascular diabetic complications, namely oxidative stress, hyperglycemia, and cutaneous accumulation of advanced glycation end-products . Methods Patients diagnosed with Type 2 diabetes mellitus (n = 32) were enrolled in the study. The facial erythema index was measured using the Mexameter MX18; cutaneous accumulation of advanced glycation end-products was estimated by measuring skin auto fluorescence with the AGE Reader (DiagnOptics Technologies B.V. – Groningen, Netherlands). Glycated haemoglobin, total antioxidant status, and malondialdehyde were measured in blood by TBARS assay. The correlation between the selected variables was assessed by Spearman's rank test; p ≤ 0.05 was considered statistically significant. Results There was a statistically significant correlation between total antioxidant status and the facial erythema index (ρ = 0.398, p = 0.024). Malondialdehyde, skin autofluorescence, glycated haemoglobin, body mass index, duration of diabetes, and age did not demonstrate statistically significant correlation with the facial erythema index. Study limitations This is an observational study. Elevation of total antioxidant status could have been caused by several factors that might have also influenced the development of rubeosis faciei, including hyperbilirubinemia and hyperuricemia. Conclusions The results contradicted expectations. Total antioxidant status correlated positively with facial erythema index; however, there was no correlation with oxidative stress and skin autofluorescence. Further investigations should be conducted to reveal the cause of total antioxidant status elevation in patients with rubeosis faciei.
Collapse
Affiliation(s)
- Aleksejs Zavorins
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia.
| | - Alise Silova
- Scientific Laboratory of Biochemistry, Riga Stradins University, Riga, Latvia
| | | | - Janis Kisis
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
5
|
MicroRNA-21 abrogates palmitate-induced cardiomyocyte apoptosis through caspase-3/NF-κB signal pathways. Anatol J Cardiol 2019; 20:336-346. [PMID: 30504734 PMCID: PMC6287441 DOI: 10.14744/anatoljcardiol.2018.03604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: The aim of the study was to investigate the role of microRNA-21 (miR-21) in cardiomyocyte apoptosis and to determine a possible mechanism. Methods: H9c2 embryonic rat heart-derived cells were used in the study. Cell viability was determined using the 3-(4.5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and flow cytometry was used to evaluate cell apoptosis. Reverse transcription-polymerase chain reaction and western blot assays were used to detect mRNA and protein expression of the apoptosis-related proteins and miR-21. ELISA was used to detect reactive oxygen species (ROS). Results: Palmitate exposure greatly reduced miR-21 expression in cardiomyocytes. Apoptosis increased when miR-21 was inhibited with or without palmitate exposure. Consistently, reduced apoptosis was observed when miR-21 was overexpressed in cardiomyocytes. Caspase-3 activity was reduced after palmitate exposure. Bcl-2 protein expression was increased in H9c2 cells when transfected with the miR-21 mimic. MiR-21 overexpression alone did not induce ROS or DNA fragmentation; however, in conjunction with palmitate exposure, miR-21 mimic reduced ROS and DNA fragmentation. Moreover, palmitate administration overcame the antioxidant effect of 3 mM N-acetylcysteine to significantly inhibit apoptosis, DNA fragmentation, and caspase-3 activity. The exposure to palmitate greatly reduced p65 and p-p38 expression in the nucleus. A p38 inhibitor had no effect on the expression of Bcl-2 and cleaved caspase-3 in H9c2 cells alone; however, when combined with exposure to palmitate the p38 inhibitor induced Bcl-2 expression and inhibited caspase-3 activity. The p38 inhibitor by itself did not induce apoptosis, ROS production, or DNA fragmentation in H9c2 cells, but when palmitate was included with the p38 inhibitor, apoptosis, ROS production, and DNA fragmentation were reduced. Conclusion: miR-21 protects cardiomyocytes from apoptosis that is induced by palmitate through the caspase-3/NF-κB signal pathways.
Collapse
|
6
|
Baliño P, Gómez-Cadenas A, López-Malo D, Romero FJ, Muriach M. Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies? Antioxidants (Basel) 2019; 8:E104. [PMID: 30999583 PMCID: PMC6523110 DOI: 10.3390/antiox8040104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic retinopathies (IRs) are the main cause of severe visual impairment and sight loss, and are characterized by loss of blood vessels, accompanied by hypoxia, and neovascularization. Actual therapies, based on anti-vascular endothelial growth factor (VEGF) strategies, antioxidants or anti-inflammatory therapies are only partially effective or show some adverse side effects. Abscisic acid (ABA) is a phytohormone present in vegetables and fruits that can be naturally supplied by the dietary intake and has been previously studied for its benefits to human health. It has been demonstrated that ABA plays a key role in glucose metabolism, inflammation, memory and tumor growth. This review focuses on a novel and promising role of ABA as a potential modulator of angiogenesis, oxidative status and inflammatory processes in the retina, which are the most predominant characteristics of the IRs. Thus, this nutraceutical compound might shed some light in new therapeutic strategies focused in the prevention or amelioration of IRs-derived pathologies.
Collapse
Affiliation(s)
- Pablo Baliño
- Unitat predepartamental de Medicina, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castellón de la Plana, Spain.
| | - Daniel López-Malo
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain.
| | - María Muriach
- Universitat Jaume I, Unitat predepartamental de Medicina, Avda/Sos Baynat, S/N, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
7
|
Yan Z, An J, Shang Q, Zhou N, Ma J. YC-1 Inhibits VEGF and Inflammatory Mediators Expression on Experimental Central Retinal Vein Occlusion in Rhesus Monkey. Curr Eye Res 2018; 43:526-533. [PMID: 29364731 DOI: 10.1080/02713683.2018.1426102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhipeng Yan
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jianbin An
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Nalei Zhou
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jingxue Ma
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| |
Collapse
|
8
|
Chen L, Ren Z, Wei X, Wang S, Wang Y, Cheng Y, Gao H, Liu H. Losartan protects against cerebral ischemia/reperfusion-induced apoptosis through β-arrestin1-mediated phosphorylation of Akt. Eur J Pharmacol 2017; 815:98-108. [DOI: 10.1016/j.ejphar.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023]
|
9
|
Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ, Kang YH. Dietary Compound Chrysin Inhibits Retinal Neovascularization with Abnormal Capillaries in db/db Mice. Nutrients 2016; 8:nu8120782. [PMID: 27918469 PMCID: PMC5188437 DOI: 10.3390/nu8120782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) develops in a significant proportion of patients with chronic diabetes, characterized by retinal macular edema and abnormal retinal vessel outgrowth leading to vision loss. Chrysin, a naturally-occurring flavonoid found in herb and honeycomb, has anti-inflammatory, antioxidant, and anti-cancer properties. This study sought to determine the protective effects of chrysin on retinal neovascularization with abnormal vessels and blood-retinal barrier (BRB) breakdown in 33 mM glucose-exposed human retinal endothelial cells and in db/db mouse eyes. High glucose caused retinal endothelial apoptotic injury, which was inhibited by submicromolar chrysin. This compound diminished the enhanced induction of HIF-1α, vascular endothelial growth factor (VEGF), and VEGF receptor-2 (VEGFR2) in high glucose-exposed retinal endothelial cells. Consistently, oral administration of 10 mg/kg chrysin reduced the induction of these proteins in db/db mouse eye tissues. In addition, chrysin restored the decrement of VE-cadherin and ZO-1 junction proteins and PECAM-1 in hyperglycemia-stimulated retinal endothelial cells and diabetic mouse retina, possibly maintaining tight cell-cell interactions of endothelial cells and pericytes. Anti-apoptotic chrysin reduced the up-regulation of Ang-1, Ang-2, and Tie-2 crucial to retinal capillary occlusion and BRB permeability. Furthermore, orally treating chrysin inhibited acellular capillary formation, neovascularization, and vascular leakage observed in diabetic retinas. These observations demonstrate, for the first time, that chrysin had a capability to encumber diabetes-associated retinal neovascularization with microvascular abnormalities and BRB breakdown.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
10
|
Tan S, Li L, Chen T, Chen X, Tao L, Lin X, Tao J, Huang X, Jiang J, Liu H, Wu B. β-Arrestin-1 protects against endoplasmic reticulum stress/p53-upregulated modulator of apoptosis-mediated apoptosis via repressing p-p65/inducible nitric oxide synthase in portal hypertensive gastropathy. Free Radic Biol Med 2015; 87:69-83. [PMID: 26119788 DOI: 10.1016/j.freeradbiomed.2015.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/12/2023]
Abstract
Portal hypertensive gastropathy (PHG) is a serious cause of bleeding in patients, and is associated with portal hypertension. β-Arrestins (β-arrestin-1 and β-arrestin-2) are well-established mediators of endocytosis of G-protein-coupled receptors (GPCRs), ubiquitination, and G-protein-independent signaling. The role of β-arrestin-1 (β-arr1) in mucosal apoptosis in PHG remains unclear. The aim of this study was to investigate the involvement of β-arr1 in PHG via its regulation of endoplasmic reticulum (ER) stress/p53-upregulated modulator of apoptosis (PUMA) apoptotic signaling. Gastric mucosal injury and apoptosis were studied in PHG patients and in PHG mouse models. The induction of β-arr1 and the ER stress/PUMA signaling pathway were investigated, and the mechanisms of β-arr1-regulated gastric mucosal apoptosis were analyzed in vivo and in vitro experiments. β-arr1 and ER stress/PUMA signaling elements were markedly induced in the gastric mucosa of PHG patients and mouse models. Blockage of ER stress demonstrably attenuated the mucosal apoptosis of PHG, while targeted deletion of β-arr1 significantly aggravated the injury and ER stress/PUMA-mediated apoptosis. β-arr1 limited the activation of p65 to repress TNF-α-induced inducible nitric oxide synthase (iNOS) expression and NO release, which could regulate ER stress/PUMA-mediated mucosal apoptosis in PHG. In vivo and in vitro experiments further demonstrated that β-arr1 protected against mucosal apoptosis by repressing TNF-α-induced iNOS expression via inhibiting the activation of p65. These results indicated that β-arr1 regulated ER stress/PUMA-induced mucosal epithelial apoptosis through suppression of the TNF-α/p65/iNOS signaling pathway activation and that β-arr1 is a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leijia Li
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tingting Chen
- Department of Gastroenterology, The No. 2 Hospital of Xiamen, Xiamen, China
| | - Xiaoliang Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianyi Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoli Huang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, Götz W, Frede S. Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases. Mediators Inflamm 2015; 2015:438085. [PMID: 25861162 PMCID: PMC4377543 DOI: 10.1155/2015/438085] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/08/2015] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis), a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS) of P. gingivalis (LPS-PG) and hypoxia in periodontal ligament (PDL) cells. The relevant transcription factors nuclear factor-kappa B (NF-κB) and hypoxia inducible factor-1 (HIF-1) were determined. In addition, we analyzed the expression of interleukin- (IL-) 1β, matrix metalloproteinase-1 (MMP-1), and vascular endothelial growth factor (VEGF) in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes.
Collapse
Affiliation(s)
- L. Gölz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Memmert
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - B. Rath-Deschner
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - A. Jäger
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - T. Appel
- Center of Dento-Maxillo-Facial Medicine, University Hospital of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - G. Baumgarten
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - W. Götz
- Department of Orthodontics, Dental Clinic, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| | - S. Frede
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Welschnonnenstraße 17, 53111 Bonn, Germany
| |
Collapse
|