1
|
Yue Y, Zhang Y, Cheng Y, Jiao H, Yan M. Echinococcus granulosus antigen B regulates T-cell function through inhibition of signal transducer and activator of transcription 3 in experimental immune thrombocytopenia. Br J Haematol 2025; 206:1627-1641. [PMID: 40325612 DOI: 10.1111/bjh.20064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 05/07/2025]
Abstract
Dysregulated T-cell homeostasis is central to the development of immune thrombocytopenia (ITP), characterized by reduced platelet counts. Antigen B (AgB), a key protein in Echinococcus granulosus cyst fluid, modulates T-cell differentiation and reduces inflammation. Here, we explored the role of AgB in ITP and found that it enhances the generation and function of regulatory T cells (Tregs), boosting their immunosuppressive activity. In our passive ITP murine model, AgB treatment alleviated thrombocytopenia and restored the Treg-helper T-cell (Th) balance. However, the therapeutic effects of AgB on CD4+ T cells were abolished by Treg depletion, highlighting the essential role of Tregs in AgB's mechanism of action. Moreover, AgB reduced proinflammatory cytokine production and inhibited signal transducer and activator of transcription 3 (STAT3) activation in ITP mice, with STAT3 inhibition negating the effects of AgB in Tregs. AgB promoted STAT3 degradation via tumour necrosis factor receptor-associated factor 6 (TRAF6)-mediated ubiquitination. In conclusion, by facilitating TRAF6-mediated STAT3 ubiquitination, AgB restores T-cell homeostasis and strengthens Treg immunosuppression, affording a potential therapeutic strategy for ITP.
Collapse
Affiliation(s)
- Yingbin Yue
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Yunfei Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yongfeng Cheng
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hongjie Jiao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mei Yan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Loos JA, Franco M, Chop M, Rodriguez Rodrigues C, Cumino AC. Resveratrol against Echinococcus sp.: Discrepancies between In Vitro and In Vivo Responses. Trop Med Infect Dis 2023; 8:460. [PMID: 37888588 PMCID: PMC10610609 DOI: 10.3390/tropicalmed8100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
In an attempt to find new anti-echinococcal drugs, resveratrol (Rsv) effectiveness against the larval stages of Echinococcus granulosus and E. multilocularis was evaluated. The in vitro effect of Rsv on parasites was assessed via optical and electron microscopy, RT-qPCR and immunohistochemistry. In vivo efficacy was evaluated in murine models of cystic (CE) and alveolar echinococcosis (AE). The impact of infection and drug treatment on the mouse bone marrow hematopoietic stem cell (HSC) population and its differentiation into dendritic cells (BMDCs) was investigated via flow cytometry and RT-qPCR. In vitro treatment with Rsv reduced E. granulosus metacestode and protoscolex viability in a concentration-dependent manner, caused ultrastructural damage, increased autophagy gene transcription, and raised Eg-Atg8 expression while suppressing Eg-TOR. However, the intraperitoneal administration of Rsv was not only ineffective, but also promoted parasite development in mice with CE and AE. In the early infection model of AE treated with Rsv, an expansion of HSCs was observed followed by their differentiation towards BMCDs. The latter showed an anti-inflammatory phenotype and reduced LPS-stimulated activation compared to control BMDCs. We suggest that Rsv ineffectiveness could have been caused by the low intracystic concentration achieved in vivo and the drug's hormetic effect, with opposite anti-parasitic and immunomodulatory responses in different doses.
Collapse
Affiliation(s)
- Julia A. Loos
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
| | - Micaela Franco
- Hospital Interzonal General de Agudos “Dr. Oscar E Alende”, Mar del Plata 7600, Argentina;
| | - Maia Chop
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Andrea C. Cumino
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| |
Collapse
|
3
|
Anti-echinococcal effects of sumac, Rhus coriaria, in a murine model of cystic echinococcosis: Parasitological and molecular evaluation. Exp Parasitol 2022; 243:108406. [DOI: 10.1016/j.exppara.2022.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
|
4
|
Pereira I, Hidalgo C, Stoore C, Baquedano MS, Cabezas C, Bastías M, Riveros A, Meneses C, Cancela M, Ferreira HB, Sáenz L, Paredes R. Transcriptome analysis of Echinococcus granulosus sensu stricto protoscoleces reveals differences in immune modulation gene expression between cysts found in cattle and sheep. Vet Res 2022; 53:8. [PMID: 35090558 PMCID: PMC8796354 DOI: 10.1186/s13567-022-01022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
Cystic Echinococcosis (CE), a zoonotic parasitic disease, is caused by the cestode Echinococcus granulosus sensu lato. CE inflicts severe damage in cattle, sheep, and human hosts worldwide. Fertile CE cysts are characterized by the presence of viable protoscoleces. These parasite forms are studied with minimal contamination with host molecules. Hosts, cattle and sheep, show differences in their CE cyst fertility. The effect of the host in protoscolex transcriptome is not known. We genotyped and performed transcriptomic analysis on sheep protoscoleces obtained from liver and lung CE cysts. The transcriptomic data of Echinococcus granulosus sensu stricto protoscoleces from 6 lung CE cysts and 6 liver CE cysts were Collected. For host comparison analysis, 4 raw data files belonging to Echinococcus granulosus sensu stricto protoscoleces from cattle liver CE cysts were obtained from the NCBI SRA database. Principal component and differential expression analysis did not reveal any statistical differences between protoscoleces obtained from liver or lung cysts, either within the same sheep or different sheep hosts. Conversely, there are significant differences between cattle and sheep protoscolex samples. We found differential expression of immune-related genes. In cattle, 7 genes were upregulated in protoscoleces from liver cysts. In sheep, 3 genes were upregulated in protoscoleces from liver and lung CE cysts. Noteworthy, are the differential expression of antigen B, tegument antigen, and arginase-2 in samples obtained from sheep CE cysts, and basigin in samples from cattle CE cysts. These findings suggest that the host species is an important factor involved in the differential expression of immune related genes, which in turn is possibly related to the fertility of Echinococcus granulosus sensu stricto cysts.
Collapse
Affiliation(s)
- Ismael Pereira
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Christian Hidalgo
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - María Soledad Baquedano
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Macarena Bastías
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Aníbal Riveros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Leonardo Sáenz
- Laboratorio de Vacunas Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
5
|
Liu C, Yin J, Hu W, Zhang H. Glycogen Phosphorylase: A Drug Target of Amino Alcohols in Echinococcus granulosus, Predicted by a Computer-Aided Method. Front Microbiol 2020; 11:557039. [PMID: 33329421 PMCID: PMC7719768 DOI: 10.3389/fmicb.2020.557039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Echinococcosis is an important parasitic disease that threats human health and animal husbandry worldwide. However, the low cure rate of clinical drugs for this disease is a challenge. Hence, novel compounds and specific drug targets are urgently needed. In this study, we identified drug targets of amino alcohols with effects on Echinococcus species. The drug targets were predicted with the idTarget web server. Corresponding three-dimensional structures of the drug targets were built after sequence BLAST analysis and homology modeling. After further screening by molecular docking, the activities of the candidate targets were validated in vitro. We ultimately identified glycogen phosphorylase as a potential drug target for amino alcohols. There are two genes coding glycogen phosphorylase in Echinococcus granulosus (EgGp1 and EgGp2). EgGp1 was abundant in E. granulosus PSCs, while EgGp2 was abundant in the cysts. These proteins were located at suckers and somas of E. granulosus PSCs and near the rostellum of cysts developed from PSCs. The effective compounds docked into a pocket consisting of E124, K543 and K654 and affected (either inhibited or enhanced) the activity of E. granulosus glycogen phosphorylase. In this study, we designed a method to predict drug targets for echinococcosis treatment based on inverse docking. The candidate targets found by this method can contribute not only to understanding of the modes of action of amino alcohols but also to modeling-aided drug design based on targets.
Collapse
Affiliation(s)
- Congshan Liu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Wei Hu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China.,Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Haobing Zhang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Ministry of Health (MOH), National Center for International Research on Tropical Diseases, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, Shanghai, China
| |
Collapse
|
6
|
Debarba JA, Sehabiague MPC, Monteiro KM, Gerber AL, Vasconcelos ATR, Ferreira HB, Zaha A. Transcriptomic Analysis of the Early Strobilar Development of Echinococcus granulosus. Pathogens 2020; 9:E465. [PMID: 32545493 PMCID: PMC7350322 DOI: 10.3390/pathogens9060465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 11/29/2022] Open
Abstract
Echinococcus granulosus has a complex life cycle involving two mammalian hosts. The transition from one host to another is accompanied by changes in gene expression, and the transcriptional events that underlie this transition have not yet been fully characterized. In this study, RNA-seq was used to compare the transcription profiles of samples from E. granulosus protoscoleces induced in vitro to strobilar development at three time points. We identified 818 differentially expressed genes, which were divided into eight expression clusters formed over the entire 24 h period. An enrichment of gene transcripts with molecular functions of signal transduction, enzymes, and protein modifications was observed upon induction and developmental progression. This transcriptomic study provides insights for understanding the complex life cycle of E. granulosus and contributes for searching for the key genes correlating with the strobilar development, which can be used to identify potential candidates for the development of anthelmintic drugs.
Collapse
Affiliation(s)
- João Antonio Debarba
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Martín Pablo Cancela Sehabiague
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-075, Brazil; (A.L.G.); (A.T.R.V.)
| | | | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (J.A.D.); (M.P.C.S.); (K.M.M.); (H.B.F.)
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
7
|
Loos JA, Negro P, Cumino AC. In vitro anti-echinococcal activity of octreotide: Additive effect of metformin linked to autophagy. Acta Trop 2020; 203:105312. [PMID: 31870710 DOI: 10.1016/j.actatropica.2019.105312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023]
Abstract
Cystic echinococcosis (CE) is a worldwide zoonosis caused by the Echinococcus granulosus larval stage. The currently available therapy for this disease is based on benzimidazoles, which are rarely curative and cause several adverse effects. Therefore, new treatment options are needed. Octreotide (Oct) is a somatostatin analogue which exhibits anti-proliferative and anti-secretory effects over several cancer cell lines expressing somatostatin receptors. Here, we assessed the in vitro pharmacological effect of Oct against the E. granulosus larval stage. The drug caused a significant dose-dependent decrease in the viability of both protoscoleces and metacestodes. SEM and TEM analysis showed ultrastructural damage in both larval forms under drug treatment. Based on this, we investigated the possible presence of an Oct binding receptor in the parasite. The putative somatostatin/allatostatin-like receptor (Eg-s/ast) conserves the characteristic topology and signature sequences of the prototype somatostatin receptor common to vertebrates and is expressed in both metacestodes and protoscoleces. Moreover, Oct treated-parasites showed the presence of autophagic structures and a significant increase in transcriptional expression of autophagy key genes such as Eg-atg6, Eg-atg8, Eg-atg12 and Eg-atg16. In addition, by in toto immunolocalization assays, an increase in the punctate pattern and Eg-Atg8 protein expression was detected in Oct-treated metacestodes. Subsequently, the combination of Oct and Met had an additive effect on the viability of both larval forms. Our results provide additional evidence for the participation of PI3K/AKT/TOR/autophagy pathway in the Echinococcus survival and suggest the concomitant use of these drugs as potential therapeutic agents in treating of CE.
Collapse
|
8
|
Santos Pereira-Dutra F, Cancela M, Valandro Meneghetti B, Bunselmeyer Ferreira H, Mariante Monteiro K, Zaha A. Functional characterization of the translation initiation factor eIF4E of Echinococcus granulosus. Parasitol Res 2019; 118:2843-2855. [PMID: 31401657 DOI: 10.1007/s00436-019-06421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 01/24/2023]
Abstract
The eukaryotic initiation factor 4E (eIF4E) specifically recognizes the 5' mRNA cap, a rate-limiting step in the translation initiation process. Although the 7-methylguanosine cap (MMGcap) is the most common 5' cap structure in eukaryotes, the trans-splicing process that occurs in several organism groups, including nematodes and flatworms, leads to the addition of a trimethylguanosine cap (TMGcap) to some RNA transcripts. In some helminths, eIF4E can have a dual capacity to bind both MMGcap and TMGcap. In the present work, we evaluated the distribution of eIF4E protein sequences in platyhelminths and we showed that only one gene coding for eIF4E is present in most parasitic flatworms. Based on this result, we cloned the Echinococcus granulosus cDNA sequence encoding eIF4E in Escherichia coli, expressed the recombinant eIF4E as a fusion protein to GST, and tested its ability to capture mRNAs through the 5' cap using pull-down assay and qPCR. Our results indicate that the recombinant eIF4E was able to bind preferentially 5'-capped mRNAs compared with rRNAs from total RNA preparations of E. granulosus. By qPCR, we observed an enrichment in MMG-capped mRNA compared with TMG-capped mRNAs among Eg-eIF4E-GST pull-down RNAs. Eg-eIF4E structural model using the Schistosoma mansoni eIF4E as template showed to be well preserved with only a few differences between chemically similar amino acid residues at the binding sites. These data showed that E. granulosus eIF4E can be used as a potential tool to study full-length 5'-capped mRNA, besides being a potential drug target against parasitic flatworms.
Collapse
Affiliation(s)
- Filipe Santos Pereira-Dutra
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Martin Cancela
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Bruna Valandro Meneghetti
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestodeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Caixa Postal 15053, Porto Alegre, RS, CEP 91501-970, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Wang Y, Lan C, Liao X, Chen D, Song W, Zhang Q. Polygonatum sibiricum polysaccharide potentially attenuates diabetic retinal injury in a diabetic rat model. J Diabetes Investig 2019; 10:915-924. [PMID: 30426692 PMCID: PMC6626950 DOI: 10.1111/jdi.12976] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the protective effect of Polygonatum sibiricum polysaccharide (PSP) on the retina in diabetic rats. MATERIALS AND METHODS A total of 120 Sprague-Dawley rats were randomly divided into blank control, control model (meaning diabetes mellitus), and diabetes mellitus with PSP intervention of high, medium and low doses groups. The difference of retinal vascularization between groups was evaluated by fluorescein isothiocyanate-dextran perfusion. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining was used to assess apoptosis in the retinal ganglion cells; reverse transcriptase polymerase chain reaction and western blotting were utilized to evaluate the expression of Bcl2-associated X protein, B-cell lymphoma-2 factor, epidermal growth factor, p38 mitogen-activated protein kinases, transforming growth factor-β and vascular endothelial growth factor at the messenger ribonucleic acid and protein level. RESULTS Fluorescein isothiocyanate-dextran perfusion showed retinal vascular anomaly in diabetes mellitus rats, but vascular tortuosity and leakage were relatively alleviated after PSP intervention. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining showed numerous terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive retinal cells in the diabetes mellitus group, which then were reduced by PSP treatment. Reverse transcriptase polymerase chain reaction showed that PSP intervention decreased Bcl2-associated X protein, epidermal growth factor, p38 mitogen-activated protein kinases, vascular endothelial growth factor and transforming growth factor-β messenger ribonucleic acid expression, but increased B-cell lymphoma-2 factor messenger ribonucleic acid expression. Western blot showed that PSP intervention upregulated the expression of B-cell lymphoma-2 factor, and downregulated the expression of Bcl2-associated X protein, epidermal growth factor, p38 mitogen-activated protein kinases, vascular endothelial growth factor and transforming growth factor-β proteins. CONCLUSIONS Polygonatum sibiricum polysaccharide shows a protective effect against diabetes-induced retinal injury in a dose-dependent manner. The mechanism of action deserves further study and exploration.
Collapse
Affiliation(s)
- Yi Wang
- Department of OphthalmologyAffiliated Hospital of Taishan Medical UniversityTai'anChina
- Department of OptometryInstitute of Optometry of Taishan Medical UniversityTaishan Medical UniversityTai'anChina
| | - Changjun Lan
- Department of OphthalmologyAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Department of Ophthalmology and OptometryNorth Sichuan Medical CollegeNanchongChina
| | - Xuan Liao
- Department of OphthalmologyAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Department of Ophthalmology and OptometryNorth Sichuan Medical CollegeNanchongChina
| | - Di Chen
- Department of OphthalmologyAffiliated Hospital of Taishan Medical UniversityTai'anChina
- Department of OptometryInstitute of Optometry of Taishan Medical UniversityTaishan Medical UniversityTai'anChina
| | - Wengang Song
- Life Science Research CenterTaishan Medical UniversityTai'anChina
| | - Qiuling Zhang
- Life Science Research CenterTaishan Medical UniversityTai'anChina
| |
Collapse
|
10
|
Loos JA, Nicolao MC, Cumino AC. Metformin promotes autophagy in Echinococcus granulosus larval stage. Mol Biochem Parasitol 2018; 224:61-70. [PMID: 30017657 DOI: 10.1016/j.molbiopara.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Cystic echinococcosis is a neglected parasitic disease caused by the larval stage of Echinococcus granulosus for which an effective treatment is not yet available. Since autophagy constitutes a homeostatic mechanism during stress, either inhibition or activation of its activity might be detrimental for survival of the parasite. Amongst the critical molecules that regulate autophagy, TOR, AMPK and sirtuins are the best characterized ones. Previously, we have identified the autophagic machinery, the occurrence of TORC1-controlled events, and the correlation between autophagy and the activation of the unfolded protein response in E. granulosus larval stage. In addition, we have demonstrated that the parasite is susceptible to metformin (Met), a drug that indirectly activates Eg-AMPK and induces energy stress. In this work, we demonstrate that Met induces autophagy in the E. granulosus larval stage. Electron microscopy analysis revealed the presence of autophagic structures in Met-treated protoscoleces. In accordance with these findings, the autophagic marker Eg-Atg8 as well as the transcriptional expression of Eg-atg6, Eg-atg8, Eg-atg12 and Eg-atg16 genes were significantly up-regulated in Met-treated parasites. The induction of the autophagic process was concomitant with Eg-foxO over-expression and its nuclear localization, which could be correlated with the transcriptional regulation of this pathway. On the other hand, the expression of Eg-AKT and Eg-Sirts suggests a possible participation of these conserved proteins in the regulation of Eg-FoxO. Therefore, through pharmacological activation of the AMPK-FoxO signaling pathway, Met could play a role in the death of the parasite contributing to the demonstrated anti-echinococcal effects of this drug. The understanding of the regulatory mechanisms of this pathway in E. granulosus represents a solid basis for choosing appropriate targets for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Julia A Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
11
|
da Silva ED, Cancela M, Monteiro KM, Ferreira HB, Zaha A. Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways. PLoS Negl Trop Dis 2018; 12:e0006473. [PMID: 29727452 PMCID: PMC5955594 DOI: 10.1371/journal.pntd.0006473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/16/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
Background Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. Methodology/Principal findings In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. Conclusions/Significance The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival. Antigen B (AgB) is an oligomeric lipoprotein highly abundant in Echinococcus granulosus hydatid fluid. AgB has already been characterized as an immunomodulatory protein, capable of inducing a permissive immune response to parasite development. Also, an important role in lipid acquisition is attributed to AgB, because it has been found associated to different classes of host lipids. However, the mechanisms of interaction employed by AgB to perform its functions remain undetermined. In this study, we demonstrate that mammalian cells are able to internalize E. granulosus AgB in culture and found that specific mechanisms of endocytosis are involved. Our results extend the understanding of AgB biological role indicating cellular internalization as a mechanism of interaction, which in turn, may represent a target to intervention.
Collapse
Affiliation(s)
- Edileuza Danieli da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martin Cancela
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
12
|
Tsotetsi TN, Collins NE, Oosthuizen MC, Sibeko-Matjila KP. Selection and evaluation of housekeeping genes as endogenous controls for quantification of mRNA transcripts in Theileria parva using quantitative real-time polymerase chain reaction (qPCR). PLoS One 2018; 13:e0196715. [PMID: 29727459 PMCID: PMC5935388 DOI: 10.1371/journal.pone.0196715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
The reliability of any quantitative real-time polymerase chain reaction (qPCR) experiment can be seriously compromised by variations between samples as well as between PCR runs. This usually result from errors in sample quantification, especially with samples that are obtained from different individuals and tissues and have been collected at various time intervals. Errors also arise from differences in qPCR efficiency between assays performed simultaneously to target multiple genes on the same plate. Consequently, the derived quantitative data for the target genes become distorted. To avoid this grievous error, an endogenous control, with relatively constant transcription levels in the target individual or tissue, is included in the qPCR assay to normalize target gene expression levels in the analysis. Several housekeeping genes (HKGs) have been used as endogenous controls in quantification studies of mRNA transcripts; however, there is no record in the literature of the evaluation of these genes for the tick-borne protozoan parasite, Theileria parva. Importantly, the expression of these genes should be invariable between different T. parva stocks, ideally under different experimental conditions, to gain extensive application in gene expression studies of this parasite. Thus, the expression of several widely used HKGs was evaluated in this study, including the genes encoding β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 28S rRNA, cytochrome b and fructose-2.6-biphosphate aldolase (F6P) proteins. The qPCR analysis revealed that the expression of genes encoding cytochrome b, F6P and GAPDH varied considerably between the two T. parva stocks investigated, the cattle-derived T. parva Muguga and the buffalo-derived T. parva 7014. 28S rRNA and β-actin gene expression was the most stable; thus, these genes were considered suitable candidates to be used as endogenous control genes for mRNA quantification studies in T. parva.
Collapse
Affiliation(s)
- Teboho N. Tsotetsi
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| | - Kgomotso P. Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Vectors and Vector-borne Diseases Research Programme, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng Province, South Africa
| |
Collapse
|
13
|
Sabeh M, Duceppe MO, St-Arnaud M, Mimee B. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.). PLoS One 2018; 13:e0193840. [PMID: 29499068 PMCID: PMC5834164 DOI: 10.1371/journal.pone.0193840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.
Collapse
Affiliation(s)
- Michael Sabeh
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada
- Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Marc St-Arnaud
- Biodiversity Centre, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Espinola SM, Cancela MP, Brisolara Corrêa L, Zaha A. Evolutionary fates of universal stress protein paralogs in Platyhelminthes. BMC Evol Biol 2018; 18:10. [PMID: 29390964 PMCID: PMC5793430 DOI: 10.1186/s12862-018-1129-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. Results Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. Conclusions Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur. Electronic supplementary material The online version of this article (10.1186/s12862-018-1129-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Martin Espinola
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martin Pablo Cancela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lauís Brisolara Corrêa
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Yin J, Liu C, Shen Y, Zhang H, Cao J. Efficacy of ursolic acid against Echinococcus granulosus in vitro and in a murine infection model. Parasit Vectors 2018; 11:58. [PMID: 29368624 PMCID: PMC5784668 DOI: 10.1186/s13071-018-2628-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cystic echinococcosis is a global public health problem; however, the drugs (albendazole and mebendazole) currently recommended by WHO for its treatment, have limited efficacy. Therefore, novel drugs are required to provide more choices for the treatment of this disease. METHODS The anthelmintic effects of ursolic acid (UA) were tested on Echinococcus granulosus protoscoleces, germinal cells and metacestodes in vitro. The in vivo efficacy of UA was investigated in mice following secondary infection with E. granulosus. Furthermore, the corresponding ultrastructural damage induced by UA was evaluated by electron microscopy. RESULTS In vitro, 45.95 ± 5.30% of protoscoleces were killed by UA at 40 μg/ml, while the growth of more than 90% of germinal cells was inhibited by UA at 10 to 40 μg/ml. The same effect was observed in metacestodes 7 days after treatment with UA at 10, 20 and 40 μg/ml, and more than 50% of metacestodes showed loss of integrity at the end of the experiment. In vivo, metacestode weight was significantly reduced following oral administration of UA at 200 and 100 mg/kg (39.5 and 38.3%, respectively). Additionally, ultrastructural damage, such as alternations in germinal cell morphology and formation of vacuoles and lipid granules were observed in parasites treated with UA in vitro, while detachment of the germinal layer from the laminated layer was also seen in metacestodes in vivo. CONCLUSIONS UA was demonstrated to exert parasiticidal activity against E. granulosus in vitro and in vivo, thus implicating UA as a potential anti-echinococcosis agent.
Collapse
Affiliation(s)
- Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China
- Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Shanghai, 200025 China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
| | - Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China
- Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Shanghai, 200025 China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China
- Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Shanghai, 200025 China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
| | - Haobing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China
- Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Shanghai, 200025 China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025 China
- Key Laboratory of Parasite and Vector Biology, MOH, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Shanghai, 200025 China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
| |
Collapse
|
16
|
Yang M, Li J, Wu J, Wang H, Guo B, Wu C, Shou X, Yang N, Zhang Z, McManus DP, Zhang F, Zhang W. Cloning and characterization of an Echinococcus granulosus ecdysteroid hormone nuclear receptor HR3-like gene. ACTA ACUST UNITED AC 2017; 24:36. [PMID: 28971798 PMCID: PMC5625357 DOI: 10.1051/parasite/2017037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Cystic echinococcosis is an important parasitic zoonosis caused by the dog tapeworm Echinococcus granulosus. Little is known about adult worm development at the molecular level. Transcription analysis showed that the E. granulosus hormone receptor 3-like (EgHR3) gene was expressed in protoscoleces and adult worms, indicating its role in early adult development. In this study, we cloned and characterized EgHR3 showing that its cDNA contains an open reading frame (ORF) of 1890 bp encoding a 629 amino acid protein, which has a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Immunolocalization revealed the protein was localized in the parenchyma of protoscoleces and adult worms. Real-time PCR analysis showed that EgHR3 was expressed significantly more in adults than in other stages of development (p<0.01) and that its expression was especially high in the early stage of adult worm development induced by bile acids. EgHR3 siRNA silenced 69–78% of the level of transcription in protoscoleces, which resulted in killing 43.6–60.9% of protoscoleces after 10 days of cultivation in vitro. EgHR3 may play an essential role in early adult worm development and in maintaining adult biological processes and may represent a novel drug or vaccine target against echinococcosis.
Collapse
Affiliation(s)
- Mei Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, PR China - Basic Medical College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jun Wu
- Public Health College of Xinjiang Medical University, Urumqi 830011, PR China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Xi Shou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Zhuangzhi Zhang
- Molecular Parasitology Laboratory, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Donald P McManus
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi 830000, PR China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, 14 Shengli Road, Urumqi 830046, PR China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| |
Collapse
|
17
|
Loos JA, Dávila VA, Rodrígues CR, Petrigh R, Zoppi JA, Crocenzi FA, Cumino AC. Metformin exhibits preventive and therapeutic efficacy against experimental cystic echinococcosis. PLoS Negl Trop Dis 2017; 11:e0005370. [PMID: 28182659 PMCID: PMC5321462 DOI: 10.1371/journal.pntd.0005370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/22/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin (Met) is an anti-hyperglycemic and potential anti-cancer agent which may exert its anti-proliferative effects via the induction of energetic stress. In this study we investigated the in vitro and in vivo efficacy of Met against the larval stage of Echinococcus granulosus. Metformin showed significant dose- and time-dependent killing effects on in vitro cultured protoscoleces and metacestodes. Notably, the combination of Met together with the minimum effective concentration of ABZSO had a synergistic effect after days 3 and 12 on metacestodes and protoscoleces, respectively. Oral administration of Met (50 mg/kg/day) in E. granulosus-infected mice was highly effective in reducing the weight and number of parasite cysts, yet its combination with the lowest recommended dose of ABZ (5 mg/kg/day) was even more effective. Coincidentally, intracystic Met accumulation was higher in animals treated with both drugs compared to those administered Met alone. Furthermore, the safe plant-derived drug Met exhibited remarkable chemopreventive properties against secondary hydatidosis in mice. In conclusion, based on our experimental data, Met emerges as a promising anti-echinococcal drug as it has proven to efficiently inhibit the development and growth of the E. granulosus larval stage and its combination with ABZ may improve the current anti-parasitic therapy.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria A. Dávila
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian R. Rodrígues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata, Argentina
| | - Romina Petrigh
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge A. Zoppi
- Servicio de Patología, Hospital Privado de Comunidad (HPC), Córdoba 4545, Nivel 3, Mar del Plata, Argentina
| | - Fernando A. Crocenzi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Fisiología Experimental (IFISE), Universidad Nacional de Rosario (UNR), Suipacha 570, Rosario, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata, Argentina
- * E-mail: (ACC)
| |
Collapse
|
18
|
Ahn CS, Kim JG, Han X, Bae YA, Park WJ, Kang I, Wang H, Kong Y. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface. J Proteome Res 2016; 16:806-823. [PMID: 27959569 DOI: 10.1021/acs.jproteome.6b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Young-An Bae
- Department of Microbiology, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Woo-Jae Park
- Department of Biochemistry, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Hu Wang
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| |
Collapse
|
19
|
Dezaki ES, Yaghoobi MM, Taheri E, Almani PG, Tohidi F, Gottstein B, Harandi MF. Differential Expression of Hox and Notch Genes in Larval and Adult Stages of Echinococcus granulosus. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:653-658. [PMID: 27853123 PMCID: PMC5127546 DOI: 10.3347/kjp.2016.54.5.653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
This investigation aimed to evaluate the differential expression of HoxB7 and notch genes in different developmental stages of Echinococcus granulosus sensu stricto. The expression of HoxB7 gene was observed at all developmental stages. Nevertheless, significant fold differences in the expression level was documented in the juvenile worm with 3 or more proglottids, the germinal layer from infected sheep, and the adult worm from an experimentally infected dog. The notch gene was expressed at all developmental stages of E. granulosus; however, the fold difference was significantly increased at the microcysts in monophasic culture medium and the germinal layer of infected sheep in comparison with other stages. The findings demonstrated that the 2 aforementioned genes evaluated in the present study were differentially expressed at different developmental stages of the parasite and may contribute to some important biological processes of E. granulosus.
Collapse
Affiliation(s)
- Ebrahim Saedi Dezaki
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman 7615614115, Iran
| | - Mohammad Mehdi Yaghoobi
- Research Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Elham Taheri
- Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman 7615614115, Iran
| | - Pooya Ghaseminejad Almani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman 7615614115, Iran
| | - Farideh Tohidi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman 7615614115, Iran
| | - Bruno Gottstein
- Institute of Parasitology, Faculty of Medicine and Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman 7615614115, Iran
| |
Collapse
|
20
|
Naseri M, Akbarzadeh A, Spotin A, Akbari NAR, Mahami-Oskouei M, Ahmadpour E. Scolicidal and apoptotic activities of albendazole sulfoxide and albendazole sulfoxide-loaded PLGA-PEG as a novel nanopolymeric particle against Echinococcus granulosus protoscoleces. Parasitol Res 2016; 115:4595-4603. [DOI: 10.1007/s00436-016-5250-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|
21
|
Dezaki ES, Yaghoubi MM, Spiliotis M, Boubaker G, Taheri E, Almani PG, Tohidi F, Harandi MF, Gottstein B. Comparison of ex vivo harvested and in vitro cultured materials from Echinococcus granulosus by measuring expression levels of five genes putatively involved in the development and maturation of adult worms. Parasitol Res 2016; 115:4405-4416. [PMID: 27515372 PMCID: PMC5056948 DOI: 10.1007/s00436-016-5228-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/29/2016] [Indexed: 12/30/2022]
Abstract
Parts of the natural life cycle of Echinococcus granulosus can be retraced in vitro such as the development of protoscoleces into semiadult worms with three or more proglottids, or the redifferentiation of in vitro cultured protoscoleces into metacestode-like cystic structures. Most in vitro generated samples share—at the microscopical level—high similarities with those naturally grown, but developmental differences have also been documented, such as missing egg production in in vitro grown adults or unusual bladder/vesicle formation in protoscoleces cultured into the metacestode direction. The aim of the present study was to explore how far different in vitro generated stage-specific materials/structures match the natural situation on the transcriptome level, based on testing five exemplarily chosen different genes: the frizzled receptor eg-fz4 (posterior marker), the FGF receptor-like factor eg-fgfrl (anterior association), the cell differentiation protein eg-rcd1 (part of the CCR4-NOT complex, a key regulator of eukaryotic gene expression), the rapidly accelerated fibrosarcoma serin/threonin kinase eg-braf (part of the MAPK pathway involved, e.g., in EGF signaling) and the co-smad eg-smadD (downstream factor of TGFβ/BMP2/activin signaling). These genes—tested via qPCR—were selected such as to allow a discussion on their potential role in the development of E. granulosus into the adult stage. Thus, testing took place with three ex vivo isolated samples, namely (i) egg-containing adult worms, (ii) invaginated protoscoleces, and (iii) protoscolex-free germinal layer tissue. Respective data were compared (a) with in vitro generated metacestode-like microcysts developed from protoscolices, and (b) different development stages of protoscoleces in vitro cultured toward adult maturation. As a finding, only eg-smadD and partially eg-fz4 showed high expression similarities between ex vivo harvested and in vitro cultured E. granulosus, thus suggesting a putative role in adult maturation. Conclusively, the fact of using “only” five genes did not allow answering the question if ex vivo and in vitro materials are similar on the transcriptome level. Another experimental restriction arises from different growth conditions of the in vitro cultured materials, and comparing these to the ex vivo harvested ones. Future experiments may solve the problems by using fully standardized E. granulosus sample collection and fully standardized culture conditions.
Collapse
Affiliation(s)
- Ebrahim Saedi Dezaki
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Institute of Parasitology, Faculty of Medicine and Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Mohammad Mehdi Yaghoubi
- Research Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Markus Spiliotis
- Institute of Parasitology, Faculty of Medicine and Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Faculty of Medicine and Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Elham Taheri
- Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pooya Ghaseminejad Almani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farideh Tohidi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Bruno Gottstein
- Institute of Parasitology, Faculty of Medicine and Vetsuisse Faculty of the University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Hu D, Song X, Xie Y, Zhong X, Wang N, Zheng Y, Gu X, Wang T, Peng X, Yang G. Molecular insights into a tetraspanin in the hydatid tapeworm Echinococcus granulosus. Parasit Vectors 2015; 8:311. [PMID: 26055542 PMCID: PMC4464875 DOI: 10.1186/s13071-015-0926-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 02/03/2023] Open
Abstract
Background Cystic echinococcosis (hydatid disease), caused by the tapeworm Echinococcus granulosus (class Cestoda; family Taeniidae), is a neglected tropical disease that results in morbidity and mortality in millions of humans, as well as in huge economic losses in the livestock industry globally. Proteins from the tetraspanin family in parasites have recently become regarded as crucial molecules in interaction with hosts in parasitism and are therefore suitable for the development of vaccines and diagnostic agents. However, no information is available to date on E. granulosus tetraspanin. Methods In this study, a uroplakin-I-like tetraspanin (Eg-TSP1) of E. granulosus was cloned and expressed in E. coli. The immunolocalization of Eg-TSP1 in different life stages of E. granulosus was determined using specific polyclonal antibody. The antibody and cytokine profiles of mice that immunized with recombinant Eg-TSP1 (rEg-TSP1) were measured for the immunogenicity analysis of this protein. Additionally, we use RNA interference method to explore the biological function of Eg-TSP1 in larva of E. granulosus. Results Immunofluorescence analysis showed that endogenous Eg-TSP1 mainly localized in the tegument of larvae and adults. Significantly elevated levels of antibodies IgG1 and IgG2a and of cytokines IFN-γ and IL-12 were observed in the sera of mice after immunization with rEg-TSP1, suggesting a typical T helper (Th)1-mediated immune response elicited by rEg-TSP1. On further probing the role of Eg-TSP1 in E. granulosus by RNA interference, we found that a thinner tegmental distal cytoplasm was induced in protoscoleces treated with siRNA-132 compared to controls. Conclusions This is the first report characterizing a tetraspanin from the tapeworm E. granulosus. Our results suggest that Eg-TSP1 is associated with biogenesis of the tegument and maintenance of structural integrity of E. granulosus and could therefore be a candidate intervention target for control of hydatid disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0926-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Xingju Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Xiuqin Zhong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Yu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Tao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
23
|
Hebert FO, Phelps L, Samonte I, Panchal M, Grambauer S, Barber I, Kalbe M, Landry CR, Aubin-Horth N. Identification of candidate mimicry proteins involved in parasite-driven phenotypic changes. Parasit Vectors 2015; 8:225. [PMID: 25888917 PMCID: PMC4407394 DOI: 10.1186/s13071-015-0834-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endoparasites with complex life cycles are faced with several biological challenges, as they need to occupy various ecological niches throughout their development. Host phenotypes that increase the parasite's transmission rate to the next host have been extensively described, but few mechanistic explanations have been proposed to describe their proximate causes. In this study we explore the possibility that host phenotypic changes are triggered by the production of mimicry proteins from the parasite by using an ecological model system consisting of the infection of the threespine stickleback (Gasterosteus aculeatus) by the cestode Schistocephalus solidus. METHOD Using RNA-seq data, we assembled 9,093 protein-coding genes from which ORFs were predicted to generate a reference proteome. Based on a previously published method, we built two complementary analysis pipelines to i) establish a general classification of protein similarity among various species (pipeline A) and ii) identify candidate mimicry proteins showing specific host-parasite similarities (pipeline B), a key feature underlying the possibility of molecular mimicry. RESULTS Ninety-four tapeworm proteins showed high local sequence homology with stickleback proteins. Four of these candidates correspond to secreted or membrane proteins that could be produced by the parasite and eventually be released in or be in contact with the host to modulate physiological pathways involved in various phenotypes (e.g. behaviors). One of these candidates belongs to the Wnt family, a large group of signaling molecules involved in cell-to-cell interactions and various developmental pathways. The three other candidates are involved in ion transport and post-translational protein modifications. We further confirmed that these four candidates are expressed in three different developmental stages of the cestode by RT-PCR, including the stages found in the host. CONCLUSION In this study, we identified mimicry candidate peptides from a behavior-altering cestode showing specific sequence similarity with host proteins. Despite their potential role in modulating host pathways that could lead to parasite-induced phenotypic changes and despite our confirmation that they are expressed in the developmental stage corresponding to the altered host behavior, further investigations will be needed to confirm their mechanistic role in the molecular cross-talk taking place between S. solidus and the threespine stickleback.
Collapse
Affiliation(s)
- Francois Olivier Hebert
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugènes-Marchand, Québec, G1V 0A6, Canada.
| | - Luke Phelps
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str 2, 24306, Ploen, Germany.
| | - Irene Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str 2, 24306, Ploen, Germany.
| | - Mahesh Panchal
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str 2, 24306, Ploen, Germany.
| | - Stephan Grambauer
- Department of Biology, Adrian Building, Leicester University, University Road, Leicester, LE1 7RH, UK.
| | - Iain Barber
- Department of Biology, Adrian Building, Leicester University, University Road, Leicester, LE1 7RH, UK.
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str 2, 24306, Ploen, Germany.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugènes-Marchand, Québec, G1V 0A6, Canada.
| | - Nadia Aubin-Horth
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugènes-Marchand, Québec, G1V 0A6, Canada.
| |
Collapse
|