1
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020; 1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Redox reactions pervade all biology. The control of cellular redox state is essential for bioenergetics and for the proper functioning of many biological functions. This review traces a timeline of findings regarding the connections between redox and cancer. There is ample evidence of the involvement of cellular redox state on the different hallmarks of cancer. Evidence of the control of tumor angiogenesis and metastasis through modulation of cell redox state is reviewed and highlighted.
Collapse
Affiliation(s)
- José J Serrano
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Belén Delgado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
3
|
Qin L, Min W, Xin S. AIP1 Suppresses Transplant Arteriosclerosis Through Inhibition of Vascular Smooth Muscle Cell Inflammatory Response to IFNγ. Anat Rec (Hoboken) 2018; 302:1587-1593. [PMID: 30471213 DOI: 10.1002/ar.24040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
IFNγ-induced vascular smooth muscle cells (VSMCs) inflammatory response plays a key role in transplant arteriosclerosis (TA). However, the mechanisms regulating this process remains poorly defined. Here, we show that ASK1-interacting protein 1 (AIP1) deletion markedly augments the expression of IFNγ-induced chemokines in mouse aortic allografts. Subsequently, donor arterial grafts from AIP1 deficient mice exhibited an accelerated development of TA. Furthermore, AIP1 knockdown significantly increased IFNγ signaling activation in cultured VSMCs and thus enhances chemokines production in response to IFNγ. Together, we conclude that AIP1 functions as an inhibitor of VSMCs inflammation by regulating IFNγ signaling and therefore suppresses TA progression. Our findings suggest that AIP1 might be a potential therapeutic target for chronic transplant rejection. Anat Rec, 302:1587-1593, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Lingfeng Qin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| |
Collapse
|
4
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
5
|
Wang KY, Yamada S, Izumi H, Tsukamoto M, Nakashima T, Tasaki T, Guo X, Uramoto H, Sasaguri Y, Kohno K. Critical in vivo roles of WNT10A in wound healing by regulating collagen expression/synthesis in WNT10A-deficient mice. PLoS One 2018; 13:e0195156. [PMID: 29596490 PMCID: PMC5875851 DOI: 10.1371/journal.pone.0195156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We have reported that WNT10A plays a critical role in the growth of fibroblasts/myofibroblasts and microvascular endothelial cells, i.e.; wound healing/scarring. To ascertain the in vivo regulatory, central functions of WNT10A, we examined the net effects of WNT10A depletion using WNT10A-deficient mice (WNT10A-/-). METHODS AND RESULTS We generated WNT10A-/-mice, displaying a range of unique phenotypes of morpho/organogenetic failure, such as growth retardation, alopecia, kyphosis and infertility, and then focused on the functions of WNT10A in wound healing. We subjected C57BL/6J wild-type (WT) or WNT10A-/-mice to skin ulcer formation. The WNT10A-/-mice had significantly larger injured areas and delayed wound healing, which were associated with (a) a smaller number of fibroblasts/myofibroblasts and microvessels; and (b) more reduced expression and synthesis of collagen, compared with WT mice with intact WNT10A expression, especially in those with activated myofibroblasts. CONCLUSIONS These observations indicate that WNT10A signaling can play a pivotal in vivo role in wound healing by regulating the expression and synthesis of collagen, as one of fibrogenic factors, at least in part, and critical in vivo roles of WNT10A-mediated effective wound healing are extremely closely associated with collagen expression.
Collapse
Affiliation(s)
- Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine Kanazawa Medical University, Ishikawa, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tamiji Nakashima
- Department of Human, Information and Life Sciences School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Tasaki
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine Kanazawa Medical University, Ishikawa, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Laboratory of Pathology, Fukuoka Tokushukai Hospital, Fukuoka, Japan
| | | |
Collapse
|
6
|
Molecular Skin Surface-Based Transformation Visualization between Biological Macromolecules. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4818604. [PMID: 29065609 PMCID: PMC5415869 DOI: 10.1155/2017/4818604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Abstract
Molecular skin surface (MSS), proposed by Edelsbrunner, is a C2 continuous smooth surface modeling approach of biological macromolecules. Compared to the traditional methods of molecular surface representations (e.g., the solvent exclusive surface), MSS has distinctive advantages including having no self-intersection and being decomposable and transformable. For further promoting MSS to the field of bioinformatics, transformation between different MSS representations mimicking the macromolecular dynamics is demanded. The transformation process helps biologists understand the macromolecular dynamics processes visually in the atomic level, which is important in studying the protein structures and binding sites for optimizing drug design. However, modeling the transformation between different MSSs suffers from high computational cost while the traditional approaches reconstruct every intermediate MSS from respective intermediate union of balls. In this study, we propose a novel computational framework named general MSS transformation framework (GMSSTF) between two MSSs without the assistance of union of balls. To evaluate the effectiveness of GMSSTF, we applied it on a popular public database PDB (Protein Data Bank) and compared the existing MSS algorithms with and without GMSSTF. The simulation results show that the proposed GMSSTF effectively improves the computational efficiency and is potentially useful for macromolecular dynamic simulations.
Collapse
|
7
|
Yin M, Zhou HJ, Zhang J, Lin C, Li H, Li X, Li Y, Zhang H, Breckenridge DG, Ji W, Min W. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight 2017; 2:91828. [PMID: 28931753 DOI: 10.1172/jci.insight.91828] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
We have recently reported that tumor-associated macrophages (TAMs) promote early transcoelomic metastasis of ovarian cancer by facilitating TAM-ovarian cancer cell spheroid formation. ASK1 is known to be important for macrophage activation and inflammation-mediated tumorigenesis. In the present study, we show that ASK1 deficiency attenuates TAM-spheroid formation and ovarian cancer progression in an orthotopic ovarian cancer model. Interestingly, ASK1 in stroma, but not in TAMs, is critical for peritoneal tumor growth of ovarian cancer. Moreover, overexpression of an ASK1 inhibitory protein (suppressor of cytokine signaling-1; SOCS1) in vascular endothelium attenuates vascular permeability, TAM infiltration, and ovarian cancer growth. Mechanistically, we show that ASK1 mediates degradation of endothelial junction protein VE-cadherin via a lysosomal pathway to promote macrophage transmigration. Importantly, a pharmacological ASK1 inhibitor prevents tumor-induced vascular leakage, macrophage infiltration, and tumor growth in two mouse models. Since transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our study provides ASK1 as a therapeutic target for the treatment of ovarian cancer and other transcoelomic metastasis cancers.
Collapse
Affiliation(s)
- Mingzhu Yin
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiqin Zhang
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Translational Medicine, The First Affiliated Hospital, and
| | - Caixia Lin
- Center for Translational Medicine, The First Affiliated Hospital, and
| | - Hongmei Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xia Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yonghao Li
- Zhongshan Ophthalmology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haifeng Zhang
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, and
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Translational Medicine, The First Affiliated Hospital, and
| |
Collapse
|
8
|
Penketh PG, Finch RA, Sauro R, Baumann RP, Ratner ES, Shyam K. pH-dependent general base catalyzed activation rather than isocyanate liberation may explain the superior anticancer efficacy of laromustine compared to related 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine prodrugs. Chem Biol Drug Des 2017. [PMID: 28636806 DOI: 10.1111/cbdd.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Laromustine (also known as cloretazine, onrigin, VNP40101M, 101M) is a prodrug of 90CE, a short-lived chloroethylating agent with anticancer activity. The short half-life of 90CE necessitates the use of latentiated prodrug forms for in vivo treatments. Alkylaminocarbonyl-based prodrugs such as laromustine exhibit significantly superior in vivo activity in several murine tumor models compared to analogs utilizing acyl, and alkoxycarbonyl latentiating groups. The alkylaminocarbonyl prodrugs possess two exclusive characteristics: (i) They are primarily unmasked by spontaneous base catalyzed elimination; and (ii) they liberate a reactive carbamoylating species. Previous speculations as to the therapeutic superiority of laromustine have focused upon the inhibition of enzymes by carbamoylation. We have investigated the therapeutic interactions of analogs with segregated chloroethylating and carbamoylating activities (singly and in combination) in the in vivo murine L1210 leukemia model. The combined treatment with chloroethylating and carbamoylating prodrugs failed to result in any synergism and produced a reduction in the therapeutic efficacy compared to the chloroethylating prodrug alone. Evidence supporting an alternative explanation for the superior tumor selectivity of laromustine is presented that is centered upon the high pH sensitivity of its base catalyzed activation, and the more alkaline intracellular pH values commonly found within tumor cells.
Collapse
Affiliation(s)
- Philip G Penketh
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Finch
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Rachel Sauro
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Raymond P Baumann
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Krishnamurthy Shyam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk. Antioxidants (Basel) 2017; 6:antiox6020042. [PMID: 28594389 PMCID: PMC5488022 DOI: 10.3390/antiox6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H₂O₂ in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases.
Collapse
|
10
|
Wang Y, Zhou Z, Wang W, Liu M, Bao Y. Differential effects of sulforaphane in regulation of angiogenesis in a co-culture model of endothelial cells and pericytes. Oncol Rep 2017; 37:2905-2912. [DOI: 10.3892/or.2017.5565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
|
11
|
Chen Y, Zhang H, Zhou HJ, Ji W, Min W. Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:40. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as "tumor suppressors" or prevent excessive ROS to act as "tumor promoter". Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
Affiliation(s)
- Yuxin Chen
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haiqing Zhang
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520, USA.
| | - Weidong Ji
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Wang Min
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China.
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, 10 Amistad St, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Zheng S, Long L, Li Y, Xu Y, Jiqin Z, Ji W, Min W. A Novel ASK Inhibitor AGI-1067 Inhibits TLR-4-Mediated Activation of ASK1 by Preventing Dissociation of Thioredoxin from ASK1. CARDIOVASCULAR PHARMACOLOGY: OPEN ACCESS 2015; 4:132. [PMID: 28435845 PMCID: PMC5397116 DOI: 10.4172/2329-6607.1000132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cell type that normally limits the inflammatory and atherosclerotic process is the vascular endothelial cell (EC) that can be regulated by proinflammatory and various stresses. Toll-like receptor-4 (TLR4) plays an important role in the pathogenesis of atherosclerosis, in part, by activating apoptosis signal-regulating kinase 1 (ASK1) to initiate the activation of MAP kinases pathways and the expression of inflammatory genes. In the present study, we test the hypothesis that AGI-1067 acts as an anti-inflammatory agent by inhibiting the activation of ASK1 in human EC. Pretreatment of human aortic endothelial cells with AGI-1067 inhibits TLR4 ligand (LPS)-induced activation of ASK1 and the downstream p38 and c-Jun N-terminal kinase (JNK) MAP kinases. LPS dissociates two endogenous inhibitors thioredoxin-1 (Trx1) and 14-3-3 from ASK1, leading to ASK1 autoactivation. Interestingly, AGI-1067 inhibits the dissociation of Trx1, but not 14-3-3, from ASK1. However, inhibition of Trx1 dissociation from ASK1 by AGI-1067 is sufficient to suppress LPS-mediated phosphorylation of the transcription factors c-Jun and activating transcription factor 2, and inhibit LPS-induced inflammatory genes including vascular cell adhesion molecule 1, E-selectin, IL-6 and monocyte chemoattractant protein 1. Our findings suggest that AGI-1067 as a unique ASK1 inhibitor to inhibit TLR4-mediated ASK1 activation, contributing to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Shuhui Zheng
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lingli Long
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxia Xu
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhang Jiqin
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weidong Ji
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wang Min
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Interdepartmental Program in Vascular Biology and Therapeutics, Dept. of Pathology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|