1
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Cheung K, Amos TG, Shine R, DeVore JL, Ducatez S, Edwards RJ, Rollins LA. Whole-mitogenome analysis unveils previously undescribed genetic diversity in cane toads across their invasion trajectory. Ecol Evol 2024; 14:e11115. [PMID: 38435005 PMCID: PMC10909579 DOI: 10.1002/ece3.11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Invasive species offer insights into rapid adaptation to novel environments. The iconic cane toad (Rhinella marina) is an excellent model for studying rapid adaptation during invasion. Previous research using the mitochondrial NADH dehydrogenase 3 (ND3) gene in Hawai'ian and Australian invasive populations found a single haplotype, indicating an extreme genetic bottleneck following introduction. Nuclear genetic diversity also exhibited reductions across the genome in these two populations. Here, we investigated the mitochondrial genomics of cane toads across this invasion trajectory. We created the first reference mitochondrial genome for this species using long-read sequence data. We combined whole-genome resequencing data of 15 toads with published transcriptomic data of 125 individuals to construct nearly complete mitochondrial genomes from the native (French Guiana) and introduced (Hawai'i and Australia) ranges for population genomic analyses. In agreement with previous investigations of these populations, we identified genetic bottlenecks in both Hawai'ian and Australian introduced populations, alongside evidence of population expansion in the invasive ranges. Although mitochondrial genetic diversity in introduced populations was reduced, our results revealed that it had been underestimated: we identified 45 mitochondrial haplotypes in Hawai'ian and Australian samples, none of which were found in the native range. Additionally, we identified two distinct groups of haplotypes from the native range, separated by a minimum of 110 base pairs (0.6%). These findings enhance our understanding of how invasion has shaped the genetic landscape of this species.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Timothy G. Amos
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Rick Shine
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- Univ. Polynésie FrancaiseUMR 241 EIO (UPF, IRD, IFREMER, ILM) BP 6570 Faa'aTahitiFrench Polynesia
| | - Simon Ducatez
- Institut de Recherche pour le Développement (IRD)UMR 241 EIO (UPF, IRD, IFREMER, ILM) BP 6570 Faa'aTahitiFrench Polynesia
| | - Richard J. Edwards
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Carlson KB, Wcisel DJ, Ackerman HD, Romanet J, Christiansen EF, Niemuth JN, Williams C, Breen M, Stoskopf MK, Dornburg A, Yoder JA. Transcriptome annotation reveals minimal immunogenetic diversity among Wyoming toads, Anaxyrus baxteri. CONSERV GENET 2022; 23:669-681. [PMID: 37090205 PMCID: PMC10118071 DOI: 10.1007/s10592-022-01444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Briefly considered extinct in the wild, the future of the Wyoming toad (Anaxyrus baxteri) continues to rely on captive breeding to supplement the wild population. Given its small natural geographic range and history of rapid population decline at least partly due to fungal disease, investigation of the diversity of key receptor families involved in the host immune response represents an important conservation need. Population decline may have reduced immunogenetic diversity sufficiently to increase the vulnerability of the species to infectious diseases. Here we use comparative transcriptomics to examine the diversity of toll-like receptors and major histocompatibility complex (MHC) sequences across three individual Wyoming toads. We find reduced diversity at MHC genes compared to bufonid species with a similar history of bottleneck events. Our data provide a foundation for future studies that seek to evaluate the genetic diversity of Wyoming toads, identify biomarkers for infectious disease outcomes, and guide breeding strategies to increase genomic variability and wild release successes.
Collapse
Affiliation(s)
- Kara B. Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dustin J. Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hayley D. Ackerman
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jessica Romanet
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Emily F. Christiansen
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- North Carolina Aquariums, Raleigh, NC, USA
| | - Jennifer N. Niemuth
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Michael K. Stoskopf
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Williams ST, Haas CA, Roberts JH, Taylor SS. Depauperate major histocompatibility complex variation in the endangered reticulated flatwoods salamander (Ambystoma bishopi). Immunogenetics 2020; 72:263-274. [PMID: 32300829 DOI: 10.1007/s00251-020-01160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
Reticulated flatwoods salamander (Ambystoma bishopi) populations began decreasing dramatically in the 1900s. Contemporary populations are small, isolated, and may be susceptible to inbreeding and reduced adaptive potential because of low genetic variation. Genetic variation at immune genes is especially important as it influences disease susceptibility and adaptation to emerging infectious pathogens, a central conservation concern for declining amphibians. We collected samples from across the extant range of this salamander to examine genetic variation at major histocompatibility complex (MHC) class Iα and IIβ exons as well as the mitochondrial control region. We screened tail or toe tissue for ranavirus, a pathogen associated with amphibian declines worldwide. Overall, we found low MHC variation when compared to other amphibian species and did not detect ranavirus at any site. MHC class Iα sequencing revealed only three alleles with a nucleotide diversity of 0.001, while MHC class IIβ had five alleles with a with nucleotide diversity of 0.004. However, unique variation still exists across this species' range with private alleles at three sites. Unlike MHC diversity, mitochondrial variation was comparable to levels estimated for other amphibians with nine haplotypes observed, including one haplotype shared across all sites. We hypothesize that a combination of a historic disease outbreak and a population bottleneck may have contributed to low MHC diversity while maintaining higher levels of mitochondrial DNA variation. Ultimately, MHC data indicated that the reticulated flatwoods salamander may be at an elevated risk from infectious diseases due to low levels of immunogenetic variation necessary to combat novel pathogens.
Collapse
Affiliation(s)
- Steven Tyler Williams
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA.
| | - Carola A Haas
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James H Roberts
- Department of Biology, Georgia Southern University, Statesboro, GA, 30458, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA
| |
Collapse
|
6
|
Zhou J, Nelson TM, Rodriguez Lopez C, Sarma RR, Zhou SJ, Rollins LA. A comparison of nonlethal sampling methods for amphibian gut microbiome analyses. Mol Ecol Resour 2020; 20:844-855. [PMID: 31990452 DOI: 10.1111/1755-0998.13139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
Noninvasive sampling methods for studying intestinal microbiomes are widely applied in studies of endangered species and in those conducting temporal monitoring during manipulative experiments. Although existing studies show that noninvasive sampling methods among different taxa vary in their accuracy, no studies have yet been published comparing nonlethal sampling methods in adult amphibians. In this study, we compare microbiomes from two noninvasive sample types (faeces and cloacal swabs) to that of the large intestine in adult cane toads, Rhinella marina. We use 16S rRNA gene sequencing to investigate how microbial communities change along the digestive tract and which nonlethal sampling method better represents large intestinal microbiota. We found that cane toads' intestinal microbiota was dominated by Bacteroidetes, Proteobacteria and Firmicutes and, interestingly, we also saw a high proportion of Fusobacteria, which has previously been associated with marine species and changes in frog immunity. The large and small intestine of cane toads had a similar microbial composition, but the large intestine showed higher diversity. Our results indicate that cloacal swabs were more similar to large intestine samples than were faecal samples, and small intestine samples were significantly different from both nonlethal sample types. Our study provides valuable information for future investigations of the cane toad gut microbiome and validates the use of cloacal swabs as a nonlethal method to study changes in the large intestine microbiome. These data provide insights for future studies requiring nonlethal sampling of amphibian gut microbiota.
Collapse
Affiliation(s)
- Jia Zhou
- School of Agriculture, Food and Wine, University of Adelaide, SA, Glen Osmond, Australia
| | - Tiffanie Maree Nelson
- Queensland Facility for Advanced Bioinformatics, School of Medicine, Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Carlos Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Roshmi Rekha Sarma
- School of Biological, Earth and Environmental Sciences, Ecology & Evolution Research Centre, Biological Sciences South (E26) UNSW, University of New South Wales, Kensington, NSW, Australia
| | - Shao Jia Zhou
- School of Agriculture, Food and Wine, University of Adelaide, SA, Glen Osmond, Australia
| | - Lee Ann Rollins
- School of Biological, Earth and Environmental Sciences, Ecology & Evolution Research Centre, Biological Sciences South (E26) UNSW, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
7
|
Ma L, Zhang N, Qu Z, Liang R, Zhang L, Zhang B, Meng G, Dijkstra JM, Li S, Xia MC. A Glimpse of the Peptide Profile Presentation by Xenopus laevis MHC Class I: Crystal Structure of p Xela-UAA Reveals a Distinct Peptide-Binding Groove. THE JOURNAL OF IMMUNOLOGY 2019; 204:147-158. [PMID: 31776204 DOI: 10.4049/jimmunol.1900865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The African clawed frog, Xenopus laevis, is a model species for amphibians. Before metamorphosis, tadpoles do not efficiently express the single classical MHC class I (MHC-I) molecule Xela-UAA, but after metamorphosis, adults express this molecule in abundance. To elucidate the Ag-presenting mechanism of Xela-UAA, in this study, the Xela-UAA structure complex (pXela-UAAg) bound with a peptide from a synthetic random peptide library was determined. The amino acid homology between the Xela-UAA and MHC-I sequences of different species is <45%, and these differences are fully reflected in the three-dimensional structure of pXela-UAAg. Because of polymorphisms and interspecific differences in amino acid sequences, pXela-UAAg forms a distinct peptide-binding groove and presents a unique peptide profile. The most important feature of pXela-UAAg is the two-amino acid insertion in the α2-helical region, which forms a protrusion of ∼3.8 Å that is involved in TCR docking. Comparison of peptide-MHC-I complex (pMHC-I) structures showed that only four amino acids in β2-microglobulin that were bound to MHC-I are conserved in almost all jawed vertebrates, and the most unique feature in nonmammalian pMHC-I molecules is that the AB loop bound β2-microglobulin. Additionally, the binding distance between pMHC-I and CD8 molecules in nonmammals is different from that in mammals. These unique features of pXela-UAAg provide enhanced knowledge of T cell immunity and bridge the knowledge gap regarding the coevolutionary progression of the MHC-I complex from aquatic to terrestrial species.
Collapse
Affiliation(s)
- Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Geng Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; and
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Max Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
8
|
Selechnik D, Richardson MF, Shine R, DeVore JL, Ducatez S, Rollins LA. Increased Adaptive Variation Despite Reduced Overall Genetic Diversity in a Rapidly Adapting Invader. Front Genet 2019; 10:1221. [PMID: 31850072 PMCID: PMC6901984 DOI: 10.3389/fgene.2019.01221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
Invasive species often evolve rapidly following introduction despite genetic bottlenecks that may result from small numbers of founders; however, some invasions may not fit this “genetic paradox”. The invasive cane toad (Rhinella marina) displays high phenotypic variation across its introduced Australian range. Here, we used three genome-wide datasets to characterize their population structure and genetic diversity. We found that toads form three genetic clusters: 1) native range toads, 2) toads from the source population in Hawaii and long-established areas near introduction sites in Australia, and 3) toads from more recently established northern Australian sites. Although we find an overall reduction in genetic diversity following introduction, we do not see this reduction in loci putatively under selection, suggesting that genetic diversity may have been maintained at ecologically relevant traits, or that mutation rates were high enough to maintain adaptive potential. Nonetheless, toads encounter novel environmental challenges in Australia, and the transition between genetic clusters occurs at a point along the invasion transect where temperature rises and rainfall decreases. We identify environmentally associated loci known to be involved in resistance to heat and dehydration. This study highlights that natural selection occurs rapidly and plays a vital role in shaping the structure of invasive populations.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia.,Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark F Richardson
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Simon Ducatez
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Stuart KC, Shine R, Brown GP. Proximate mechanisms underlying the rapid modification of phenotypic traits in cane toads (Rhinella marina) across their invasive range within Australia. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katarina C Stuart
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Richard Shine
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Gregory P Brown
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
10
|
Brown GP, Holden D, Shine R, Phillips BL. Invasion history alters the behavioural consequences of immune system activation in cane toads. J Anim Ecol 2018; 87:716-726. [DOI: 10.1111/1365-2656.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Gregory P. Brown
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Damian Holden
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Richard Shine
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Ben L. Phillips
- School of Biosciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
11
|
Genetic variation and selection of MHC class I loci differ in two congeneric frogs. Genetica 2018; 146:125-136. [PMID: 29450668 DOI: 10.1007/s10709-018-0016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.
Collapse
|
12
|
Barker BS, Rodríguez-Robles JA. ORIGINS AND GENETIC DIVERSITY OF INTRODUCED POPULATIONS OF THE PUERTO RICAN RED-EYED COQUÍ, ELEUTHERODACTYLUS ANTILLENSIS, IN SAINT CROIX (U.S. VIRGIN ISLANDS) AND PANAMÁ. COPEIA 2017. [PMID: 28649148 DOI: 10.1643/cg-16-501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Red-eyed Coquí, Eleutherodactylus antillensis, is a terrestrial frog endemic to the Puerto Rican Bank (Puerto Rico and numerous islands and cays off its eastern coast), in the eastern Caribbean Sea. The species was likely introduced in Saint Croix, an island c. 100 km southeast of Puerto Rico, in the late 1930s, and in Panamá City, Panamá, in the late 1950s or early 1960s, but the source(s) of these introductions are unknown. We analyzed sequence data from one mtDNA locus and four nuDNA introns to infer the origin(s) of the Saint Croix and Panamá City populations and quantify their genetic diversity. Saint Croix and Panamanian populations do not share any haplotypes, and they cluster with different native populations, suggesting that they are derived from separate sources in the Puerto Rican Bank. Patterns of population structure trace the probable sources of E. antillensis in Saint Croix to islands off Puerto Rico's eastern coast, which include Vieques, Culebra, Saint Thomas, Saint John, Tortola, and Virgin Gorda, and possibly to eastern Puerto Rico as well. In contrast, Panamá City E. antillensis probably originated from either western or eastern Puerto Rico. Genetic diversity in the introduced populations is similar to or lower than in populations in the species' native range, indicating that genetic diversity has not increased in the alien frogs. Our findings may facilitate the development of preventive measures to minimize introductions of non-native amphibians in the Caribbean and Central America.
Collapse
Affiliation(s)
- Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, BioSciences West room 310, 1041 E. Lowell St., Tucson, Arizona 85721.,Department of Biology, University of New Mexico, 167 Castetter Hall, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Javier A Rodríguez-Robles
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004
| |
Collapse
|
13
|
Didinger C, Eimes JA, Lillie M, Waldman B. Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:69-79. [PMID: 28027939 DOI: 10.1016/j.dci.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Amphibians, as the first terrestrial vertebrates, offer a window into early major histocompatibility complex (MHC) evolution. We characterized the MHC class I of two Korean amphibians, the Asiatic toad (Bufo gargarizans) and the Japanese tree frog (Hyla japonica). We found at least four transcribed MHC class I (MHC I) loci, the highest number confirmed in any anuran to date. Furthermore, we identified MHC I transcripts in terrestrial adults, and possibly in aquatic larvae, of both species. We conducted a phylogenetic analysis based on MHC I sequence data and found that B. gargarizans and H. japonica cluster together in the superfamily Nobleobatrachia. We further identified three supertypes shared by the two species. Our results reveal substantial variation in the number of MHC I loci in anurans and suggest that certain supertypes have particular physiochemical properties that may confer pathogen resistance.
Collapse
Affiliation(s)
- Chelsea Didinger
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - John A Eimes
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mette Lillie
- Department of Medical Biochemistry and Microbiology (IMBIM), Genomics, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
14
|
Lillie M, Dubey S, Shine R, Belov K. Variation in Major Histocompatibility Complex diversity in invasive cane toad populations. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr17055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context The cane toad (Rhinella marina), a native species of central and southern America, was introduced to Australia in 1935 as a biocontrol agent after a complex history of prior introductions. The population rapidly expanded and has since spread through much of the Australian landmass, with severe impacts on the endemic wildlife, primarily via toxicity to predators. The invasion process has taken its toll on the cane toad, with changes in the immunological capacity across the Australian invasive population. Aims To investigate the immunogenetic underpinnings of these changes, we studied the diversity of the Major Histocompatiblity Complex (MHC) genes in introduced cane toad populations. Methods We studied the diversity of two MHC genes (the classical class I UA locus and a class II DAB locus) and compared these with neutral microsatellite markers in toads from the Australian site of introduction and the Australian invasion front. We also included toads from Hawai’i, the original source of the Australian toads, to infer founder effect. Key results Diversity across all markers was low across Australian and Hawai’ian samples, consistent with a reduction in genetic diversity through multiple founder effects during the course of the successive translocations. In Australia, allelic diversity at the microsatellite markers and the UA locus was reduced at the invasion front, whereas all three alleles at the DAB locus were maintained in the invasion-front toads. Conclusions Loss of allelic diversity observed at the microsatellite markers and the UA locus could be the result of drift and bottlenecking along the invasion process, however, the persistence of DAB diversity warrants further investigation to disentangle the evolutionary forces influencing this locus. Implications Through the use of different molecular markers, we provide a preliminary description of the adaptive genetic processes occurring in this invasive population. The extremely limited MHC diversity may represent low immunogenetic competence across the Australian population, which could be exploited for invasive species management.
Collapse
|
15
|
Selechnik D, Rollins LA, Brown GP, Kelehear C, Shine R. The things they carried: The pathogenic effects of old and new parasites following the intercontinental invasion of the Australian cane toad ( Rhinella marina). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2016; 6:375-385. [PMID: 30951567 PMCID: PMC5715224 DOI: 10.1016/j.ijppaw.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 01/03/2023]
Abstract
Brought to Australia in 1935 to control agricultural pests (from French Guiana, via Martinique, Barbados, Jamaica, Puerto Rico and Hawai'i), repeated stepwise translocations of small numbers of founders enabled the cane toad (Rhinella marina) to escape many parasites and pathogens from its native range. However, the infective organisms that survived the journey continue to affect the dynamics of the toad in its new environment. In Australia, the native-range lungworm Rhabdias pseudosphaerocephala decreases its host's cardiac capacity, as well as growth and survival, but not rate of dispersal. The lungworm is most prevalent in long-colonised areas within the toads' Australian range, and absent from the invasion front. Several parasites and pathogens of Australian taxa have host-shifted to cane toads in Australia; for example, invasion-front toads are susceptible to spinal arthritis caused by the soil bacterium, Ochrobactrum anthropi. The pentastome Raillietiella frenata has host-shifted to toads and may thereby expand its Australian range due to the continued range expansion of the invasive toads. Spill-over and spill-back of parasites may be detrimental to other host species; however, toads may also reduce parasite loads in native taxa by acting as terminal hosts. We review the impact of the toad's parasites and pathogens on the invasive anuran's biology in Australia, as well as collateral effects of toad-borne parasites and pathogens on other host species in Australia. Both novel and co-evolved pathogens and parasites may have played significant roles in shaping the rapid evolution of immune system responses in cane toads within their invaded range. Invasive cane toads have lost many parasites due to serial translocations. One native lungworm (Rhabdias pseudosphaerocephala) has been retained. Toads have also acquired novel parasites and pathogens from Australian hosts. Toads either amplify parasite numbers or act as a parasite sink. Differences in immune function exist between toad populations within Australia.
Collapse
Affiliation(s)
- D Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| | - L A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Pigdons Road, Geelong, VIC, 3217, Australia
| | - G P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| | - C Kelehear
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Panama
| | - R Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Kosch TA, Eimes JA, Didinger C, Brannelly LA, Waldman B, Berger L, Skerratt LF. Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics 2016; 69:165-174. [DOI: 10.1007/s00251-016-0965-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
|
17
|
Lau Q, Igawa T, Komaki S, Satta Y. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs. Immunogenetics 2016; 68:797-806. [PMID: 27418258 PMCID: PMC5056945 DOI: 10.1007/s00251-016-0934-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022]
Abstract
The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (dS) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher dN/dS ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.
Collapse
Affiliation(s)
- Quintin Lau
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan.
| | - Takeshi Igawa
- Global Career Design Center, Hiroshima University, 1-7-1, Higashi-Hiroshima, Hiroshima, 739-8514, Japan
| | - Shohei Komaki
- Division of Developmental Science, Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1, Higashi-Hiroshima, Hiroshima, 739-8529, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
18
|
Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics 2016; 68:449-460. [DOI: 10.1007/s00251-016-0919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
|
19
|
McCartney-Melstad E, Shaffer HB. Amphibian molecular ecology and how it has informed conservation. Mol Ecol 2015; 24:5084-109. [PMID: 26437125 DOI: 10.1111/mec.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems.
Collapse
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
20
|
Rollins LA, Richardson MF, Shine R. A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol Ecol 2015; 24:2264-76. [PMID: 25894012 DOI: 10.1111/mec.13184] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
The process of biological invasion exposes a species to novel pressures, in terms of both the environments it encounters and the evolutionary consequences of range expansion. Several invaders have been shown to exhibit rapid evolutionary changes in response to those pressures, thus providing robust opportunities to clarify the processes at work during rapid phenotypic transitions. The accelerating pace of invasion of cane toads (Rhinella marina) in tropical Australia during its 80-year history has been well characterized at the phenotypic level, including common-garden experiments that demonstrate heritability of several dispersal-relevant traits. Individuals from the invasion front (and their progeny) show distinctive changes in morphology, physiology and behaviour that, in combination, result in far more rapid dispersal than is true of conspecifics from long-colonized areas. The extensive body of work on cane toad ecology enables us to place into context studies of the genetic basis of these traits. Our analyses of differential gene expression from toads from both ends of this invasion-history transect reveal substantial upregulation of many genes, notably those involved in metabolism and cellular repair. Clearly, then, the dramatically rapid phenotypic evolution of cane toads in Australia has been accompanied by substantial shifts in gene expression, suggesting that this system is well suited to investigating the genetic underpinnings of invasiveness.
Collapse
Affiliation(s)
- Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Pigdons Road, Geelong, Vic., 3217, Australia
| | | | | |
Collapse
|