1
|
Saborimanesh N, Xin Q, Ridenour C, Farooqi H. Response of microbial communities in North Saskatchewan River to diluted bitumen and conventional crude under freeze-thaw-refreeze cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121256. [PMID: 36787815 DOI: 10.1016/j.envpol.2023.121256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are the first responder to oil spills and their response provides insight into the ecological effects of oils on aquatic ecosystems. Limited information is available about the impact of oil spills on freshwater ecosystems under seasonal river-ice regimes. This study aimed to investigate the microbial response of North Saskatchewan River water to diluted bitumen (DB) and conventional crude (CC) during the freeze-thaw-refreeze cycle. In two separate experiments, equivalent to 2 L of fresh DB and CC were spilled on the ice-covered river water within a mesoscale spill tank. The microbial response (changes in abundance and diversity) to oils under the freeze, thaw, and refreeze cycles were assessed for 10 days using 16S rRNA gene sequencing. The results showed that microbial communities exhibited different responses to the DB and CC oils. The effect of oils was more pronounced than that of the freeze or thaw cycles. The river microbial community rapidly responded to both spills, which coincided with a steady increase in the organic content of water throughout the freeze-thaw-refreeze cycle. Microbial diversity increased after the DB spill, but remain unchanged after the CC spill, regardless of the cycles. A higher number of new taxa emerged during the ice-covered period, while more microbial enrichment (increase in abundance) was observed during the thaw cycle. Flavobacterium (37 ± 5%) and Pseudomonas (36 ± 4%) remained the most predominant genera post-DB and CC spill, respectively. The results of this study suggest that ice coverage of 5 cm did not prevent the microbial communities from the effects of oils. Thus, a quick clean-up response to an oil spill on ice-covered water is equally critical to avoid the effects of oils on the underlying freshwater ecosystems.
Collapse
Affiliation(s)
- Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
2
|
|
3
|
Zada S, Xie J, Yang M, Yang X, Sajjad W, Rafiq M, Hasan F, Hu Z, Wang H. Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl Microbiol Biotechnol 2021; 105:8921-8936. [PMID: 34738169 DOI: 10.1007/s00253-021-11658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Microbial communities in cave ecosystems have specific survival strategies, which is far from being well explicated. Here, we reported the genetic and functional diversity of bacteria and archaea in typical limestone (Kashmir Cave) and silicate-containing (Tiser Cave) caves. X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FTIR) analyses revealed the different geochemical and mineral compositions of the two caves. Amplicon barcode sequencing revealed the dominancy of Actinobacteria and Proteobacteria in Kashmir and Tiser Caves. Bacteroidetes and Firmicutes were the dominant phyla in Tiser Cave, and the abundance is relatively small in Kashmir Cave. Archaea was also abundant prokaryotes in Kashmir Cave, but it only accounted for 0.723% of the total prokaryote sequences in Tiser Cave. Functional analysis based on metagenomic sequencing data revealed that a large number of functional potential genes involved in nutrient metabolism and biosynthesis of bioactive compounds in Tiser and Kashmir Cave samples could significantly influence the biogeochemical cycle and secondary metabolite production in cave habitats. In addition, the two caves were also found to be rich in biosynthetic genes, encoding bioactive compounds, such as monobactam and prodigiosin, indicating that these caves could be potential habitats for the isolation of antibiotics. This study provides a comprehensive insight into the diversity of bacteria and archaea in cave ecosystems and helps to better understand the special survival strategies of microorganisms in cave ecosystems.Key points• Geochemically distinct caves possess unique microbial community structure.• Cavernicoles could be important candidates for antibiotic production.• Cavernicoles are important for biogeochemical cycling.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jianmin Xie
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Min Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiaoyu Yang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zhong Hu
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hui Wang
- Department of Biology, College of Science, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China.
| |
Collapse
|
4
|
Fegley SR, Michel J. Estimates of losses and recovery of ecosystem services for oiled beaches lack clarity and ecological realism. Ecosphere 2021. [DOI: 10.1002/ecs2.3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Stephen R. Fegley
- Institute of Marine Sciences University of North Carolina at Chapel Hill Morehead City North Carolina 28557 USA
| | | |
Collapse
|
5
|
Suárez-Moo P, Lamelas A, Garcia-Bautista I, Barahona-Pérez LF, Sandoval-Flores G, Valdes-Lozano D, Toledano-Thompson T, Polanco-Lugo E, Valdez-Ojeda R. Characterization of sediment microbial communities at two sites with low hydrocarbon pollution in the southeast Gulf of Mexico. PeerJ 2020; 8:e10339. [PMID: 33354414 PMCID: PMC7731659 DOI: 10.7717/peerj.10339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Coastal ecosystems are prone to hydrocarbon pollution due to human activities, and this issue has a tremendous impact on the environment, socioeconomic consequences, and represents a hazard to humans. Bioremediation relies on the ability of bacteria to metabolize hydrocarbons with the aim of cleaning up polluted sites. Methods The potential of naturally occurring microbial communities as oil degraders was investigated in Sisal and Progreso, two port locations in the southeast Gulf of Mexico, both with a low level of hydrocarbon pollution. To do so, we determined the diversity and composition of bacterial communities in the marine sediment during the dry and rainy seasons using 16S rRNA sequencing. Functional profile analysis (PICRUTSt2) was used to predict metabolic functions associated with hydrocarbon degradation. Results We found a large bacterial taxonomic diversity, including some genera reported as hydrocarbon-degraders. Analyses of the alpha and beta diversity did not detect significant differences between sites or seasons, suggesting that location, season, and the contamination level detected here do not represent determining factors in the structure of the microbial communities. PICRUTSt2 predicted 10 metabolic functions associated with hydrocarbon degradation. Most bacterial genera with potential hydrocarbon bioremediation activity were generalists likely capable of degrading different hydrocarbon compounds. The bacterial composition and diversity reported here represent an initial attempt to characterize sites with low levels of contamination. This information is crucial for understanding the impact of eventual rises in hydrocarbon pollution.
Collapse
Affiliation(s)
- Pablo Suárez-Moo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, Veracruz, Mexico
| | - Itza Garcia-Bautista
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| | | | - Gloria Sandoval-Flores
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autonoma de Tamaulipas, Merida, Yucatan, Mexico
| | - David Valdes-Lozano
- Centro de Investigación y de Estudios Avanzados, Insituto Politecnico Nacional, Merida, Yucatan, Mexico
| | - Tanit Toledano-Thompson
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| | - Erik Polanco-Lugo
- Campus de Ciencias Biológicas y Agropecuarias,, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Ruby Valdez-Ojeda
- Unidad de Energia Renovable, Centro de Investigacion Cientifica de Yucatan, Merida, Yucatan, Mexico
| |
Collapse
|
6
|
Niche Partitioning between Coastal and Offshore Shelf Waters Results in Differential Expression of Alkane and Polycyclic Aromatic Hydrocarbon Catabolic Pathways. mSystems 2020; 5:5/4/e00668-20. [PMID: 32843540 PMCID: PMC7449609 DOI: 10.1128/msystems.00668-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments. Marine oil spills can impact both coastal and offshore marine environments, but little information is available on how the microbial response to oil and dispersants might differ between these biomes. Here, we describe the compositional and functional response of microbial communities to different concentrations of oil and chemically dispersed oil in coastal and offshore surface waters from the Texas-Louisiana continental shelf. Using a combination of analytical chemistry and 16S rRNA amplicon and metatranscriptomic sequencing, we provide a broad, comparative overview of the ecological response of hydrocarbon-degrading bacteria and their expression of hydrocarbon-degrading genes in marine surface waters over time between two oceanic biomes. We found evidence for the existence of different ecotypes of several commonly described hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and offshore shelf waters despite being exposed to similar concentrations of oil, dispersants, and nutrients. This resulted in the differential expression of catabolic pathways for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)—the two major categories of compounds found in crude oil—with preferential expression of n-alkane degradation genes in coastal waters while offshore microbial communities trended more toward the expression of PAH degradation genes. This was unexpected as it contrasts with the generally held view that n-alkanes, being more labile, are attacked before the more refractory PAHs. Collectively, our results provide new insights into the existence and potential consequences of niche partitioning of hydrocarbon-degrading taxa between neighboring marine environments. IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments.
Collapse
|
7
|
Mao X, Stenuit B, Tremblay J, Yu K, Tringe SG, Alvarez-Cohen L. Structural dynamics and transcriptomic analysis of Dehalococcoides mccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor. WATER RESEARCH 2019; 158:146-156. [PMID: 31035191 PMCID: PMC7053656 DOI: 10.1016/j.watres.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
A trichloroethene (TCE)-dechlorinating community (CANAS) maintained in a completely mixed flow reactor was established from a semi-batch enrichment culture (ANAS) and was monitored for 400 days at a low solids retention time (SRT) under electron acceptor limitation. Around 85% of TCE supplied to CANAS (0.13 mmol d-1) was converted to ethene at a rate of 0.1 mmol d-1, with detection of low production rates of vinyl chloride (6.8 × 10-3 mmol d-1) and cis-dichloroethene (2.3 × 10-3 mmol d-1). Two distinct Dehalococcoides mccartyi strains (ANAS1 and ANAS2) were stably maintained at 6.2 ± 2.8 × 108 cells mL-1 and 5.8 ± 1.2 × 108 cells mL-1, respectively. Electron balance analysis showed 107% electron recovery, in which 6.1% were involved in dechlorination. 16 S rRNA amplicon sequencing revealed a structural regime shift between ANAS and CANAS while maintaining robust TCE dechlorination due to similar relative abundances of D. mccartyi and functional redundancy among each functional guild supporting D. mccartyi activity. D. mccartyi transcriptomic analysis identified the genes encoding for ribosomal RNA and the reductive dehalogenases tceA and vcrA as the most expressed genes in CANAS, while hup and vhu were the most critical hydrogenases utilized by D. mccartyi in the community.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Benoit Stenuit
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | | | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA; Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Tatariw C, Flournoy N, Kleinhuizen AA, Tollette D, Overton EB, Sobecky PA, Mortazavi B. Salt marsh denitrification is impacted by oiling intensity six years after the Deepwater Horizon oil spill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1606-1614. [PMID: 30296756 DOI: 10.1016/j.envpol.2018.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Coastal salt marshes provide the valuable ecosystem service of removing anthropogenic nitrogen (N) via microbially-mediated denitrification. During the 2010 Deepwater Horizon (DWH) spill, oil exposure killed marsh plants in some regions and contributed to rapid compositional shifts in sediment microbial communities, which can impact ecosystem denitrification capacity. Within 3-5 years of the spill, plant biomass and microbial communities in some impacted marshes can recover to a new stable state. The objective of this study was to determine whether marsh recovery 6 years after the DWH oil spill results in subsequent recovery of denitrification capacity. We measured denitrification capacity (isotope pairing technique), microbial 16S rRNA gene composition, and denitrifier abundance (quantitative PCR) at sites subjected to light, moderate, and heavy oiling during the spill that were not targeted by any clean-up efforts. There were no differences in plant belowground biomass, sediment extractable NH4+, inorganic nitrogen flux, 16S rRNA composition, 16S rRNA diversity, or denitrifier functional gene (nirS, norB, and nosZ) abundances associated with oiling status, indicating that certain drivers of ecosystem denitrification capacity have recovered or achieved a new stable state six years after the spill. However, on average, denitrification capacities at the moderately and heavily oiled sites were less than 49% of that of the lightly oiled site (27.7 ± 14.7 and 37.2 ± 24.5 vs 71.8 ± 33.8 μmol N m-2 h-1, respectively). The presence of heavily weathered oiled residue (matched and non-matched for MC252) had no effect on process rates or microbial composition. The loss of function at the moderately and heavily oiled sites compared to the lightly oiled site despite the comparable microbial and environmental factors suggests that oiling intensity plays a role in the long-term recovery of marsh ecosystem services.
Collapse
Affiliation(s)
- Corianne Tatariw
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, Dauphin Island, AL, 36528, United States.
| | - Nikaela Flournoy
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States
| | - Alice A Kleinhuizen
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, Dauphin Island, AL, 36528, United States
| | - Derek Tollette
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, Dauphin Island, AL, 36528, United States
| | - Edward B Overton
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Patricia A Sobecky
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States
| | - Behzad Mortazavi
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, 35487, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, Dauphin Island, AL, 36528, United States.
| |
Collapse
|
9
|
Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML. Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1060-1074. [PMID: 30045488 DOI: 10.1016/j.scitotenv.2018.06.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/16/2023]
Abstract
Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.
Collapse
Affiliation(s)
| | | | - María Leticia Arena-Ortiz
- Posgrado en Ciencias del Mar y Limnología UNAM, Mérida, Yucatán, Mexico; Laboratorio de Ecogenonomica Universidad Nacional Autonoma de Mexico.
| |
Collapse
|
10
|
Curtis D, Elango V, Collins AW, Rodrigue M, Pardue JH. Transport of crude oil and associated microbial populations by washover events on coastal headland beaches. MARINE POLLUTION BULLETIN 2018; 130:229-239. [PMID: 29866552 DOI: 10.1016/j.marpolbul.2018.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Storm-driven transport of MC252 oil, sand and shell aggregates was studied on a low-relief coastal headland beach in Louisiana, USA including measurement of alkylated PAHs and Illumina sequencing of intra-aggregate microbial populations. Weathering ratios, constructed from alkylated PAH data, were used to assess loss of 3-ring phenanthrenes and dibenzothiophenes relative to 4-ring chrysenes. Specific aggregate types showed relatively little weathering of 3-ring PAHs referenced to oil sampled near the Macondo wellhead with the exception of certain SRBs sampled from the supratidal environment and samples from deposition areas north of beach. Aggregates mobilized by these storm-driven washover events contains diverse microbial populations dominated by the class Gammaproteobacteria including PAH-degrading genera such as Halomonas, Marinobacter and Idiomarina. Geochemical assessment of porewater in deposition areas, weathering observations, and microbial data suggest that storm remobilization can contribute to susceptibility of PAHs to biodegradation by moving oil to beach microenvironments with more favorable characteristics. (149).
Collapse
Affiliation(s)
- David Curtis
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Vijaikrishnah Elango
- Hazardous Substance Research Center, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Autumn W Collins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Matthew Rodrigue
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - John H Pardue
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States; Hazardous Substance Research Center, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
11
|
Doyle SM, Whitaker EA, De Pascuale V, Wade TL, Knap AH, Santschi PH, Quigg A, Sylvan JB. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit. Front Microbiol 2018; 9:689. [PMID: 29696005 PMCID: PMC5904270 DOI: 10.3389/fmicb.2018.00689] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.
Collapse
Affiliation(s)
- Shawn M Doyle
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Emily A Whitaker
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Veronica De Pascuale
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Terry L Wade
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Anthony H Knap
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Peter H Santschi
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Antonietta Quigg
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Appl Environ Microbiol 2017; 83:AEM.00784-17. [PMID: 28778895 DOI: 10.1128/aem.00784-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria (Rhizobiales), Chloroflexi (Dehalococcoidia), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts.IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial communities in coastal marshes is poorly known, with limited investigation of potential changes in bacterial communities in response to various environmental stressors. The Deepwater Horizon oil spill provided an unprecedented opportunity to study the long-term effects of an oil spill on microbial systems in marshes. Compared to previous studies, the significance of our research stems from (i) a broader geographic range of studied marshes, (ii) an extended time frame of data collection that includes prespill conditions, (iii) a more accurate procedure using biomarker indices to understand oiling, and (iv) an examination of other potential stressors linked to in situ environmental changes, aside from oil exposure.
Collapse
|
13
|
Beyer J, Trannum HC, Bakke T, Hodson PV, Collier TK. Environmental effects of the Deepwater Horizon oil spill: A review. MARINE POLLUTION BULLETIN 2016; 110:28-51. [PMID: 27301686 DOI: 10.1016/j.marpolbul.2016.06.027] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/21/2016] [Accepted: 06/05/2016] [Indexed: 05/24/2023]
Abstract
The Deepwater Horizon oil spill constituted an ecosystem-level injury in the northern Gulf of Mexico. Much oil spread at 1100-1300m depth, contaminating and affecting deepwater habitats. Factors such as oil-biodegradation, ocean currents and response measures (dispersants, burning) reduced coastal oiling. Still, >2100km of shoreline and many coastal habitats were affected. Research demonstrates that oiling caused a wide range of biological effects, although worst-case impact scenarios did not materialize. Biomarkers in individual organisms were more informative about oiling stress than population and community indices. Salt marshes and seabird populations were hard hit, but were also quite resilient to oiling effects. Monitoring demonstrated little contamination of seafood. Certain impacts are still understudied, such as effects on seagrass communities. Concerns of long-term impacts remain for large fish species, deep-sea corals, sea turtles and cetaceans. These species and their habitats should continue to receive attention (monitoring and research) for years to come.
Collapse
Affiliation(s)
- Jonny Beyer
- NIVA - Norwegian Institute for Water Research, NO-0349, Oslo, Norway
| | - Hilde C Trannum
- NIVA - Norwegian Institute for Water Research, NO-0349, Oslo, Norway
| | - Torgeir Bakke
- NIVA - Norwegian Institute for Water Research, NO-0349, Oslo, Norway
| | - Peter V Hodson
- School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Tracy K Collier
- Delta Independent Science Board, 980 Ninth Street, Suite 1500, Sacramento, CA 95814, USA
| |
Collapse
|
14
|
Acosta-González A, Marqués S. Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 2016; 38:24-32. [PMID: 26773654 DOI: 10.1016/j.copbio.2015.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Abstract
Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.
Collapse
Affiliation(s)
- Alejandro Acosta-González
- Grupo de Investigación en Bioprospección (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Autopista Norte km 7, Chía, Cundinamarca, Colombia
| | - Silvia Marqués
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Profesor Albareda 1, E-18008 Granada, Spain.
| |
Collapse
|
15
|
Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KYH, Thompson JR. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 2015; 6:1027. [PMID: 26441948 PMCID: PMC4585245 DOI: 10.3389/fmicb.2015.01027] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.
Collapse
Affiliation(s)
- BoonFei Tan
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
| | - Charmaine Ng
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Jean Pierre Nshimyimana
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological UniversitySingapore, Singapore
| | - Lay Leng Loh
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Karina Y.-H. Gin
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Janelle R. Thompson
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|