1
|
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu SK, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 2022; 13:5913. [PMID: 36207301 PMCID: PMC9546826 DOI: 10.1038/s41467-022-33238-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.
Collapse
Grants
- Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
- This research was supported by the Funding of Joint Research on Agricultural Variety Improvement of Henan Province (No. 2022010401, H. Z.), the Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, No. 860 202002AA100007, H. L.), the National Science Foundation (32088102, 31730103, 31825003, E. W.), the Specialty Industry for Key Research and Development Program in Shanxi Academy of Agricultural Sciences (No. YCX2019T01, Z. M.) and Key R&D Program of ShanXi Province (No. 201903D211003, Z. M.). This work was also supported by China National GeneBank (CNGB), Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen.
Collapse
Affiliation(s)
- Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuai Sun
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmu Su
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfeng Zou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Li FF, Niu JH, Yu X, Kong QH, Wang RF, Qin L, Chen EY, Yang YB, Liu ZY, Lang LN, Zhang HW, Wang HL, Guan YA. Isolation and identification of SiCOL5, which is involved in photoperiod response, based on the quantitative trait locus mapping of Setaria italica. FRONTIERS IN PLANT SCIENCE 2022; 13:969604. [PMID: 36204051 PMCID: PMC9530826 DOI: 10.3389/fpls.2022.969604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/16/2022] [Indexed: 05/13/2023]
Abstract
Foxtail millet (Setaria italica) is a versatile grain and fodder crop grown in arid and semi-arid regions. It is an especially important crop for combating malnutrition in certain poverty-stricken areas of the world. Photoperiod sensitivity is a major constraint to the distribution and utilization of foxtail millet germplasm resources. Foxtail millet may be suitable as a model species for studying the photoperiod sensitivity of C4 crops. However, the genetic basis of the photoperiod response of foxtail millet remains poorly studied. To detect the genetic basis of photoperiod sensitivity-related traits, a recombinant inbred line (RIL) population consisting of 313 lines derived from a cross between the spring-sown cultivar "Longgu 3" and the summer-sown cultivar "Canggu 3" was established. The RIL population was genotyped using whole-genome re-sequencing and was phenotyped in four environments. A high-density genetic linkage map was constructed with an average distance between adjacent markers of 0.69 cM. A total of 21 quantitative trait loci (QTLs) were identified by composite interval mapping, and 116 candidate genes were predicted according to gene annotations and variations between parents, among which three genes were considered important candidate genes by the integration and overall consideration of the results from gene annotation, SNP and indel analysis, cis-element analysis, and the expression pattern of different genes in different varieties, which have different photoperiod sensitivities. A putative candidate gene, SiCOL5, was isolated based on QTL mapping analysis. The expression of SiCOL5 was sensitive to photoperiod and was regulated by biological rhythm-related genes. Function analysis suggested that SiCOL5 positively regulated flowering time. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SiCOL5 was capable of interacting with SiNF-YA1 in the nucleus.
Collapse
Affiliation(s)
- Fei-fei Li
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jia-hong Niu
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan, China
| | - Qing-hua Kong
- College of Life Science, Shandong Normal University, Jinan, China
| | - Run-feng Wang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Er-ying Chen
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan-bing Yang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhen-yu Liu
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Li-na Lang
- Shandong Seed Administration Station, Jinan, China
| | - Hua-wen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hai-lian Wang
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan-an Guan
- Featured Crops Engineering Laboratory of Shandong Province, National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Yan-an Guan,
| |
Collapse
|
4
|
iTRAQ based protein profile analysis revealed key proteins involved in regulation of drought-tolerance during seed germination in Adzuki bean. Sci Rep 2021; 11:23725. [PMID: 34887505 PMCID: PMC8660776 DOI: 10.1038/s41598-021-03178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Adzuki bean is an important legume crop due to its high-quality protein, fiber, vitamins, minerals as well as rich bioactive substances. However, it is vulnerable to drought at the germination stage. However, little information is available about the genetic control of drought tolerance during seed germination in adzuki bean. In this study, some differential expression proteins (DEPs) were identified during seed germination between the drought-tolerant variety 17235 and drought-sensitive variety 17033 in adzuki bean using iTRAQ method. A total of 2834 proteins were identified in the germinating seeds of these two adzuki beans. Compared with the variety 17033, 87 and 80 DEPs were increased and decreased accumulation in variety 17235 under drought, respectively. Meanwhile, in the control group, a few DEPs, including 9 up-regulated and 21 down-regulated proteins, were detected in variety 17235, respectively. GO, KEGG, and PPI analysis revealed that the DEPs related to carbohydrate metabolism and energy production were significantly increased in response to drought stresses. To validate the proteomic function, the ectopic overexpression of V-ATPase in tobacco was performed and the result showed that V-ATPase upregulation could enhance the drought tolerance of tobacco. The results provide valuable insights into genetic response to drought stress in adzuki bean, and the DEPs could be applied to develop biomarkers related to drought tolerant in adzuki bean breeding projects.
Collapse
|
5
|
Gad M, Chao H, Li H, Zhao W, Lu G, Li M. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:629970. [PMID: 33633753 PMCID: PMC7900748 DOI: 10.3389/fpls.2020.629970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion-deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.
Collapse
Affiliation(s)
- Mahmoud Gad
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaixin Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Lu
- Faculty of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Maoteng Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Singh RK, Muthamilarasan M, Prasad M. Biotechnological approaches to dissect climate-resilient traits in millets and their application in crop improvement. J Biotechnol 2021; 327:64-73. [PMID: 33422569 DOI: 10.1016/j.jbiotec.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
'Small millets' is a generic term that includes all the millets except pearl millet and sorghum. These small or minor millets constitute eleven species that are marginally cultivated and consumed worldwide. These small millets possess excellent agronomic-, climate-resilient, and nutritional traits, although they lack popularity. Small millets withstand a broad spectrum of environmental stresses and possess better water-use and nitrogen-use efficiencies. Of note, small millets are five- to seven-fold nutritionally rich in terms of protein, bioactive compounds, micro- and macro-nutrients as compared to major cereals. Irrespective of these merits, small millets have received little research attention compared to major millets and cereals. However, the knowledge generated from such studies is significant for the improvement of millets per se and for translating the information to improve major cereals through breeding and transgene-based approaches. Given this, the review enumerates the efforts invested in dissecting the climate-resilient traits in small millets and provides a roadmap for deploying the information in crop improvement of millets as well as cereals in the scenario of climate change.
Collapse
Affiliation(s)
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
7
|
Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front Genet 2020; 11:500. [PMID: 32655612 PMCID: PMC7325689 DOI: 10.3389/fgene.2020.00500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Barnyard millet (Echinochloa species) has become one of the most important minor millet crops in Asia, showing a firm upsurge in world production. The genus Echinochloa comprises of two major species, Echinochloa esculenta and Echinochloa frumentacea, which are predominantly cultivated for human consumption and livestock feed. They are less susceptible to biotic and abiotic stresses. Barnyard millet grain is a good source of protein, carbohydrate, fiber, and, most notably, contains more micronutrients (iron and zinc) than other major cereals. Despite its nutritional and agronomic benefits, barnyard millet has remained an underutilized crop. Over the past decades, very limited attempts have been made to study the features of this crop. Hence, more concerted research efforts are required to characterize germplasm resources, identify trait-specific donors, develop mapping population, and discover QTL/gene (s). The recent release of genome and transcriptome sequences of wild and cultivated Echinochloa species, respectively has facilitated in understanding the genetic architecture and decoding the rapport between genotype and phenotype of micronutrients and agronomic traits in this crop. In this review, we highlight the importance of barnyard millet in the current scenario and discuss the up-to-date status of genetic and genomics research and the research gaps to be worked upon by suggesting directions for future research to make barnyard millet a potential crop in contributing to food and nutritional security.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Centre of Innovation, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
8
|
QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics 2020; 21:141. [PMID: 32041544 PMCID: PMC7011527 DOI: 10.1186/s12864-020-6553-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background Foxtail millet (Setaria italica) has been developed into a model genetical system for deciphering architectural evolution, C4 photosynthesis, nutritional properties, abiotic tolerance and bioenergy in cereal grasses because of its advantageous characters with the small genome size, self-fertilization, short growing cycle, small growth stature, efficient genetic transformation and abundant diverse germplasm resources. Therefore, excavating QTLs of yield component traits, which are closely related to aspects mentioned above, will further facilitate genetic research in foxtail millet and close cereal species. Results Here, 164 Recombinant inbreed lines from a cross between Longgu7 and Yugu1 were created and 1,047,978 SNPs were identified between both parents via resequencing. A total of 3413 bin markers developed from SNPs were used to construct a binary map, containing 3963 recombinant breakpoints and totaling 1222.26 cM with an average distance of 0.36 cM between adjacent markers. Forty-seven QTLs were identified for four traits of straw weight, panicle weight, grain weight per plant and 1000-grain weight. These QTLs explained 5.5–14.7% of phenotypic variance. Thirty-nine favorable QTL alleles were found to inherit from Yugu1. Three stable QTLs were detected in multi-environments, and nine QTL clusters were identified on Chromosome 3, 6, 7 and 9. Conclusions A high-density genetic map with 3413 bin markers was constructed and three stable QTLs and 9 QTL clusters for yield component traits were identified. The results laid a powerful foundation for fine mapping, identifying candidate genes, elaborating molecular mechanisms and application in foxtail millet breeding programs by marker-assisted selection.
Collapse
|
9
|
Ubbens J, Cieslak M, Prusinkiewicz P, Parkin I, Ebersbach J, Stavness I. Latent Space Phenotyping: Automatic Image-Based Phenotyping for Treatment Studies. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:5801869. [PMID: 33313558 PMCID: PMC7706325 DOI: 10.34133/2020/5801869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/15/2019] [Indexed: 05/05/2023]
Abstract
Association mapping studies have enabled researchers to identify candidate loci for many important environmental tolerance factors, including agronomically relevant tolerance traits in plants. However, traditional genome-by-environment studies such as these require a phenotyping pipeline which is capable of accurately measuring stress responses, typically in an automated high-throughput context using image processing. In this work, we present Latent Space Phenotyping (LSP), a novel phenotyping method which is able to automatically detect and quantify response-to-treatment directly from images. We demonstrate example applications using data from an interspecific cross of the model C4 grass Setaria, a diversity panel of sorghum (S. bicolor), and the founder panel for a nested association mapping population of canola (Brassica napus L.). Using two synthetically generated image datasets, we then show that LSP is able to successfully recover the simulated QTL in both simple and complex synthetic imagery. We propose LSP as an alternative to traditional image analysis methods for phenotyping, enabling the phenotyping of arbitrary and potentially complex response traits without the need for engineering-complicated image-processing pipelines.
Collapse
Affiliation(s)
- Jordan Ubbens
- Department of Computer Science, University of Saskatchewan, Canada
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Canada
| | | | - Isobel Parkin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Canada
| |
Collapse
|
10
|
Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. PLoS One 2018; 13:e0207344. [PMID: 30412624 PMCID: PMC6226204 DOI: 10.1371/journal.pone.0207344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023] Open
Abstract
Foxtail millet is very a drought-tolerant crop. Basic helix-loop-helix (bHLH) transcription factors are involved in many drought-stress responses, but foxtail millet bHLH genes have been scarcely examined. We identified 149 foxtail millet bHLH genes in a genome-wide analysis and performed Swiss-Prot, GO, and KEGG pathway analyses for these genes. Phylogenetic analyses placed the genes into 25 clades, with some remaining orphans. We identified homologs based on gene trees and Swiss-Prot annotation. We also inferred that some homologs underwent positive selection in foxtail millet ancestors, and selected motifs differed among homologs. Expression of eight foxtail millet bHLH genes varied with drought stress. One of these genes was localized to a QTL that contributes to drought tolerance in foxtail millet. We also perform a cis-acting regulatory element analysis on foxtail millet bHLH genes and some drought-induced genes. Foxtail millet bHLH genes were inferred to have a possible key role in drought tolerance. This study clarifies both the function of foxtail millet bHLH genes and drought tolerance in foxtail millet.
Collapse
|
11
|
Hu H, Mauro-Herrera M, Doust AN. Domestication and Improvement in the Model C4 Grass, Setaria. FRONTIERS IN PLANT SCIENCE 2018; 9:719. [PMID: 29896214 PMCID: PMC5986938 DOI: 10.3389/fpls.2018.00719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.
Collapse
Affiliation(s)
| | | | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
12
|
Desai JS, Slabaugh E, Liebelt DJ, Fredenberg JD, Gray BN, Jagadish SVK, Wilkins O, Doherty CJ. Neural Net Classification Combined With Movement Analysis to Evaluate Setaria viridis as a Model System for Time of Day of Anther Appearance. FRONTIERS IN PLANT SCIENCE 2018; 9:1585. [PMID: 30429868 PMCID: PMC6220418 DOI: 10.3389/fpls.2018.01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/11/2018] [Indexed: 05/13/2023]
Abstract
In many plant species, the time of day at which flowers open to permit pollination is tightly regulated. Proper time of flower opening, or Time of Day of Anther Appearance (TAA), may coordinate flowering opening with pollinator activity or may shift temperature sensitive developmental processes to cooler times of the day. The genetic mechanisms that regulate the timing of this process in cereal crops are unknown. To address this knowledge gap, it is necessary to establish a monocot model system that exhibits variation in TAA. Here, we examine the suitability of Setaria viridis, the model for C4 photosynthesis, for such a role. We developed an imaging system to monitor the temporal regulation of growth, flower opening time, and other physiological characteristics in Setaria. This system enabled us to compare Setaria varieties Ames 32254, Ames 32276, and PI 669942 variation in growth and daily flower opening time. We observed that TAA occurs primarily at night in these three Setaria accessions. However, significant variation between the accessions was observed for both the ratio of flowers that open in the day vs. night and the specific time of day where the rate is maximal. Characterizing this physiological variation is a requisite step toward uncovering the molecular mechanisms regulating TAA. Leveraging the regulation of TAA could provide researchers with a genetic tool to improve crop productivity in new environments.
Collapse
Affiliation(s)
- Jigar S. Desai
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Erin Slabaugh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Donna J. Liebelt
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Jacob D. Fredenberg
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | | | | | - Olivia Wilkins
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Colleen J. Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Colleen J. Doherty
| |
Collapse
|
13
|
Ayalew H, Liu H, Börner A, Kobiljski B, Liu C, Yan G. Genome-Wide Association Mapping of Major Root Length QTLs Under PEG Induced Water Stress in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1759. [PMID: 30555498 PMCID: PMC6281995 DOI: 10.3389/fpls.2018.01759] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
Roots are vital plant organs that determine adaptation to various soil conditions. The present study evaluated a core winter wheat collection for rooting depth under PEG induced early stage water stress and non-stress growing conditions. Analysis of phenotypic data indicated highly significant (p < 0.01) variation among genotypes. Broad sense heritability of 59 and 73% with corresponding genetic gains of 7.6 and 9.7 (5% selection intensity) were found under non-stress and stress conditions, respectively. The test genotypes were grouped in to three distinct clusters using unweighted pair group method with arithmetic mean (UPGMA) clustering based on maximum Euclidian distance. The first three principal components gave optimum mixed linear model for genome wide association study (GWAS). Linkage disequilibrium (LD) analysis showed significant LD (p < 0.05) amongst 15% of total marker pairs (25,125). Nearly 16% of the significant LDs were among inter chromosomal marker pairs. GWAS revealed five significant root length QTLs spread across four chromosomes. None of the identified QTLs were common between the two growing conditions. Stress specific QTLs, combined explaining 31% of phenotypic variation were located on chromosomes 2B (wPt6278) and 3B (wPt1159). Similarly, two of the three QTLs (wPt0021 and wPt8890) identified under the non-stress condition were found on chromosomes 3B and 5B, respectively. The B genome showed significant importance in controlling root growth both under stress and non-stress conditions. The identified markers can potentially be validated and used for marker assisted selection.
Collapse
Affiliation(s)
- Habtamu Ayalew
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Hui Liu
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Chunji Liu
- CSIRO Agriculture Flagship, Townsville, QLD, Australia
| | - Guijun Yan
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan,
| |
Collapse
|
14
|
Jia G, Wang H, Tang S, Zhi H, Liu S, Wen Q, Qiao Z, Diao X. Detection of genomic loci associated with chromosomal recombination using high-density linkage mapping in Setaria. Sci Rep 2017; 7:15180. [PMID: 29123199 PMCID: PMC5680217 DOI: 10.1038/s41598-017-15576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Meiotic recombination is essential to sexual reproduction and the generation of genetic diversity. Variation in recombination rates is presently of particular interest due to efforts being made to increase the rate of genetic gain in agricultural crops by breaking up large linkage disequilibrium blocks containing both beneficial and detrimental alleles. Here, a high-density genetic linkage map of Setaria was constructed using tunable genotyping by sequencing (tGBS) analysis of a population of recombinant inbred lines (RILs). Several regions of the Setaria genome exhibited significant levels of segregation distortion (SD), and recombination crossovers (COs) were also detected. The regions with high SD generally tended to have fewer COs, particularly for pericentromeric chromosomal areas. Recombination crossovers detected in Setaria were unevenly distributed across the genome and occurred more often in intergenic regions. Quantitative trait loci (QTLs) contributing towards the recombination frequency (Type I) and occurrence of COs in designated loci (Type II) were identified, and Type II QTLs garnered higher statistical power. The result of this study suggest that QTLs analysis of Type II traits using RILs might provide an opportunity to further understand meiotic recombination using high throughput genome sequencing and genotyping technologies.
Collapse
Affiliation(s)
- Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Haigang Wang
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Sichen Liu
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Qifen Wen
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Zhijun Qiao
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan, 030031, People's Republic of China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.
| |
Collapse
|
15
|
Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 2017; 7:10009. [PMID: 28855520 PMCID: PMC5577110 DOI: 10.1038/s41598-017-08854-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
Understanding drought-tolerance mechanisms and identifying genetic dominance are important for crop improvement. Setaria italica, which is extremely drought-tolerant, has been regarded as a model plant for studying stress biology. Moreover, different genotypes of S. italica have evolved various drought-tolerance/avoidance mechanisms that should be elucidated. Physiological and transcriptomic comparisons between drought-tolerant S. italica cultivar 'Yugu1' and drought-sensitive 'An04' were conducted. 'An04' had higher yields and more efficient photosystem activities than 'Yugu1' under well-watered conditions, and this was accompanied by positive brassinosteroid regulatory actions. However, 'An04's growth advantage was severely repressed by drought, while 'Yugu1' maintained normal growth under a water deficiency. High-throughput sequencing suggested that the S. italica transcriptome was severely remodelled by genotype × environment interactions. Expression profiles of genes related to phytohormone metabolism and signalling, transcription factors, detoxification, and other stress-related proteins were characterised, revealing genotype-dependent and -independent drought responses in different S. italica genotypes. Combining our data with drought-tolerance-related QTLs, we identified 20 candidate genes that contributed to germination and early seedling' drought tolerance in S. italica. Our analysis provides a comprehensive picture of how different S. italica genotypes respond to drought, and may be used for the genetic improvement of drought tolerance in Poaceae crops.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, 050012, Shijiazhuang, People's Republic of China
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, 050030, Shijiazhuang, People's Republic of China
| | - Qiannan Chen
- College of Life Science, Hebei Normal University, 050012, Shijiazhuang, People's Republic of China
| | - Wenying Zhang
- Institute of Dryland Agriculture, Hebei Academy of Agricultural and Forestry Sciences, 050000, Hengshui, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, 050012, Shijiazhuang, People's Republic of China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
- College of Life Science, Hebei Normal University, 050012, Shijiazhuang, People's Republic of China.
| |
Collapse
|
16
|
Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One 2017. [PMID: 28644843 PMCID: PMC5482450 DOI: 10.1371/journal.pone.0179717] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Collapse
Affiliation(s)
- Jun Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| | - Zhilan Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Xiaofen Du
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Huiqing Yang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Fang Han
- Research Institute of Agriculture Sciences of Yanan, Yanan, Shaanxi, China
| | - Yuanhuai Han
- Shanxi Agricultural University, Taigu, Shanxi, China
| | - Feng Yuan
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Linyi Zhang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Shuzhong Peng
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, China
- Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, China
- * E-mail: (JW); (EG)
| |
Collapse
|
17
|
Wang B, Guo X, Zhao P, Ruan M, Yu X, Zou L, Yang Y, Li X, Deng D, Xiao J, Xiao Y, Hu C, Wang X, Wang X, Wang W, Peng M. Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms (Manihot esculenta Cranz). PLoS One 2017; 12:e0177456. [PMID: 28493955 PMCID: PMC5426748 DOI: 10.1371/journal.pone.0177456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/27/2017] [Indexed: 11/19/2022] Open
Abstract
Cassava is the third largest food crop of the world and has strong ability of drought tolerance. In order to evaluate the molecular diversity and to discover novel alleles for drought tolerance in cassava germplasms, we examined a total of 107 abiotic stress related expressed sequence tags-simple sequence repeat (EST-SSR) markers in 134 cassava genotypes coming from planting regions worldwide and performed drought related marker-traits association mapping. As results, we successfully amplified 98 of 107 markers in 97 polymorphic loci and 279 alleles, with 2.87 alleles per locus, gene diversity of 0.48 and polymorphic information content (PIC) of 0.41 on average. The genetic coefficient between every two lines was 0.37 on average, ranging from 0.21 to 0.82. According to our population structure analysis, these samples could be divided into three sub-populations showing obvious gene flow between them. We also performed water stress experiments using 100-day old cassava plants in two years and calculated the drought tolerance coefficients (DTCs) and used them as phenotypes for marker-trait association mapping. We found that 53 markers were significantly associated with these drought-related traits, with a contribution rate for trait variation of 8.60% on average, ranging between 2.66 and 28.09%. Twenty-four of these 53 associated genes showed differential transcription or protein levels which were confirmed by qRT-PCR under drought stress when compared to the control conditions in cassava. Twelve of twenty-four genes were the same differential expression patterns in omics data and results of qRT-PCR. Out of 33 marker-traits combinations on 24 loci, 34 were positive and 53 negative alleles according to their phenotypic effects and we also obtained the typical materials which carried these elite alleles. We also found 23 positive average allele effects while 10 loci were negative according to their allele effects (AAEs). Our results on molecular diversity, locus association and differential expression under drought can prove beneficial to select excellent materials through marker assisted selection and for functional genes research in the future.
Collapse
Affiliation(s)
- Bin Wang
- College of plant science & technology, Huazhong Agricultrural University, Wuhan, Hubei, PR China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xin Guo
- College of plant science & technology, Huazhong Agricultrural University, Wuhan, Hubei, PR China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Pingjuan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Mengbin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiaoling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Liangping Zou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Yiling Yang
- College of plant science & technology, Huazhong Agricultrural University, Wuhan, Hubei, PR China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiao Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Deli Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Jixiang Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Yiwei Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Chunji Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xue Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiaolin Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Wenquan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- * E-mail:
| |
Collapse
|
18
|
Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing. G3-GENES GENOMES GENETICS 2017; 7:1587-1594. [PMID: 28364039 PMCID: PMC5427501 DOI: 10.1534/g3.117.041517] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Foxtail millet (Setaria italica) is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs) and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding.
Collapse
|
19
|
|
20
|
Acharya BR, Roy Choudhury S, Estelle AB, Vijayakumar A, Zhu C, Hovis L, Pandey S. Optimization of Phenotyping Assays for the Model Monocot Setaria viridis. FRONTIERS IN PLANT SCIENCE 2017; 8:2172. [PMID: 29312412 PMCID: PMC5743732 DOI: 10.3389/fpls.2017.02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 05/02/2023]
Abstract
Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.
Collapse
|
21
|
Pant SR, Irigoyen S, Doust AN, Scholthof KBG, Mandadi KK. Setaria: A Food Crop and Translational Research Model for C 4 Grasses. FRONTIERS IN PLANT SCIENCE 2016; 7:1885. [PMID: 28018413 PMCID: PMC5156725 DOI: 10.3389/fpls.2016.01885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 05/23/2023]
Affiliation(s)
- Shankar R. Pant
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State UniversityStillwater, OK, USA
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University SystemWeslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
22
|
Tsai KJ, Lu MYJ, Yang KJ, Li M, Teng Y, Chen S, Ku MSB, Li WH. Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Sci Rep 2016; 6:35076. [PMID: 27734962 PMCID: PMC5062080 DOI: 10.1038/srep35076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
The diploid C4 plant foxtail millet (Setaria italica L. Beauv.) is an important crop in many parts of Africa and Asia for the vast consumption of its grain and ability to grow in harsh environments, but remains understudied in terms of complete genomic architecture. To date, there have been only two genome assembly and annotation efforts with neither assembly reaching over 86% of the estimated genome size. We have combined de novo assembly with custom reference-guided improvements on a popular cultivar of foxtail millet and have achieved a genome assembly of 477 Mbp in length, which represents over 97% of the estimated 490 Mbp. The assembly anchors over 98% of the predicted genes to the nine assembled nuclear chromosomes and contains more functional annotation gene models than previous assemblies. Our annotation has identified a large number of unique gene ontology terms related to metabolic activities, a region of chromosome 9 with several growth factor proteins, and regions syntenic with pearl millet or maize genomic regions that have been previously shown to affect growth. The new assembly and annotation for this important species can be used for detailed investigation and future innovations in growth for millet and other grains.
Collapse
Affiliation(s)
- Kevin J. Tsai
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 11574 Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 11221 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Kai-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Mengyun Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Yuchuan Teng
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Shihmay Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
| | - Maurice S. B. Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11574 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
23
|
Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 2016; 17:57. [PMID: 27068810 PMCID: PMC4828802 DOI: 10.1186/s12863-016-0364-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. Results In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Conclusions Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0364-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China.,Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianguang Liu
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hanshuang Zhang
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xianmin Diao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China. .,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
24
|
Mauro-Herrera M, Doust AN. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria. PLoS One 2016; 11:e0151346. [PMID: 26985990 PMCID: PMC4795695 DOI: 10.1371/journal.pone.0151346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.
Collapse
Affiliation(s)
- Margarita Mauro-Herrera
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, United States of America
| |
Collapse
|
25
|
Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. PLANTA 2016; 243:749-66. [PMID: 26676987 DOI: 10.1007/s00425-015-2437-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 05/27/2023]
Abstract
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Collapse
Affiliation(s)
- Amita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
26
|
Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT, Grof CPL. A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:45. [PMID: 26918029 PMCID: PMC4766645 DOI: 10.1186/s13068-016-0457-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Recently, there has been interest in establishing a monocot C4 model species with a small genome, short lifecycle, and capacity for genetic transformation. Setaria viridis has been adopted to fill this role, since reports of Agrobacterium-mediated transformation in 2010, and sequencing of its genome in 2012. To date, S. viridis has primarily been used to further our understanding of C4 photosynthesis, but is also an ideal system for the study of biomass crops, which are almost exclusively C4 panicoid grasses. Biogenesis of stem tissue, its cell wall composition, and soluble sugar content are important determinants of bioenergy crop yields. Here we show that a developing S. viridis internode is a valuable experimental system for gene discovery in relation to these important bioenergy feedstock traits. RESULTS The rate of maximal stem biomass accumulation in S. viridis A10 under long day growth was at the half-head emergence developmental stage. At this stage of development, internode 5 (of 7) was found to be rapidly expanding with an active meristem, a zone of cell expansion (primary cell walls), a transitional zone where cell expansion ceased and secondary cell wall deposition was initiated, and a mature zone that was actively accumulating soluble sugars. A simple method for identifying these zones was established allowing rapid dissection and snap-freezing for RNAseq analysis. A transcriptome profile was generated for each zone showing a transition from cell division and nucleic acid synthesis/processing in the meristem, to metabolism, energy synthesis, and primary cell wall synthesis in the cell expansion zone, to secondary cell wall synthesis in the transitional zone, to sugar transport, and photosynthesis in the mature zone. CONCLUSION The identification of these zones has provided a valuable experimental system for investigating key bioenergy traits, including meristematic activity, cell wall biosynthesis, and soluble sugar accumulation, in a C4 panicoid grass that has genetic resources, a short life cycle, and small stature allowing controlled experimental conditions in growth cabinets. Here we have presented a comprehensive map of gene expression and metabolites in this experimental system to facilitate gene discovery and controlled hypothesis testing for bioenergy research in S. viridis.
Collapse
Affiliation(s)
- Antony P. Martin
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - William M. Palmer
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - Christopher Brown
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - Christin Abel
- />Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - John E. Lunn
- />Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Robert T. Furbank
- />ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
- />CSIRO Agriculture Flagship High Resolution Plant Phenomics Centre, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Christopher P. L. Grof
- />School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| |
Collapse
|
27
|
Huang P, Shyu C, Coelho CP, Cao Y, Brutnell TP. Setaria viridis as a Model System to Advance Millet Genetics and Genomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1781. [PMID: 27965689 PMCID: PMC5124564 DOI: 10.3389/fpls.2016.01781] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 05/18/2023]
Abstract
Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.
Collapse
|
28
|
Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP, Carrington JC, Mockler TC, Baxter I. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. MOLECULAR PLANT 2015; 8:1520-35. [PMID: 26099924 DOI: 10.1016/j.molp.2015.06.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Christine Shyu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Steven T Hill
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | - Indrajit Kumar
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Tracy Ficor
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | | | | | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ivan Baxter
- USDA-ARS, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
29
|
Jia G, Liu X, Schnable JC, Niu Z, Wang C, Li Y, Wang S, Wang S, Liu J, Guo E, Zhi H, Diao X. Microsatellite Variations of Elite Setaria Varieties Released during Last Six Decades in China. PLoS One 2015; 10:e0125688. [PMID: 25932649 PMCID: PMC4416935 DOI: 10.1371/journal.pone.0125688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/24/2015] [Indexed: 11/18/2022] Open
Abstract
Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species.
Collapse
Affiliation(s)
- Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaotong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - James C. Schnable
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhengang Niu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chunfang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yuhui Li
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, P. R. China
| | - Shujun Wang
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Suying Wang
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Jinrong Liu
- Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, Shanxi, P. R. China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|