1
|
Zhang X, Shi T, Li J, Wu X, Wu K, Li D, Wang D, Guan J, Wang H. Natural History of KCNQ4 p.G285S Related Hearing Loss, Construction of iPSC and Mouse Model. Laryngoscope 2024; 134:2356-2363. [PMID: 37962101 DOI: 10.1002/lary.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE KCNQ4 is one of the most common disease-causing genes involved in autosomal dominant non-syndromic hearing loss. We previously found that patients with KCNQ4 p.G285S exhibited a much more rapid deterioration in hearing loss than those with other KCNQ4 variants. To determine the rate of hearing loss and assess the disease for further analysis, we performed a long-term follow-up of these patients and generated patient-derived induced pluripotent stem cells (iPSCs), and a mouse model. METHODS Patients with KCNQ4 p.G285S from a five-generation family with hearing loss were followed up from 2005 to 2022. iPSCs were generated by stimulating peripheral blood mononuclear cells from the proband, and their pluripotency was determined. The Kcnq4 p.G286S mouse model was generated using CRISPR/Cas9, and its genotype and phenotype were identified. RESULTS (1) The annual rates of hearing loss at the frequencies of speech were 0.96 dB for the proband and 0.87 dB for his father during the follow-up period, which were faster than patients with other KCNQ4 variants. (2) The patient-derived iPSC line carrying KCNQ4 p.G285S, possessed the capacity of differentiation and pluripotency capacities. (3) Mutant mice with Kcnq4 p.G286S exhibited hearing loss and outer hair cell loss at 1 month of age. CONCLUSION Patients with KCNQ4 p.G285S variant exhibited significantly accelerated progression of hearing loss compared to those with other reported variants. Awareness of the natural history of hearing loss associated with KCNQ4 p.G285S is beneficial for genetic counseling and prognosis. The generation of the iPSCs and mouse model can provide a valuable foundation for further in-depth analyses. LEVEL OF EVIDENCE 4 Laryngoscope, 134:2356-2363, 2024.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tao Shi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jin Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kaili Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Danyang Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Guan
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Wang H, Guan L, Wu X, Guan J, Li J, Li N, Wu K, Gao Y, Bing D, Zhang J, Lan L, Shi T, Li D, Wang W, Xie L, Xiong F, Shi W, Zhao L, Wang D, Yin Y, Wang Q. Clinical and genetic architecture of a large cohort with auditory neuropathy. Hum Genet 2024; 143:293-309. [PMID: 38456936 PMCID: PMC11043192 DOI: 10.1007/s00439-024-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Auditory neuropathy (AN) is a unique type of language developmental disorder, with no precise rate of genetic contribution that has been deciphered in a large cohort. In a retrospective cohort of 311 patients with AN, pathogenic and likely pathogenic variants of 23 genes were identified in 98 patients (31.5% in 311 patients), and 14 genes were mutated in two or more patients. Among subgroups of patients with AN, the prevalence of pathogenic and likely pathogenic variants was 54.4% and 56.2% in trios and families, while 22.9% in the cases with proband-only; 45.7% and 25.6% in the infant and non-infant group; and 33.7% and 0% in the bilateral and unilateral AN cases. Most of the OTOF gene (96.6%, 28/29) could only be identified in the infant group, while the AIFM1 gene could only be identified in the non-infant group; other genes such as ATP1A3 and OPA1 were identified in both infant and non-infant groups. In conclusion, genes distribution of AN, with the most common genes being OTOF and AIFM1, is totally different from other sensorineural hearing loss. The subgroups with different onset ages showed different genetic spectrums, so did bilateral and unilateral groups and sporadic and familial or trio groups.
Collapse
Affiliation(s)
- Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Liping Guan
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang, 050000, People's Republic of China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Jing Guan
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Jin Li
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Nan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Kaili Wu
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Ya Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang, 050000, People's Republic of China
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Lan Lan
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Tao Shi
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Danyang Li
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Wenjia Wang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Linyi Xie
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Fen Xiong
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Wei Shi
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Lijian Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
- Medical Technology College, Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Dayong Wang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, People's Republic of China
| | - Qiuju Wang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, The Sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, People's Republic of China.
| |
Collapse
|
3
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of Non-Syndromic Hearing Loss (NSHL) and discussion of Current Diagnosis and Treatment options. Clin Genet 2023; 103:16-34. [PMID: 36089522 DOI: 10.1111/cge.14228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
Hearing impairment is one of the most widespread inheritable sensory disorder affecting at least 1 in every 1000 born. About two-third of hereditary hearing loss (HHL) disorders are non-syndromic. To provide comprehensive update of monogenic causes of non-syndromic hearing loss (NSHL), literature search has been carried out with appropriate keywords in the following databases-PubMed, Google Scholar, Cochrane library, and Science Direct. Out of 2214 papers, 271 papers were shortlisted after applying inclusion and exclusion criterion. Data extracted from selected papers include information about gene name, identified pathogenic variants, ethnicity of the patient, age of onset, gender, title, authors' name, and year of publication. Overall, pathogenic variants in 98 different genes have been associated with NSHL. These genes have important role to play during early embryonic development in ear structure formation and hearing development. Here, we also review briefly the recent information about diagnosis and treatment approaches. Understanding pathogenic genetic variants are helpful in the management of affected and may offer targeted therapies in future.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Divya Kumari
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
6
|
Cui C, Zhang L, Qian F, Chen Y, Huang B, Wang F, Wang D, Lv J, Wang X, Yan Z, Guo L, Li GL, Shu Y, Liu D, Li H. A humanized murine model, demonstrating dominant progressive hearing loss caused by a novel KCNQ4 mutation (p.G228D) from a large Chinese family. Clin Genet 2022; 102:149-154. [PMID: 35599357 DOI: 10.1111/cge.14164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
The pathogenic variants in KCNQ4 cause DFNA2 nonsyndromic hearing loss. However, the understanding of genotype-phenotype correlations between KCNQ4 and hearing is limited. Here, we identified a novel KCNQ4 mutation p.G228D from a Chinese family, including heterozygotes characterized by high-frequency hearing loss that is progressive across all frequencies and homozygotes with more severe hearing loss. We constructed a novel murine model with humanized homologous Kcnq4 mutation. The heterozygotes had mid-frequency and high-frequency hearing loss at 4 weeks, and moved toward all frequencies hearing loss at 12 weeks, while the homozygotes had severe-to-profound hearing loss at 8 weeks. The degeneration of outer hair cells (OHCs) was observed from basal to apical turn of cochlea. The reduced K+ currents and depolarized resting potentials were revealed in OHCs. Remarkably, we observed the loss of inner hair cells (IHCs) in the region corresponding to the frequency above 32 kHz at 8-12 weeks. The results suggest the degeneration of OHCs and IHCs may contribute to high-frequency hearing loss in DFNA2 over time. Our findings broaden the variants of KCNQ4 and provide a novel mouse model of progressive hearing loss, which contributes to an understanding of pathogenic mechanism and eventually treatment of DFNA2 progressive hearing loss.
Collapse
Affiliation(s)
- Chong Cui
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China
| | - Fuping Qian
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Yuxin Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bowei Huang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fang Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daqi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Lv
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuechun Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China
| | - Zhiqiang Yan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Luo Guo
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Thorpe RK, Walls WD, Corrigan R, Schaefer A, Wang K, Huygen P, Casavant TL, Smith RJH. AudioGene: refining the natural history of KCNQ4, GSDME, WFS1, and COCH-associated hearing loss. Hum Genet 2022; 141:877-887. [PMID: 35038006 PMCID: PMC9092196 DOI: 10.1007/s00439-021-02424-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022]
Abstract
Autosomal dominant non-syndromic hearing loss (ADNSHL) displays gene-specific progression of hearing loss, which is amenable to sequential audioprofiling. We sought to refine the natural history of ADNSHL by examining audiometric data in 5-year increments. 2175 audiograms were included from four genetic causes of ADNSHL-KCNQ4 (DFNA2), GSDME (DFNA5), WFS1 (DFNA6/14/38), and COCH (DFNA9). Annual threshold deterioration (ATD) was calculated for each gene: for the speech-frequency pure tone average, the ATD, respectively, was 0.72 dB/year, 0.94 dB/year, 0.53 dB/year, and 1.41 dB/year, with the largest drops occurring from ages 45-50 (0.89 dB/year; KCNQ4), 5-10 (1.42 dB/year; GSDME), 40-45 (0.83 dB/year; WFS1), and 50-55 (2.09 dB/year; COCH). 5-year interval analysis of audiograms reveals the gene specific natural history of KCNQ4, GSDME, WFS1 and COCH-related progressive hearing loss. Identifying ages at which hearing loss is most rapid informs clinical care and patient expectations. Natural history data are also essential to define outcomes of clinical trials that test novel therapies designed to correct or ameliorate these genetic forms of hearing loss.
Collapse
Affiliation(s)
- Ryan K Thorpe
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - W Daniel Walls
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Rae Corrigan
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Schaefer
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick Huygen
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Thomas L Casavant
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Richard J H Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA.
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA.
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA.
- Molecular Otolaryngology and Renal Research Laboratories and Iowa Institute of Human Genetics, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Progression of KCNQ4 related genetic hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Ion channel-related hereditary hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Novel KCNQ4 variants in different functional domains confer genotype- and mechanism-based therapeutics in patients with nonsyndromic hearing loss. Exp Mol Med 2021; 53:1192-1204. [PMID: 34316018 PMCID: PMC8333092 DOI: 10.1038/s12276-021-00653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Loss-of-function variant in the gene encoding the KCNQ4 potassium channel causes autosomal dominant nonsyndromic hearing loss (DFNA2), and no effective pharmacotherapeutics have been developed to reverse channel activity impairment. Phosphatidylinositol 4,5-bisphosphate (PIP2), an obligatory phospholipid for maintaining KCNQ channel activity, confers differential pharmacological sensitivity of channels to KCNQ openers. Through whole-exome sequencing of DFNA2 families, we identified three novel KCNQ4 variants related to diverse auditory phenotypes in the proximal C-terminus (p.Arg331Gln), the C-terminus of the S6 segment (p.Gly319Asp), and the pore region (p.Ala271_Asp272del). Potassium currents in HEK293T cells expressing each KCNQ4 variant were recorded by patch-clamp, and functional recovery by PIP2 expression or KCNQ openers was examined. In the homomeric expression setting, the three novel KCNQ4 mutant proteins lost conductance and were unresponsive to KCNQ openers or PIP2 expression. Loss of p.Arg331Gln conductance was slightly restored by a tandem concatemer channel (WT-p.R331Q), and increased PIP2 expression further increased the concatemer current to the level of the WT channel. Strikingly, an impaired homomeric p.Gly319Asp channel exhibited hyperactivity when a concatemer (WT-p.G319D), with a negative shift in the voltage dependence of activation. Correspondingly, a KCNQ inhibitor and chelation of PIP2 effectively downregulated the hyperactive WT-p.G319D concatemer channel. Conversely, the pore-region variant (p.Ala271_Asp272del) was nonrescuable under any condition. Collectively, these novel KCNQ4 variants may constitute therapeutic targets that can be manipulated by the PIP2 level and KCNQ-regulating drugs under the physiological context of heterozygous expression. Our research contributes to the establishment of a genotype/mechanism-based therapeutic portfolio for DFNA2.
Collapse
|
11
|
Li Q, Liang P, Wang S, Li W, Wang J, Yang Y, An X, Chen J, Zha D. A novel KCNQ4 gene variant (c.857A>G; p.Tyr286Cys) in an extended family with non‑syndromic deafness 2A. Mol Med Rep 2021; 23:420. [PMID: 33846771 PMCID: PMC8025472 DOI: 10.3892/mmr.2021.12059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Deafness is one of the most common sensory disorders found in humans; notably, >60% of all cases of deafness have been attributed to genetic factors. Variants in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of progressive hearing loss, deafness non-syndromic autosomal dominant 2A (DFNA2A). In the present study, whole-exome sequencing (WES) was performed on three members of a five-generation Chinese family with 46 members with hearing loss. Pure tone audiometry and Sanger sequencing were performed for 11 family members to determine whether the novel variant in the KCNQ4 gene was segregated with the affected family members. In addition, evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were performed. The family exhibited autosomal dominant, progressive, post-lingual, non-syndromic sensorineural hearing loss. A novel co-segregating heterozygous missense variant (c.857A>G; p.Tyr286Cys) in the glycine-tyrosine-glycine signature sequence in the pore region of the KCNQ4 channel was identified. This variant was predicted to result in a tyrosine-to-cysteine substitution at position 286 in the KCNQ4 protein. The tyrosine at position 286 is well conserved across different species. The substitution of tyrosine with cysteine would affect the structure of the pore region, resulting in the loss of channel function. The KCNQ4 gene is one of the most common mutated genes observed in patients with autosomal dominant, non-syndromic hearing loss. Taken together, for the family analyzed in the present study, performing WES in conjunction with Sanger sequencing has led to the detection of a novel, potentially causative variant (c.857 A>G; p.Tyr286Cys) in exon 6 of the KCNQ4 gene. The present study has added to the number of pathogenic variants observed in the KCNQ4 gene, and the findings may prove to be useful for both the diagnosis of DFNA2A and in the design of early interventional therapies.
Collapse
Affiliation(s)
- Qiong Li
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Pengfei Liang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shujuan Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Li
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Yang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaogang An
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Chen
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dingjun Zha
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
12
|
Wang H, Gao Y, Guan J, Lan L, Yang J, Xiong W, Zhao C, Xie L, Yu L, Wang D, Wang Q. Phenotypic Heterogeneity of Post-lingual and/or Milder Hearing Loss for the Patients With the GJB2 c.235delC Homozygous Mutation. Front Cell Dev Biol 2021; 9:647240. [PMID: 33718389 PMCID: PMC7953049 DOI: 10.3389/fcell.2021.647240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To report the phenotypic heterogeneity of GJB2 c.235delC homozygotes associated with post-lingual and/or milder hearing loss, and explore the possible mechanism of these unconditional phenotypes. Methods Mutation screening of GJB2 was performed on all ascertained members from Family 1006983 and three sporadic patients by polymerase chain reaction (PCR) amplification and Sanger sequencing. Next generation sequencing (NGS) was successively performed on some of the affected members and normal controls from Family 1006983 to explore additional possible genetic codes. Reverse transcriptase–quantitative PCR was conducted to test the expression of Connexin30. Results We identified a Chinese autosomal recessive hearing loss family with the GJB2 c.235delC homozygous mutation, affected members from which had post-lingual moderate to profound hearing impairment, and three sporadic patients with post-lingual moderate hearing impairment, instead of congenital profound hearing loss. NGS showed no other particular variants. Overexpression of Connexin30 in some of these cases was verified. Conclusion Post-lingual and/or moderate hearing impairment phenotypes of GJB2 c.235delC homozygotes are not the most common phenotype, revealing the heterogeneity of GJB2 pathogenic mutations. To determine the possible mechanism that rescues part of the hearing or postpones onset age of these cases, more cases are required to confirm both Connexin30 overexpression and the existence of modifier genes.
Collapse
Affiliation(s)
- Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Gao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Jing Guan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Lan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Ju Yang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Wenping Xiong
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Cui Zhao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Linyi Xie
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Yu
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Dayong Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
13
|
Abstract
In children with normal hearing, inflammatory disorders caused by infections of the middle ear (otitis media) are the most common ear illnesses. Many of older adults experience some level of hearing loss. Several factors can lead to either a partial loss or the total inability to hear (deafness) including exposure to noise, a hereditary predisposition, chronic infections, traumas, medications, and aging.
Collapse
|
14
|
Jung J, Lin H, Koh YI, Ryu K, Lee JS, Rim JH, Choi HJ, Lee HJ, Kim HY, Yu S, Jin H, Lee JH, Lee MG, Namkung W, Choi JY, Gee HY. Rare KCNQ4 variants found in public databases underlie impaired channel activity that may contribute to hearing impairment. Exp Mol Med 2019; 51:1-12. [PMID: 31434872 PMCID: PMC6802650 DOI: 10.1038/s12276-019-0300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
KCNQ4 is frequently mutated in autosomal dominant non-syndromic hearing loss (NSHL), a typically late-onset, initially high-frequency loss that progresses over time (DFNA2). Most KCNQ4 mutations linked to hearing loss are clustered around the pore region of the protein and lead to loss of KCNQ4-mediated potassium currents. To understand the contribution of KCNQ4 variants to NSHL, we surveyed public databases and found 17 loss-of-function and six missense KCNQ4 variants affecting amino acids around the pore region. The missense variants have not been reported as pathogenic and are present at a low frequency (minor allele frequency < 0.0005) in the population. We examined the functional impact of these variants, which, interestingly, induced a reduction in potassium channel activity without altering expression or trafficking of the channel protein, being functionally similar to DFNA2-associated KCNQ4 mutations. Therefore, these variants may be risk factors for late-onset hearing loss, and individuals harboring any one of these variants may develop hearing loss during adulthood. Reduced channel activity could be rescued by KCNQ activators, suggesting the possibility of medical intervention. These findings indicate that KCNQ4 variants may contribute more to late-onset NSHL than expected, and therefore, genetic screening for this gene is important for the prevention and treatment of NSHL.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Haiyue Lin
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kunhi Ryu
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Joon Suk Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hak Joon Lee
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsoo Jin
- Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Wan Namkung
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
15
|
Ramzan M, Idrees H, Mujtaba G, Sobreira N, Witmer PD, Naz S. Bi-allelic Pro291Leu variant in KCNQ4 leads to early onset non-syndromic hearing loss. Gene 2019; 705:109-112. [PMID: 31028865 DOI: 10.1016/j.gene.2019.04.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022]
Abstract
Variants of KCNQ4 are one of the most common causes of dominantly inherited nonsyndromic hearing loss. We investigated a consanguineous family in which two individuals had prelignual hearing loss, apparently inherited in a recessive mode. Whole-exome sequencing analyses demonstrated genetic heterogeneity as variants in two different genes segregated with the phenotype in two branches of the family. Members in one branch were homozygous for a pathogenic variant of TMC1. The other two affected individuals were homozygous for a missense pathogenic variant in KCNQ4 c.872C>T; p.(Pro291Leu). These two individuals had prelingual, progressive moderate to severe hearing loss, while a heterozygous carrier had late onset mild hearing loss. Our work demonstrates that p.Pro291L variant is semi-dominantly inherited. This is the first report of semi-dominance of a KCNQ4 variant.
Collapse
Affiliation(s)
- Memoona Ramzan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore 54590, Pakistan
| | - Hafiza Idrees
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore 54590, Pakistan
| | - Ghulam Mujtaba
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore 54590, Pakistan
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Baylor-Hopkins Center for Mendelian Genomics, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Baylor-Hopkins Center for Mendelian Genomics, Baltimore, MD, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore 54590, Pakistan.
| |
Collapse
|
16
|
Zhang J, Guan J, Wang H, Yin L, Wang D, Zhao L, Zhou H, Wang Q. Genotype-phenotype correlation analysis of MYO15A variants in autosomal recessive non-syndromic hearing loss. BMC MEDICAL GENETICS 2019; 20:60. [PMID: 30953472 PMCID: PMC6451310 DOI: 10.1186/s12881-019-0790-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Background MYO15A variants are responsible for human non-syndromic autosomal recessive deafness (DFNB3). The majority of MYO15A variants are associated with a congenital severe-to-profound hearing loss phenotype, except for MYO15A variants in exon 2, which cause a milder auditory phenotype, suggesting a genotype-phenotype correlation of MYO15A. However, MYO15A variants not in exon 2 related to a milder phenotype have also been reported, indicating that the genotype-phenotype correlation of MYO15A is complicated. This study aimed to provide more cases of MYO15A variation with diverse phenotypes to analyse this complex correlation. Methods Fifteen Chinese autosomal recessive non-syndromic hearing loss (ARNSHL) individuals with MYO15A variants (8 males and 7 females) from 14 unrelated families, identified by targeted gene capture of 127 known candidate deafness genes, were recruited. Additionally, we conducted a review of the literature to further analyses all reported MYO15A genotype-phenotype relationships worldwide. Results We identified 16 novel variants and 12 reported pathogenic MYO15A variants in 15 patients, two of which presented with a milder phenotype. Interestingly, one of these cases carried two reported pathogenic variants in exon 2, while the other carried two novel variants not in exon 2. Based on our literature review, MYO15A genotype-phenotype correlation analysis showed that almost all domains were reported to be correlated with a milder phenotype. However, variants in the N-terminal domain were more likely to cause a milder phenotype. Using next-generation sequencing (NGS), we also found that the number of known MYO15A variants with milder phenotypes in Southeast Asia has increased in recent years. Conclusion Our work extended the MYO15A variant spectrum, enriched our knowledge of auditory phenotypes, and tried to explore the genotype-phenotype correlation in different populations in order to investigate the cause of the complex MYO15A genotype-phenotype correlation. Electronic supplementary material The online version of this article (10.1186/s12881-019-0790-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.,Department of Otolaryngology of Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Guan
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| | - Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | | | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Lidong Zhao
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Huifang Zhou
- Department of Otolaryngology of Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
17
|
Whole-exome sequencing identifies two novel mutations in KCNQ4 in individuals with nonsyndromic hearing loss. Sci Rep 2018; 8:16659. [PMID: 30413759 PMCID: PMC6226507 DOI: 10.1038/s41598-018-34876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of nonsyndromic hearing loss, deafness nonsyndromic autosomal dominant 2 (DFNA2). We performed whole-exome sequencing for 98 families with hearing loss and found mutations in KCNQ4 in five families. In this study, we characterized two novel mutations in KCNQ4: a missense mutation (c.796G>T; p.Asp266Tyr) and an in-frame deletion mutation (c.259_267del; p.Val87_Asn89del). p.Asp266Tyr located in the channel pore region resulted in early onset and moderate hearing loss, whereas p.Val87_Asn89del located in the N-terminal cytoplasmic region resulted in late onset and high frequency-specific hearing loss. When heterologously expressed in HEK 293 T cells, both mutant proteins did not show defects in protein trafficking to the plasma membrane or in interactions with wild-type (WT) KCNQ4 channels. Patch-clamp analysis demonstrated that both p.Asp266Tyr and p.Val87_Asn89del mutant channels lost conductance and were completely unresponsive to KCNQ activators, such as retigabine, zinc pyrithione, and ML213. Channels assembled from WT-p.Asp266Tyr concatemers, like those from WT-WT concatemers, exhibited conductance and responsiveness to KCNQ activators. However, channels assembled from WT-p.Val87_Asn89del concatemers showed impaired conductance, suggesting that p.Val87_Asn89del caused complete loss-of-function with a strong dominant-negative effect on functional WT channels. Therefore, the main pathological mechanism may be related to loss of K+ channel activity, not defects in trafficking.
Collapse
|
18
|
Hao QQ, Li L, Chen W, Jiang QQ, Ji F, Sun W, Wei H, Guo WW, Yang SM. Key Genes and Pathways Associated With Inner Ear Malformation in SOX10 p.R109W Mutation Pigs. Front Mol Neurosci 2018; 11:181. [PMID: 29922125 PMCID: PMC5996026 DOI: 10.3389/fnmol.2018.00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
SRY-box 10 (SOX10) mutation may lead to inner ear deformities. However, its molecular mechanisms on inner ear development are not clear. In this work, the inner ear morphology was investigated at different embryonic stages of the SOX10 mutation miniature porcine model with sensorineural hearing loss, and high-throughput RNA-seq and bioinformatics analyses were applied. Our results indicated that the SOX10 mutation in the miniature pigs led to an incomplete partition (IP) of the cochlea, a cystic apex caused by fusion from middle and apical turns, cochlear modiolar defects and a shortened cochlear duct. The model demonstrated 173 differentially expressed genes (DEGs) and 185 differentially expressed long non-coding RNAs (lncRNAs). The down-regulated DEGs most significantly enriched the inflammatory mediator regulation of the TRP channels, arachidonic acid metabolism, and the salivary secretion pathways, while the up-regulated DEGs most significantly enriched the systemic lupus erythematosus and alcoholism pathways. Based on gene cluster analysis, we selected four gene groups: WNT1, KCNQ4, STRC and PAX6.
Collapse
Affiliation(s)
- Qing-Qing Hao
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei Chen
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Qing-Qing Jiang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Fei Ji
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders & Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei-Wei Guo
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Shi-Ming Yang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
19
|
Wang H, Wu K, Guan J, Yang J, Xie L, Xiong F, Lan L, Wang D, Wang Q. Identification of four TMC1 variations in different Chinese families with hereditary hearing loss. Mol Genet Genomic Med 2018; 6:504-513. [PMID: 29654653 PMCID: PMC6081220 DOI: 10.1002/mgg3.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Variants in TMC1 (transmembrane channel-like 1) can cause both autosomal dominant and recessive hearing loss in human population. Mice with Tmc1 variants have been shown to be ideal animal models for gene therapy. In this article, we report four TMC1 variants in four different Chinese families and the follow-up auditory phenotype of a previously reported family. METHODS Four families with TMC1 variants, as well as a previously described family with TMC1 variant orthologous to the Beethoven mouse, were recruited in this study. A comprehensive auditory evaluation was performed on all ascertained family members. High-throughput sequencing was conducted using genomic DNA from the probands and other family members to identify probable deafness genes. RESULTS We identified four TMC1 (NM_138691.2) variations, including two pathogenic variants, c.1714G>A, and c.1253T>A, one likely pathogenic variant, c.[797T>C];[797T>C], and one single nucleotide polymorphism (SNP), c.2276G>A. Among these variants, c.[797T>C];[797T>C] is a novel likely pathogenic variant, and c.1714G>A and c.1253T>A are known pathogenic variants at the DFNB7/11 (DFNA36) locus. Phenotype-genotype correlation analysis of TMC1 variants showed that the TMC1 dominant variation-related phenotype was late-onset, progressive, high frequency to all frequency sensorineural hearing loss, while the TMC1 recessive variant was related to congenital all frequency sensorineural hearing impairment. CONCLUSIONS Two pathogenic, one likely pathogenic variants and one SNP of TMC1 were identified in four Chinese families with hereditary hearing loss, indicating that TMC1 may be a more frequent cause of hearing loss than expected. TMC1 variants related to hearing loss result in specific phenotypes. The TMC1 c.1253T>A (p.M418K) variation, homologous to the Tmc1 c. 1235 T> A (p.M412K) variant in Beethoven mice, was the second report of this variant in human patients with hearing loss, suggesting the possibility to translational gene therapy from Beethoven mice to human patients.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Kaiwen Wu
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Jing Guan
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Ju Yang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Linyi Xie
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Fen Xiong
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Lan Lan
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Dayong Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Qiuju Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| |
Collapse
|
20
|
Wang H, Guan J, Lan L, Yu L, Xie L, Liu X, Yang J, Zhao C, Wang D, Wang Q. A novel de novo mutation of ACTG1 in two sporadic non-syndromic hearing loss cases. SCIENCE CHINA-LIFE SCIENCES 2018; 61:729-732. [PMID: 29357087 DOI: 10.1007/s11427-017-9165-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Guan
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Lan Lan
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Lan Yu
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Linyi Xie
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Xu Liu
- Beijing Centre for Physical and Chemical Analysis, Beijing, 100089, China
| | - Ju Yang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Cui Zhao
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
21
|
Guan J, Wang H, Lan L, Wang L, Yang J, Xie L, Yin Z, Xiong W, Zhao L, Wang D, Wang Q. Novel recessive PDZD7 biallelic mutations in two Chinese families with non-syndromic hearing loss. Am J Med Genet A 2017; 176:99-106. [PMID: 29048736 PMCID: PMC5765442 DOI: 10.1002/ajmg.a.38477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
Abstract
Autosomal recessive non‐syndromic hearing loss (ARNSHL) is a highly heterogeneous genetic condition. PDZD7 has emerged as a new genetic etiology of ARNSHL. Biallelic mutations in the PDZD7 gene have been reported in two German families, four Iranian families, and a Pakistani family with ARNSHL. The effect of PDZD7 on ARNSHL in other population has yet to be elucidated. Two Chinese ARNSHL families, each of which had two affected siblings, were included in this study. The families underwent target region capture and high‐throughput sequencing to analyze the exonic, splice‐site, and intronic sequences of 128 genes. Furthermore, 1751 normal Chinese individuals served as controls, and 122 Chinese families segregating with apparent ARNSHL, who had been previously excluded for variants in the common deafness genes GJB2 and SLC26A4, were subjected to screening for candidate mutations. We identified a novel homozygous missense mutation (p.Arg66Leu) and novel compound heterozygous frameshift mutations (p.Arg56fsTer24 and p.His403fsTer36) in Chinese families with ARNSHL. This is the first report to identify PDZD7 as an ARNSHL‐associated gene in the Chinese population. Our finding could expand the pathogenic spectrum and strengthens the clinical diagnostic role of the PDZD7 gene in ARNSHL patients.
Collapse
Affiliation(s)
- Jing Guan
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lan Lan
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Li Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Ju Yang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Linyi Xie
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zifang Yin
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wenping Xiong
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lidong Zhao
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
22
|
Adhikary B, Bankura B, Biswas S, Paul S, Das M. Absence of KCNQ4 mutation in Bengali families with ADNSHL originated from West Bengal, India. Int J Pediatr Otorhinolaryngol 2017; 100:35-38. [PMID: 28802383 DOI: 10.1016/j.ijporl.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Autosomal Dominant Non-Syndromic Hearing Loss (ADNSHL) is extremely heterogeneous in nature. More than 60 loci with 30 different genes have been identified linked to ADNSHL. Mutation in KCNQ4 is considered as one of the most common causative factor responsible for ADNSHL. No study focused on the genetic alteration of KCNQ4 gene among hearing loss patients in India. The present study for the first time was carried out to determine the mutation spectrum of KCNQ4 gene in ADNSHL patients of West Bengal state, India. METHOD Twenty nine individuals from 10 independent ADNSHL family (with two or more generation affected) were studied both clinically and genetically. Most of the patients showed moderate progressive sensorineural hearing loss. Mutation analysis was conducted for KCNQ4 gene using polymerase chain reaction followed by direct sequencing. RESULTS Neither any reported nor a novel pathogenic mutation in KCNQ4was detected in our studied group, in contrast to the findings among East Asians. CONCLUSION The result of the present study suggests that mutations in KCNQ4 gene are unlikely to be a major causative factor of ADNSHL in our studied patients from West Bengal, India, pointing to other genes might be responsible for ADNSHL in our studied patients.
Collapse
Affiliation(s)
- Bidisha Adhikary
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Biswabandhu Bankura
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhradev Biswas
- Department of E.N.T, Institute of Post Graduate Medical Education & Research, 244 A J C Bose Road, Kolkata 700020, West Bengal, India
| | - Silpita Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
23
|
Huang B, Liu Y, Gao X, Xu J, Dai P, Zhu Q, Yuan Y. A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2. BMC MEDICAL GENETICS 2017; 18:36. [PMID: 28340560 PMCID: PMC5366164 DOI: 10.1186/s12881-017-0396-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hereditary non-syndromic hearing loss is the most common inherited sensory defect in humans. The KCNQ4 channel belongs to a family of potassium ion channels that play crucial roles in physiology and disease. Mutations in KCNQ4 underlie deafness non-syndromic autosomal dominant 2, a subtype of autosomal dominant, progressive, high-frequency hearing loss. METHODS A six-generation Chinese family from Hebei Province with autosomal dominantly inherited, sensorineural, postlingual, progressive hearing loss was enrolled in this study. Mutation screening of 129 genes associated with hearing loss was performed in five family members by next-generation sequencing (NGS). We also carried out variant analysis on DNA from 531 Chinese individuals with normal hearing as controls. RESULTS This family exhibits postlingual, progressive, symmetrical, bilateral, non-syndromic sensorineural hearing loss. NGS, bioinformatic analysis, and Sanger sequencing confirmed the co-segregation of a novel mutation [c.887G > A (p.G296D)] in KCNQ4 with the disease phenotype in this family. This mutation leads to a glycine-to-aspartic acid substitution at position 296 in the pore region of the KCNQ4 channel. This mutation affects a highly conserved glutamic acid. NGS is a highly efficient tool for identifying gene mutations causing heritable disease. CONCLUSIONS Progressive hearing loss is common in individuals with KCNQ4 mutations. NGS together with Sanger sequencing confirmed that the five affected members of this Chinese family inherited a missense mutation, c.887G > A (p.G296D), in exon 6 of KCNQ4. Our results increase the number of identified KCNQ4 mutations.
Collapse
Affiliation(s)
- Bangqing Huang
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Yanping Liu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Jincao Xu
- Department of Otorhinolaryngology, General Hospital of the Rocket Force, Beijing, 100088, China
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qingwen Zhu
- Department of Otolaryngology, The Second Hospital Of Hebei Medical University, Shijiazhuang, 050018, China.
| | - Yongyi Yuan
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
24
|
Wang HY, Zhao YL, Liu Q, Yuan H, Gao Y, Lan L, Yu L, Wang DY, Guan J, Wang QJ. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with Unconditional Autosomal Dominant Nonsyndromic Hereditary Hearing Impairment. Chin Med J (Engl) 2016; 128:3345-51. [PMID: 26668150 PMCID: PMC4797511 DOI: 10.4103/0366-6999.171440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: There are more than 300 genetic loci that have been found to be related to hereditary hearing impairment (HHI), including 92 causative genes for nonsyndromic hearing loss, among which 34 genes are related to autosomal dominant nonsyndromic HHI (ADNSHHI). Traditional linkage analysis and candidate gene sequencing are not effective at detecting the ADNSHHI, especially for the unconditional families that may have more than one pathogenic cause. This study identified two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional ADNSHHI. Methods: To decipher the genetic code of a Chinese family (family 686) with ADNSHHI, different gene screening techniques have been performed, including linkage analysis, candidate genes screening, high-throughput sequencing and Sanger sequencing. These techniques were done on samples obtained from this family over a period of 10 years. Results: We identified a pathogenic missense mutation, c. 2081G>A (p.G694E), in TJP2, a gene that plays a crucial role in apoptosis and age-related hearing loss (ARHL). The mutation was co-segregated in this pedigree in all, but not in the two patients who presented with different phenotypes from the other affected family members. In one of the two patients, we confirmed that the compound heterozygosity for p. Y136* and p.G45E in the GJB2 gene may account for the phenotype shown in this patient. Conclusions: We identified the co-occurrence of two genetic causes in family 686. The possible disease-causing missense mutation of TJP2 in family 686 presents an opportunity for further investigation into ARHL. It is necessary to combine various genes screening methods, especially for some unconventional cases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiu-Ju Wang
- Department of Otolaryngology-Head and Neck, Chinese People's Liberation Army Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
25
|
Mittal R, Aranke M, Debs LH, Nguyen D, Patel AP, Grati M, Mittal J, Yan D, Chapagain P, Eshraghi AA, Liu XZ. Indispensable Role of Ion Channels and Transporters in the Auditory System. J Cell Physiol 2016; 232:743-758. [DOI: 10.1002/jcp.25631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Mayank Aranke
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Adrien A. Eshraghi
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|