1
|
Rentschler S, Doss S, Kaiser L, Weinschrott H, Kohl M, Deigner HP, Sauer M. Metabolic Biomarkers of Liver Failure in Cell Models and Patient Sera: Toward Liver Damage Evaluation In Vitro. Int J Mol Sci 2024; 25:13739. [PMID: 39769500 PMCID: PMC11677895 DOI: 10.3390/ijms252413739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent research has concentrated on the development of suitable in vitro cell models for the early identification of hepatotoxicity during drug development in order to reduce the number of animal models and to obtain a better predictability for hepatotoxic reactions in humans. The aim of the presented study was to identify translational biomarkers for acute liver injury in human patients that can serve as biomarkers for hepatocellular injury in vivo and in vitro in simple cell models. Therefore, 188 different metabolites from patients with acute-on-chronic liver failure before and after liver transplantation were analyzed with mass spectrometry. The identified potential metabolic biomarker set, including acylcarnitines, phosphatidylcholines and sphingomyelins, was used to screen primary and permanent hepatocyte culture models for their ability to model hepatotoxic responses caused by different drugs with known and unknown hepatotoxic potential. The results obtained suggest that simple in vitro cell models have the capability to display metabolic responses in biomarkers for liver cell damage in course of the treatment with different drugs and therefore can serve as a basis for in vitro models for metabolic analysis in drug toxicity testing. The identified metabolites should further be evaluated for their potential to serve as a metabolic biomarker set indicating hepatocellular injury in vitro as well as in vivo.
Collapse
Affiliation(s)
- Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Sandra Doss
- Fraunhofer Institute IZI (Leipzig), Department Rostock, Schillingallee 68, 18057 Rostock, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Helga Weinschrott
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Martin Sauer
- Fraunhofer Institute IZI (Leipzig), Department Rostock, Schillingallee 68, 18057 Rostock, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Schillingallee 35, 18057 Rostock, Germany
- Center for Anesthesiology and Intensive Care Medicine, Hospital of Magdeburg, Birkenallee 34, 39130 Magdeburg, Germany
| |
Collapse
|
2
|
Blaess M, Csuk R, Schätzl T, Deigner HP. Elongation of Very Long-Chain Fatty Acids (ELOVL) in Atopic Dermatitis and the Cutaneous Adverse Effect AGEP of Drugs. Int J Mol Sci 2024; 25:9344. [PMID: 39273293 PMCID: PMC11395647 DOI: 10.3390/ijms25179344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease, in particular among infants, and is characterized, among other things, by a modification in fatty acid and ceramide composition of the skin's stratum corneum. Palmitic acid and stearic acid, along with C16-ceramide and 2-hydroxy C16-ceramide, occur strikingly in AD. They coincide with a simultaneous decrease in very long-chain ceramides and ultra-long-chain ceramides, which form the outermost lipid barrier. Ceramides originate from cellular sphingolipid/ceramide metabolism, comprising a well-orchestrated network of enzymes involving various ELOVLs and CerSs in the de novo ceramide synthesis and neutral and acid CERase in degradation. Contrasting changes in long-chain ceramides and very long-chain ceramides in AD can be more clearly explained by the compartmentalization of ceramide synthesis. According to our hypothesis, the origin of increased C16-ceramide and 2-hydroxy C16-ceramide is located in the lysosome. Conversely, the decreased ultra-long-chain and very long-chain ceramides are the result of impaired ELOVL fatty acid elongation. The suggested model's key elements include the lysosomal aCERase, which has pH-dependent long-chain C16-ceramide synthase activity (revaCERase); the NADPH-activated step-in enzyme ELOVL6 for fatty acid elongation; and the coincidence of impaired ELOVL fatty acid elongation and an elevated lysosomal pH, which is considered to be the trigger for the altered ceramide biosynthesis in the lysosome. To maintain the ELOVL6 fatty acid elongation and the supply of NADPH and ATP to the cell, the polyunsaturated PPARG activator linoleic acid is considered to be one of the most suitable compounds. In the event that the increase in lysosomal pH is triggered by lysosomotropic compounds, compounds that disrupt the transmembrane proton gradient or force the breakdown of lysosomal proton pumps, non-HLA-classified AGEP may result.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| |
Collapse
|
3
|
Zhou Y, Lv R, Ye RD, Ren R, Yu L. The 3-hydroxyacyl-CoA dehydratase 1/2 form complex with trans-2-enoyl-CoA reductase involved in substrates transfer in very long chain fatty acid elongation. Biochem Biophys Res Commun 2024; 704:149588. [PMID: 38422897 DOI: 10.1016/j.bbrc.2024.149588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Very long-chain fatty acids (VLCFAs) are fatty acids with a carbon chain length greater than 18 carbons (>C18) and exhibit various functions, such as in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function, and anti-inflammation. VLCFAs are absorbed by dietary or elongated from endogenous hexadecanoyl acids (C16). Similar to long-chain fatty acid synthesis, VLCFAs elongation begins with acyl-CoA and malonyl-CoA as sources, and the length of the acyl chain is extended by two carbon units in each cycle. However, the VLCFAs elongation machinery is located in ER membrane and consists of four components, FA elongase (ELOVL), 3-ketoacyl-CoA reductase (KAR), 3-hydroxyacyl-CoA dehydratase (HACD), and trans-2-enoyl-CoA reductase (TECR), which is different with the long-chain fatty acid machinery fatty acid synthase (FAS) complex. Although the critical components in the elongation cycle are identified, the detailed catalytic and regulation mechanisms are still poorly understood. Here, we focused on the structural and biochemical analysis of TECR-associated VLCFA elongation reactions. Firstly, we identified a stable complex of human HACD2-TECR based on extensive in vitro characterizations. Combining computational modeling and biochemical analysis, we confirmed the critical interactions between TECR and HACD1/2. Then, we proposed the putative substrate binding sites and catalytic residues for TECR and HACD2. Besides, we revealed the structural similarities of HACD with ELOVLs and proposed the possible competition mechanism of TECR-associated complex formation.
Collapse
Affiliation(s)
- Youli Zhou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Rui Lv
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Kato R, Takenaka Y, Ohno Y, Kihara A. Catalytic mechanism of trans-2-enoyl-CoA reductases in the fatty acid elongation cycle and its cooperative action with fatty acid elongases. J Biol Chem 2024; 300:105656. [PMID: 38224948 PMCID: PMC10864336 DOI: 10.1016/j.jbc.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.
Collapse
Affiliation(s)
- Ryoya Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Takenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Shang H, Liu S, Xu C, Liu S, Liu H. Overexpression of genes involved in fatty acid biosynthesis increases lipid content in the NaHCO 3-tolerant Chlorella sp. JB6. Microbiol Spectr 2024; 12:e0318423. [PMID: 38047695 PMCID: PMC10783073 DOI: 10.1128/spectrum.03184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Fatty acid (FA) contents can be altered in Chlorella JB6 in the presence of sodium bicarbonate (NaHCO3). Overexpression of the FA de novo synthesis genes inhibited the growth of JB6 cells and decreased their resistance to NaHCO3, but these transgenic JB6 strains could grow in a medium containing as high as 300 mM NaHCO3. In JB6, ectopic expression of the FA de novo synthesis genes increased the synthesis of very long-chain saturated FA (> 20C).
Collapse
Affiliation(s)
- Hongna Shang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Songsong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Chenghui Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| |
Collapse
|
6
|
Weiner J, Dommel S, Gebhardt C, Hanschkow M, Popkova Y, Krause K, Klöting N, Blüher M, Schiller J, Heiker JT. Differential expression of immunoregulatory cytokines in adipose tissue and liver in response to high fat and high sugar diets in female mice. Front Nutr 2023; 10:1275160. [PMID: 38024380 PMCID: PMC10655005 DOI: 10.3389/fnut.2023.1275160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
A comprehensive understanding of how dietary components impact immunoregulatory gene expression in adipose tissue (AT) and liver, and their respective contributions to metabolic health in mice, remains limited. The current study aimed to investigate the metabolic consequences of a high-sucrose diet (HSD) and a high-fat diet (HFD) in female mice with a focus on differential lipid- and sucrose-induced changes in immunoregulatory gene expression in AT and liver. Female C57BL/6 J mice were fed a purified and macronutrient matched high fat, high sugar, or control diets for 12 weeks. Mice were extensively phenotyped, including glucose and insulin tolerance tests, adipose and liver gene and protein expression analysis by qPCR and Western blot, tissue lipid analyses, as well as histological analyses. Compared to the control diet, HSD- and HFD-fed mice had significantly higher body weights, with pronounced obesity along with glucose intolerance and insulin resistance only in HFD-fed mice. HSD-fed mice exhibited an intermediate phenotype, with mild metabolic deterioration at the end of the study. AT lipid composition was significantly altered by both diets, and inflammatory gene expression was only significantly induced in HFD-fed mice. In the liver however, histological analysis revealed that both HSD- and HFD-fed mice had pronounced ectopic lipid deposition indicating hepatic steatosis, but more pronounced in HSD-fed mice. This was in line with significant induction of pro-inflammatory gene expression specifically in livers of HSD-fed mice. Overall, our findings suggest that HFD consumption in female mice induces more profound inflammation in AT with pronounced deterioration of metabolic health, whereas HSD induced more pronounced hepatic steatosis and inflammation without yet affecting glucose metabolism.
Collapse
Affiliation(s)
- Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Dommel
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Keogh K, McKenna C, Waters SM, Porter RK, Fitzsimons C, McGee M, Kenny DA. Effect of breed and diet on the M. longissimus thoracis et lumborum transcriptome of steers divergent for residual feed intake. Sci Rep 2023; 13:9034. [PMID: 37270611 DOI: 10.1038/s41598-023-35661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Improving cattle feed efficiency through selection of residual feed intake (RFI) is a widely accepted approach to sustainable beef production. A greater understanding of the molecular control of RFI in various breeds offered contrasting diets is necessary for the accurate identification of feed efficient animals and will underpin accelerated genetic improvement of the trait. The aim of this study was to determine genes and biological processes contributing to RFI across varying breed type and dietary sources in skeletal muscle tissue. Residual feed intake was calculated in Charolais and Holstein-Friesian steers across multiple dietary phases (phase-1: high concentrate (growing-phase); phase-2: zero-grazed grass (growing-phase); phase-3: high concentrate (finishing-phase). Steers divergent for RFI within each breed and dietary phase were selected for muscle biopsy collection, and muscle samples subsequently subjected to RNAseq analysis. No gene was consistently differentially expressed across the breed and diet types examined. However, pathway analysis revealed commonality across breeds and diets for biological processes including fatty acid metabolism, immune function, energy production and muscle growth. Overall, the lack of commonality of individual genes towards variation in RFI both within the current study and compared to the published literature, suggests other genomic features warrant further evaluation in relation to RFI.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Clare McKenna
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Claire Fitzsimons
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Teagasc, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland.
| |
Collapse
|
8
|
A set of gene knockouts as a resource for global lipidomic changes. Sci Rep 2022; 12:10533. [PMID: 35732804 PMCID: PMC9218125 DOI: 10.1038/s41598-022-14690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.
Collapse
|
9
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drug triggered pruritus, rash, papules, and blisters - is AGEP a clash of an altered sphingolipid-metabolism and lysosomotropism of drugs accumulating in the skin? Lipids Health Dis 2021; 20:156. [PMID: 34743684 PMCID: PMC8573906 DOI: 10.1186/s12944-021-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104, Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747, Jena, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120, Halle (Saale), Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Schillingallee 68, D-18057, Leipzig, Rostock, Germany.
- Faculty of Science, Associated member of Tuebingen University, Auf der Morgenstelle 8, D- 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Nie L, Pascoa TC, Pike ACW, Bushell SR, Quigley A, Ruda GF, Chu A, Cole V, Speedman D, Moreira T, Shrestha L, Mukhopadhyay SM, Burgess-Brown NA, Love JD, Brennan PE, Carpenter EP. The structural basis of fatty acid elongation by the ELOVL elongases. Nat Struct Mol Biol 2021; 28:512-520. [PMID: 34117479 PMCID: PMC7611377 DOI: 10.1038/s41594-021-00605-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Laiyin Nie
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tomas C. Pascoa
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Simon R. Bushell
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Gian Filippo Ruda
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Amy Chu
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Victoria Cole
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Speedman
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiago Moreira
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Nicola A. Burgess-Brown
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - James D. Love
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461-1602, USA
| | - Paul E. Brennan
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Alzheimer’s Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Correspondence and requests for materials should be addressed to E.P.C. ()
| |
Collapse
|
12
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drugs, Metabolites, and Lung Accumulating Small Lysosomotropic Molecules: Multiple Targeting Impedes SARS-CoV-2 Infection and Progress to COVID-19. Int J Mol Sci 2021; 22:ijms22041797. [PMID: 33670304 PMCID: PMC7918659 DOI: 10.3390/ijms22041797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7720-307-4232
| |
Collapse
|
13
|
Huang MY, Duan RY, Yin JW, Zhao Q, Wan YY, Liu Y. Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of Bufo gargarizans embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105671. [PMID: 33166901 DOI: 10.1016/j.aquatox.2020.105671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In natural ecosystems, living organisms are always subjected to a mixture of multiple heavy metals exposure, yet it is more common to study the effect of individual, rather than combined exposure. This study assessed the impacts of single or combined exposure to Cr and Cu on embryonic development, oxidative stress, lipid metabolism and apoptosis in the early development of Bufo gargarizans embryos. The total length, development stage and malformations of embryos were measured, and the mRNA expression of genes related to oxidative stress, lipid metabolism and apoptosis at Gs 18 and Gs 22 were determined by RT-qPCR. The results showed that all treatments significantly reduced the total length of embryos, delayed the stage of embryonic development and increased the proportion of malformed embryos. The Cr-Cu mixture treatment showed the greatest suppression of embryonic development and induced the highest rate of embryo malformation, compared to individual Cr and Cu treatments. In addition, the expression levels of oxidative stress genes (HSP90, SOD and GPx) and fatty acid β-oxidation-related genes (ACOXL, ECHS1 and SCP) showed an up-regulated trend in treatments compared to control groups. Conversely, the lipid synthesis-related mRNA gene expressions (KAR, TECR, ACSL3 and ACSL4) were down-regulated. Among them, the Cr-Cu mixture had the greatest impact on lipid metabolism gene expression. The treatments showed significant effects on the expression of apoptosis genes (Bcl-1 and Bax), with Bcl-1 mRNA expression increasing and Bax mRNA expression decreasing. These results indicated that exposure to individual Cr, Cu and a Cr-Cu mixture can lead to oxidative stress, disrupt lipid metabolism and promote apoptosis, and the Cr-Cu mixture could cause more serious negative effects on B. gargarizans embryos than Cr or Cu individually.
Collapse
Affiliation(s)
- Min-Yi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Jia-Wei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yu-Yue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
14
|
Chen Z, Chu S, Wang X, Sun Y, Xu T, Mao Y, Loor JJ, Yang Z. MiR-16a Regulates Milk Fat Metabolism by Targeting Large Tumor Suppressor Kinase 1 ( LATS1) in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11167-11178. [PMID: 31542928 DOI: 10.1021/acs.jafc.9b04883] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Milk contains a number of beneficial fatty acids including short and medium chain and unsaturated conjugated and nonconjugated fatty acids. In this study, microRNA sequencing of mammary tissue collected in early-, peak-, mid-, and late-lactation periods was performed to determine the miRNA expression profiles. miR-16a was one of the differentially expressed miRNA and was selected for in-depth functional studies pertaining to fatty acid metabolism. The mimic of miR-16a impaired fat metabolism [triacylglycerol (TAG) and cholesterol] while knock-down of miR-16a promoted fat metabolism in vitro in bovine mammary epithelial cells (BMECs). In addition, the in vitro work with BMECs also revealed that miR-16a had a negative effect on the cellular concentration of cis 9-C18:1, total C18:1, C20:1, and C22:1 and long-chain polyunsaturated fatty acids. Therefore, these data suggesting a negative effect on fatty acid metabolism extend the discovery of the key role of miR-16a in mediating adipocyte differentiation. Through a combination of bioinformatics analysis, target gene 3' UTR luciferase reporter assays, and western blotting, we identified large tumor suppressor kinase 1 (LATS1) as a target of miR-16a. Transfection of siRNA-LATS1 into BMECs led to increases in TAG, cholesterol, and cellular fatty acid concentrations, suggesting a positive role of LATS1 in mammary cell fatty acid metabolism. In summary, data suggest that miR-16a regulates biological processes associated with intracellular TAG, cholesterol, and unsaturated fatty acid synthesis through LATS1. These data provide a theoretical and experimental framework for further clarifying the regulation of lipid metabolism in mammary cells of dairy cows.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Shuangfeng Chu
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Xiaolong Wang
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Yujia Sun
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Tianle Xu
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Yongjiang Mao
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Zhangping Yang
- College of Animal Science and Technology , Yangzhou University , Yangzhou 225009 , PR China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| |
Collapse
|
15
|
Blaess M, Deigner HP. Derailed Ceramide Metabolism in Atopic Dermatitis (AD): A Causal Starting Point for a Personalized (Basic) Therapy. Int J Mol Sci 2019; 20:E3967. [PMID: 31443157 PMCID: PMC6720956 DOI: 10.3390/ijms20163967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023] Open
Abstract
Active rebuilding, stabilizing, and maintaining the lipid barrier of the skin is an encouraging disease management and care concept for dry skin, atopic dermatitis (eczema, neurodermatitis), and psoriasis. For decades, corticosteroids have been the mainstay of topical therapy for atopic dermatitis; however, innovations within the scope of basic therapy are rare. In (extremely) dry, irritated, or inflammatory skin, as well as in lesions, an altered (sphingo)lipid profile is present. Recovery of a balanced (sphingo)lipid profile is a promising target for topical and personalized treatment and prophylaxis. New approaches for adults and small children are still lacking. With an ingenious combination of commonly used active ingredients, it is possible to restore and reinforce the dermal lipid barrier and maintain refractivity. Lysosomes and ceramide de novo synthesis play a key role in attenuation of the dermal lipid barrier. Linoleic acid in combination with amitriptyline in topical medication offers the possibility to relieve patients affected by dry and itchy skin, mild to moderate atopic dermatitis lesions, and eczemas without the commonly occurring serious adverse effects of topical corticosteroids or systemic antibody administration.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI Leipzig, Schillingallee 68, 18057 Rostock, Germany.
| |
Collapse
|
16
|
Wang Z, Wang DH, Park HG, Yan Y, Goykhman Y, Lawrence P, Kothapalli KSD, Brenna JT. Identification of genes mediating branched chain fatty acid elongation. FEBS Lett 2019; 593:1807-1817. [DOI: 10.1002/1873-3468.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Zhen Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Dong Hao Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Hui Gyu Park
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Yuanyuan Yan
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- School of Public Health Shanghai Jiao Tong University School of Medicine China
| | - Yuliya Goykhman
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Peter Lawrence
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Kumar S. D. Kothapalli
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - J. Thomas Brenna
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| |
Collapse
|
17
|
Gupta S, Santra L, Naskar S, Maurya SK, Rana M, Ghosh J, Dhara SK. Heterologous expression of porcine elongase 6 ( ELOVL6) gene in a human cell line. Indian J Med Res 2018; 145:563-568. [PMID: 28862191 PMCID: PMC5663173 DOI: 10.4103/ijmr.ijmr_785_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Saurabh Gupta
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Lakshman Santra
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Soumen Naskar
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Sanjeev K Maurya
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mashidur Rana
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Jyotirmoy Ghosh
- Division of Physiology, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, India
| | - Sujoy K Dhara
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
18
|
Wanders RJA, Waterham HR, Ferdinandusse S. Peroxisomes and Their Central Role in Metabolic Interaction Networks in Humans. Subcell Biochem 2018; 89:345-365. [PMID: 30378031 DOI: 10.1007/978-981-13-2233-4_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peroxisomes catalyze a number of essential metabolic functions and impairments in any of these are usually associated with major clinical signs and symptoms. In contrast to mitochondria which are autonomous organelles that can catalyze the degradation of fatty acids, certain amino acids and other compounds all by themselves, peroxisomes are non-autonomous organelles which are highly dependent on the interaction with other organelles and compartments to fulfill their role in metabolism. This includes mitochondria, the endoplasmic reticulum, lysosomes, and the cytosol. In this paper we will discuss the central role of peroxisomes in different metabolic interaction networks in humans, including fatty acid oxidation, ether phospholipid biosynthesis, bile acid synthesis, fatty acid alpha-oxidation and glyoxylate metabolism.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Departments Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Sawai M, Uchida Y, Ohno Y, Miyamoto M, Nishioka C, Itohara S, Sassa T, Kihara A. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. J Biol Chem 2017; 292:15538-15551. [PMID: 28784662 DOI: 10.1074/jbc.m117.803171] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Differences among fatty acids (FAs) in chain length and number of double bonds create lipid diversity. FA elongation proceeds via a four-step reaction cycle, in which the 3-hydroxyacyl-CoA dehydratases (HACDs) HACD1-4 catalyze the third step. However, the contribution of each HACD to 3-hydroxyacyl-CoA dehydratase activity in certain tissues or in different FA elongation pathways remains unclear. HACD1 is specifically expressed in muscles and is a myopathy-causative gene. Here, we generated Hacd1 KO mice and observed that these mice had reduced body and skeletal muscle weights. In skeletal muscle, HACD1 mRNA expression was by far the highest among the HACDs However, we observed only an ∼40% reduction in HACD activity and no changes in membrane lipid composition in Hacd1-KO skeletal muscle, suggesting that some HACD activities are redundant. Moreover, when expressed in yeast, both HACD1 and HACD2 participated in saturated and monounsaturated FA elongation pathways. Disruption of HACD2 in the haploid human cell line HAP1 significantly reduced FA elongation activities toward both saturated and unsaturated FAs, and HACD1 HACD2 double disruption resulted in a further reduction. Overexpressed HACD3 exhibited weak activity in saturated and monounsaturated FA elongation pathways, and no activity was detected for HACD4. We therefore conclude that HACD1 and HACD2 exhibit redundant activities in a wide range of FA elongation pathways, including those for saturated to polyunsaturated FAs, with HACD2 being the major 3-hydroxyacyl-CoA dehydratase. Our findings are important for furthering the understanding of the molecular mechanisms in FA elongation and diversity.
Collapse
Affiliation(s)
- Megumi Sawai
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Yukiko Uchida
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Yusuke Ohno
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Masatoshi Miyamoto
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Chieko Nishioka
- the RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | - Takayuki Sassa
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| | - Akio Kihara
- From the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 and
| |
Collapse
|
20
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|