1
|
Yang YX, Li P, Zhu BT. Binding of Selected Ligands to Human Protein Disulfide Isomerase and Microsomal Triglyceride Transfer Protein Complex and the Associated Conformational Changes: A Computational Molecular Modelling Study. ChemistryOpen 2025; 14:e202400034. [PMID: 39891321 PMCID: PMC11973510 DOI: 10.1002/open.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/20/2024] [Indexed: 02/03/2025] Open
Abstract
Human protein disulfide isomerase (PDI) is a multifunctional protein, and also serves as the β subunit of the human microsomal triglyceride transfer protein (MTP) complex, a lipid transfer machinery. Dysfunction of the MTP complex is associated with certain disease conditions such as abetalipoproteinemia and cardiovascular diseases. It is known that the functions of PDI or the MTP complex can be regulated by the binding of a small-molecule ligand to either of these two proteins. In the present study, the conformational changes of the MTP complex upon the binding of three selected small-molecule ligands (17β-estradiol, lomitapide and a phospholipid) are investigated based on the available biochemical and structural information by using the protein-ligand docking method and molecular dynamics (MD) simulation. The ligand-binding sites, the binding poses and binding strengths, the key binding site residues, and the ligand binding-induced conformational changes in the MTP complex are analyzed based on the MD trajectories. The open-to-closed or closed-to-open transitions of PDI is found to occur in both reduced and oxidized states of PDI and also independent of the presence or absence of small-molecule ligands. It is predicted that lomitapide and 1,2-diacyl-sn-glycero-3-phosphocholine (a phospholipid) can bind inside the lipid-binding pocket in the MTP complex with high affinities, whereas 17β-estradiol interacts with the lipid-binding pocket in addition to its binding to the interface region of the MTP complex. Additionally, lomitapide can bind to the b' domain of PDI as reported earlier for E2. Key residues for the ligand-binding interactions are identified in this study. It will be of interest to further explore whether the binding of small molecules can facilitate the conformational transitions of PDI in the future. The molecular and structural insights gained from the present work are of value for understanding some of the important biological functions of PDI and the MTP complex.
Collapse
Affiliation(s)
- Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen, Guangdong518172China
- Shenzhen Bay LaboratoryShenzhen518055China
| |
Collapse
|
2
|
Melo EP, El-Guendouz S, Correia C, Teodoro F, Lopes C, Martel PJ. A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. Antioxid Redox Signal 2024; 41:181-200. [PMID: 38497737 DOI: 10.1089/ars.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.
Collapse
Affiliation(s)
- Eduardo P Melo
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | | - Cátia Correia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Fernando Teodoro
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Carlos Lopes
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | |
Collapse
|
3
|
Moretti AIS, Baksheeva VE, Roman AY, De Bessa TC, Devred F, Kovacic H, Tsvetkov PO. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int J Mol Sci 2024; 25:2095. [PMID: 38396772 PMCID: PMC10889200 DOI: 10.3390/ijms25042095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Viktoria E. Baksheeva
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Andrei Yu. Roman
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Tiphany Coralie De Bessa
- Vascular Biology Laboratory (LIM64), School of Medicine, Heart Institute (InCor), Cardiopneumology Department, University of São Paulo, Campus Sao Paulo, Sao Paulo 05403-000, Brazil
| | - François Devred
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Hervé Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| | - Philipp O. Tsvetkov
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Sciences Médicales et Paramédicales, 13005 Marseille, France (F.D.); (H.K.)
| |
Collapse
|
4
|
Whitham D, Bruno P, Haaker N, Arcaro KF, Pentecost BT, Darie CC. Deciphering a proteomic signature for the early detection of breast cancer from breast milk: the role of quantitative proteomics. Expert Rev Proteomics 2024; 21:81-98. [PMID: 38376826 PMCID: PMC11694492 DOI: 10.1080/14789450.2024.2320158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors. AREAS COVERED We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed. EXPERT OPINION Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.
Collapse
Affiliation(s)
- Danielle Whitham
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Pathea Bruno
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Norman Haaker
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Brian T. Pentecost
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C. Darie
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
5
|
Hoang KNL, Murphy CJ. Adsorption and Molecular Display of a Redox-Active Protein on Gold Nanoparticle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15974-15985. [PMID: 37906943 DOI: 10.1021/acs.langmuir.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs' biological identity but can also affect the proteins' structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Yagi-Utsumi M, Miura H, Ganser C, Watanabe H, Hiranyakorn M, Satoh T, Uchihashi T, Kato K, Okazaki KI, Aoki K. Molecular Design of FRET Probes Based on Domain Rearrangement of Protein Disulfide Isomerase for Monitoring Intracellular Redox Status. Int J Mol Sci 2023; 24:12865. [PMID: 37629048 PMCID: PMC10454184 DOI: 10.3390/ijms241612865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Haruko Miura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Methanee Hiranyakorn
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Kei-ichi Okazaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
7
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Weiß RG, Losfeld ME, Aebi M, Riniker S. N-Glycosylation Enhances Conformational Flexibility of Protein Disulfide Isomerase Revealed by Microsecond Molecular Dynamics and Markov State Modeling. J Phys Chem B 2021; 125:9467-9479. [PMID: 34379416 DOI: 10.1021/acs.jpcb.1c04279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Secreted proteins of eukaryotes are decorated with branched carbohydrate oligomers called glycans. This fact is only starting to be considered for in silico investigations of protein dynamics. Using all-atom molecular dynamics (MD) simulations and Markov state modeling (MSM), we unveil the influence of glycans on the conformational flexibility of the multidomain protein disulfide isomerase (PDI), which is a ubiquitous chaperone in the endoplasmic reticulum (ER). Yeast PDI (yPDI) from Saccharomyces cerevisiae is glycosylated at asparagine side chains and the knowledge of its five modified sites enables a realistic computational modeling. We compare simulations of glycosylated and unglycosylated yPDI and find that the presence of glycan-glycan and glycan-protein interactions influences the flexibility of PDI in different ways. For example, glycosylation reduces interdomain interactions, shifting the conformational ensemble toward more open, extended structures. In addition, we compare our results on yPDI with structural information of homologous proteins such as human PDI (hPDI), which is natively unglycosylated. Interestingly, hPDI lacks a surface recess that is present in yPDI. We find that glycosylation of yPDI facilitates its catalytic site to reach close to this surface recess. Hence, this might point to a possible functional relevance of glycosylation in yeast to act on substrates, while glycosylation seems redundant for the human homologous protein. We conclude that glycosylation is fundamental for protein dynamics, making it a necessity for a truthful representation of the flexibility and function in in silico studies of glycoproteins.
Collapse
Affiliation(s)
- R Gregor Weiß
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie-Estelle Losfeld
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
PDI-Regulated Disulfide Bond Formation in Protein Folding and Biomolecular Assembly. Molecules 2020; 26:molecules26010171. [PMID: 33396541 PMCID: PMC7794689 DOI: 10.3390/molecules26010171] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.
Collapse
|
10
|
Wang L, Yu J, Wang CC. Protein disulfide isomerase is regulated in multiple ways: Consequences for conformation, activities, and pathophysiological functions. Bioessays 2020; 43:e2000147. [PMID: 33155310 DOI: 10.1002/bies.202000147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerase (PDI) is one of the most abundant and critical protein folding catalysts in the endoplasmic reticulum of eukaryotic cells. PDI consists of four thioredoxin domains and interacts with a wide range of substrate and partner proteins due to its intrinsic conformational flexibility. PDI plays multifunctional roles in a variety of pathophysiological events, both as an oxidoreductase and a molecular chaperone. Recent studies have revealed that the conformation and activity of PDI can be regulated in multiple ways, including posttranslational modification and substrate/ligand binding. Here, we summarize recent advances in understanding the function and regulation of PDI in different pathological and physiological events. We propose that the multifunctional roles of PDI are regulated by multiple mechanisms. Furthermore, we discuss future directions for the study of PDI, emphasizing how different regulatory modes are linked to the conformational changes and biological functions of PDI in the context of diverse pathophysiologies.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. A molecular dynamics approach on the Y393C variant of protein disulfide isomerase A1. Chem Biol Drug Des 2020; 96:1341-1347. [PMID: 32352225 DOI: 10.1111/cbdd.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Human protein disulfide isomerase A1 (PDIA1) shows both catalytic (i.e., oxidoreductase) and non-catalytic (i.e., chaperone) activities and plays a crucial role in the oxidative folding of proteins within the endoplasmic reticulum. PDIA1 dysregulation is a common trait in numerous pathophysiological conditions, including neurodegenerative disorders and cancerous diseases. The 1178A>G mutation of the human PDIA1-encoding gene is a non-synonymous single nucleotide polymorphism detected in patients with Cole-Carpenter syndrome type 1 (CSS1), a particularly rare bone disease. In vitro studies showed that the encoded variant (PDIA1 Y393C) exhibits limited oxidoreductase activity. To gain knowledge on the structure-function relationship, we undertook a molecular dynamics (MD) approach to examine the structural stability of PDIA1 Y393C. Results showed that significant conformational changes are the structural consequence of the amino acid substitution Tyr>Cys at position 393 of the PDIA1 protein. This structure-based study provides further knowledge about the molecular origin of CCS1.
Collapse
Affiliation(s)
- Pablo A Madero-Ayala
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Rosa E Mares-Alejandre
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Marco A Ramos-Ibarra
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
12
|
Padariya M, Kalathiya U, Houston DR, Alfaro JA. Recognition Dynamics of Cancer Mutations on the ERp57-Tapasin Interface. Cancers (Basel) 2020; 12:cancers12030737. [PMID: 32244998 PMCID: PMC7140079 DOI: 10.3390/cancers12030737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/16/2023] Open
Abstract
Down regulation of the major histocompatibility class (MHC) I pathway plays an important role in tumour development, and can be achieved by suppression of HLA expression or mutations in the MHC peptide-binding pocket. The peptide-loading complex (PLC) loads peptides on the MHC-I molecule in a dynamic multi-step assembly process. The effects of cancer variants on ERp57 and tapasin components from the MHC-I pathway is less known, and they could have an impact on antigen presentation. Applying computational approaches, we analysed whether the ERp57-tapasin binding might be altered by missense mutations. The variants H408R(ERp57) and P96L, D100A, G183R(tapasin) at the protein–protein interface improved protein stability (ΔΔG) during the initial screen of 14 different variants. The H408R(ERp57) and P96L(tapasin) variants, located close to disulphide bonds, were further studied by molecular dynamics (MD). Identifying intramolecular a-a’ domain interactions, MD revealed open and closed conformations of ERp57 in the presence and absence of tapasin. In wild-type and mutant ERp57-tapasin complexes, residues Val97, Ser98, Tyr100, Trp405, Gly407(ERp57) and Asn94, Cys95, Arg97, Asp100(tapasin) formed common H-bond interactions. Moreover, comparing the H-bond networks for P96L and H408R with each other, suggests that P96L(tapasin) improved ERp57-tapasin binding more than the H408R(ERp57) mutant. During MD, the C-terminus domain (that binds MHC-I) in tapasin from the ERp57(H408R)-tapasin complex moved away from the PLC, whereas in the ERp57-tapasin(P96L) system was oppositely displaced. These findings can have implications for the function of PLC and, ultimately, for the presentation of MHC-I peptide complex on the tumour cell surface.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Correspondence: (M.P.); (J.A.A.)
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Douglas R. Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK;
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
- Correspondence: (M.P.); (J.A.A.)
| |
Collapse
|
13
|
Yu J, Li T, Liu Y, Wang X, Zhang J, Wang X, Shi G, Lou J, Wang L, Wang CC, Wang L. Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J 2020; 39:e103841. [PMID: 32149426 DOI: 10.15252/embj.2019103841] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated unfolded proteins in the endoplasmic reticulum (ER) trigger the unfolded protein response (UPR) to increase ER protein folding capacity. ER proteostasis and UPR signaling need to be regulated in a precise and timely manner. Here, we identify phosphorylation of protein disulfide isomerase (PDI), one of the most abundant and critical folding catalysts in the ER, as an early event during ER stress. The secretory pathway kinase Fam20C phosphorylates Ser357 of PDI and responds rapidly to various ER stressors. Phosphorylation of Ser357 induces an open conformation of PDI and turns it from a "foldase" into a "holdase", which is critical for preventing protein misfolding in the ER. Phosphorylated PDI also binds to the lumenal domain of IRE1α, a major UPR signal transducer, and attenuates excessive IRE1α activity. Importantly, PDI-S359A knock-in mice display enhanced IRE1α activation and liver damage under acute ER stress. We conclude that the Fam20C-PDI axis constitutes a post-translational response to maintain ER proteostasis and plays a vital role in protecting against ER stress-induced cell death.
Collapse
Affiliation(s)
- Jiaojiao Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianchao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guizhi Shi
- Laboratory Animal Center of Institute of Biophysics, Chinese Academy of Sciences, Aviation General Hospital of Beijing, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Guyette J, Evangelista B, Tatulian SA, Teter K. Stability and Conformational Resilience of Protein Disulfide Isomerase. Biochemistry 2019; 58:3572-3584. [PMID: 31393106 PMCID: PMC6876119 DOI: 10.1021/acs.biochem.9b00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein disulfide isomerase (PDI) is a redox-dependent protein with oxidoreductase and chaperone activities. It is a U-shaped protein with an abb'xa' structural organization in which the a and a' domains have CGHC active sites, the b and b' domains are involved with substrate binding, and x is a flexible linker. PDI exhibits substantial flexibility and undergoes cycles of unfolding and refolding in its interaction with cholera toxin, suggesting PDI can regain a folded, functional conformation after exposure to stress conditions. To determine whether this unfolding-refolding cycle is a substrate-induced process or an intrinsic physical property of PDI, we used circular dichroism to examine the structural properties of PDI subjected to thermal denaturation. PDI exhibited remarkable conformational resilience that is linked to its redox status. In the reduced state, PDI exhibited a 54 °C unfolding transition temperature (Tm) and regained 85% of its native structure after nearly complete thermal denaturation. Oxidized PDI had a lower Tm of 48-50 °C and regained 70% of its native conformation after 75% denaturation. Both reduced PDI and oxidized PDI were functional after refolding from these denatured states. Additional studies documented increased stability of a PDI construct lacking the a' domain and decreased thermal stability of a construct lacking the a domain. Furthermore, oxidation of the a domain limited the ability of PDI to refold. The stability and conformational resilience of PDI are thus linked to both redox-dependent and domain-specific effects. These findings document previously unrecognized properties of PDI and provide insight into the physical foundation of its biological function.
Collapse
Affiliation(s)
- Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| | - Baggio Evangelista
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| | - Suren A. Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816 USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816 USA
| |
Collapse
|
15
|
Punicalagin, an active pomegranate component, is a new inhibitor of PDIA3 reductase activity. Biochimie 2018; 147:122-129. [PMID: 29425676 DOI: 10.1016/j.biochi.2018.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polyphenolic compounds isolated from pomegranate fruit possess several pharmacological activities including anti-inflammatory, hepatoprotective, antigenotoxic and anticoagulant activities. The present work focuses the attention on PDIA3 interaction with punicalagin and ellagic acid, the most predominant components of pomegranate extracts. PDIA3, a member of the protein disulfide isomerase family involved in several cellular functions, is associated with different human diseases and it has the potential to be a pharmacological target. METHODS The interaction of polyphenols with PDIA3 purified protein was explored by fluorescence quenching and calorimetric techniques and their effect on PDIA3 activity was investigated. RESULTS A higher affinity was observed for punicalagin which also strongly affects PDIA3 reductase activity in vitro as a non-competitive inhibitor. Isothermal titration calorimetry confirmed the high affinity of punicalagin for PDIA3. Considering the PDIA3 involvement in oxidative cellular stress response observed in neuroblastoma cells after treatment with hydrogen peroxide, a comparative study was conducted to evaluate the effect of punicalagin on wild type and PDIA3-silenced cells. Punicalagin increases the cell sensitivity to hydrogen peroxide in neuroblastoma cells, but this effect is drastically reduced in PDIA3-silenced cells treated in the same experimental conditions. CONCLUSIONS Punicalagin binds PDIA3 and inhibits its redox activity. Comparative experiments conducted on unsilenced and PDIA3-silenced neuroblastoma cells suggest the potential of punicalagin to modulate PDIA3 reductase activity also in a biological model. GENERAL SIGNIFICANCE Punicalagin can be used as a new PDIA3 inhibitor and this can provide information on the molecular mechanisms underlying the biological activities of PDIA3 and punicalagin.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The present review will provide an overview of several recent advances in the field of vascular thiol isomerase function. RECENT FINDINGS The initial observation that protein disulfide isomerase (PDI) functions in thrombus formation occurred approximately a decade ago. At the time, there was little understanding regarding how PDI or other vascular thiol isomerases contribute to thrombosis. Although this problem is far from solved, the past few years have seen substantial progress in several areas that will be reviewed in this article. The relationship between PDI structure and its function has been investigated and applied to identify domains of PDI that are critical for thrombus formation. The mechanisms that direct thiol isomerase storage and release from platelets and endothelium have been studied. New techniques including kinetic-based trapping have identified substrates that vascular thiol isomerases modify during thrombus formation. Novel inhibitors of thiol isomerases have been developed that are useful both as tools to interrogate PDI function and as potential therapeutics. Human studies have been conducted to measure circulating PDI in disease states and evaluate the effect of oral administration of a PDI inhibitor on ex-vivo thrombin generation. SUMMARY Current findings indicate that thiol isomerase-mediated disulfide bond modification in receptors and plasma proteins is an important layer of control of thrombosis and vascular function more generally.
Collapse
|
17
|
Mares RE, Ramos MA. An amebic protein disulfide isomerase (PDI) complements the yeast PDI1 mutation but is unable to support cell viability under ER or thermal stress. FEBS Open Bio 2017; 8:49-55. [PMID: 29321956 PMCID: PMC5757170 DOI: 10.1002/2211-5463.12350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, protein disulfide isomerases (PDI) are oxidoreductases that catalyze the proper disulfide bond formation during protein folding. The pathobiology of the protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, depends on secretion of several virulence factors, such as pore‐forming peptides and cysteine proteinases. Although the native conformation of these factors is stabilized by disulfide bonds, there is little information regarding the molecular machinery involved in the oxidative folding of amebic proteins. Whereas testing gene function in their physiological background would be the most suitable approach, we have taken advantage of the cellular benefits offered by the yeast Saccharomyces cerevisiae (as a model of eukaryotic cell) to examine the functional role of an amebic PDI (EhPDI). As the yeast PDI homolog is essential for cell viability, a functional complementation assay was carried out to test the ability of EhPDI to circumvent the lethal phenotype of a yeast PDI1 mutant. Also, its proficiency under stressful conditions was explored by examining the survival outcome following endoplasmic reticulum (ER) stress induced by a reductant agent (DTT) or thermal stress promoted by a nonpermissive temperature (37 °C). Our results indicate that EhPDI is functionally active when physiological conditions are stable. Nonetheless, when conditions are stressful (e.g., by the accumulation of misfolded proteins in the ER compartment), its functionality is exceeded, suggesting an inability to prevent unfolding, suppress aggregation, or assist refolding of proteins. Despite the latter, our findings constitute the initial step toward determining the participation of EhPDI in cellular mechanisms related to protein homeostasis.
Collapse
Affiliation(s)
- Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería Universidad Autónoma de Baja California Tijuana Baja California México
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería Universidad Autónoma de Baja California Tijuana Baja California México
| |
Collapse
|
18
|
'Something in the way she moves': The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1383-1394. [PMID: 28844745 PMCID: PMC5654723 DOI: 10.1016/j.bbapap.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023]
Abstract
Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.
Collapse
|
19
|
Karamzadeh R, Karimi-Jafari MH, Sharifi-Zarchi A, Chitsaz H, Salekdeh GH, Moosavi-Movahedi AA. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase. Sci Rep 2017. [PMID: 28623339 PMCID: PMC5473932 DOI: 10.1038/s41598-017-03966-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human protein disulfide isomerase (hPDI), is an essential four-domain multifunctional enzyme. As a result of disulfide shuffling in its terminal domains, hPDI exists in two oxidation states with different conformational preferences which are important for substrate binding and functional activities. Here, we address the redox-dependent conformational dynamics of hPDI through molecular dynamics (MD) simulations. Collective domain motions are identified by the principal component analysis of MD trajectories and redox-dependent opening-closing structure variations are highlighted on projected free energy landscapes. Then, important structural features that exhibit considerable differences in dynamics of redox states are extracted by statistical machine learning methods. Mapping the structural variations to time series of residue interaction networks also provides a holistic representation of the dynamical redox differences. With emphasizing on persistent long-lasting interactions, an approach is proposed that compiled these time series networks to a single dynamic residue interaction network (DRIN). Differential comparison of DRIN in oxidized and reduced states reveals chains of residue interactions that represent potential allosteric paths between catalytic and ligand binding sites of hPDI.
Collapse
Affiliation(s)
- Razieh Karamzadeh
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Computer Engineering Department, Sharif University of Technology, Tehran, Iran.,Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Hamidreza Chitsaz
- Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | | |
Collapse
|
20
|
Maegawa KI, Watanabe S, Noi K, Okumura M, Amagai Y, Inoue M, Ushioda R, Nagata K, Ogura T, Inaba K. The Highly Dynamic Nature of ERdj5 Is Key to Efficient Elimination of Aberrant Protein Oligomers through ER-Associated Degradation. Structure 2017; 25:846-857.e4. [PMID: 28479060 DOI: 10.1016/j.str.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.
Collapse
Affiliation(s)
- Ken-Ichi Maegawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Kentaro Noi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Ryo Ushioda
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Teru Ogura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan.
| |
Collapse
|
21
|
Römer RA, Wells SA, Emilio Jimenez‐Roldan J, Bhattacharyya M, Vishweshwara S, Freedman RB. The flexibility and dynamics of protein disulfide isomerase. Proteins 2016; 84:1776-1785. [PMID: 27616289 PMCID: PMC5111589 DOI: 10.1002/prot.25159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rudolf A. Römer
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Stephen A. Wells
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUnited Kingdom
| | - J. Emilio Jimenez‐Roldan
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Moitrayee Bhattacharyya
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore560012India
- Present address: Moitrayee Bhattacharyya's current address is Department of Molecular and Cell BiologyUniversity of California BerkeleyCalifornia94720.
| | | | - Robert B. Freedman
- School of Life SciencesThe University of WarwickCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
22
|
Zheng T, Cherubin P, Cilenti L, Teter K, Huo Q. A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering. Analyst 2015; 141:934-8. [PMID: 26647758 DOI: 10.1039/c5an02248g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrodynamic dimension of a protein is a reflection of both its molecular weight and its tertiary structures. Studying the hydrodynamic dimensions of proteins in solutions can help elucidate the structural properties of proteins. Here we report a simple and fast method to measure the hydrodyamic size of a relatively small protein, protein disulfide isomerase (PDI), using gold nanoparticle probes combined with dynamic light scattering. Proteins can readily adsorb to citrate-capped gold nanoparticles to form a protein corona. By measuring the average diameter of the gold nanoparticles before and after protein corona formation, the hydrodynamic diameter of the protein can be deduced from the net particle size increase of the assay solution. This study found that when the disulfide bonds in PDI are reduced to thiols, the reduced PDI exhibits a smaller hydrodynamic diameter than the oxided PDI. This finding is in good agreement with the X-ray diffraction analysis of PDI in single crystals. In comparison with other techniques that are used for protein hydrodynamic size analysis, the current method is easy to use, requires a trace amount of protein samples, with results obtained in minutes instead of hours.
Collapse
Affiliation(s)
- Tianyu Zheng
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA.
| | | | | | | | | |
Collapse
|
23
|
Inagaki K, Satoh T, Yagi-Utsumi M, Le Gulluche AC, Anzai T, Uekusa Y, Kamiya Y, Kato K. Redox-coupled structural changes of the catalytica′ domain of protein disulfide isomerase. FEBS Lett 2015; 589:2690-4. [DOI: 10.1016/j.febslet.2015.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/05/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
|
24
|
Wang L, Wang X, Wang CC. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med 2015; 83:305-13. [PMID: 25697778 DOI: 10.1016/j.freeradbiomed.2015.02.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Protein disulfide-isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Conway ME, Harris M. S-nitrosylation of the thioredoxin-like domains of protein disulfide isomerase and its role in neurodegenerative conditions. Front Chem 2015; 3:27. [PMID: 25932462 PMCID: PMC4399332 DOI: 10.3389/fchem.2015.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Correct protein folding and inhibition of protein aggregation is facilitated by a cellular “quality control system” that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulfide isomerases (PDI) and their homologs, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like CGHC active site of PDI and how our understanding of this structural motif will play a key role in unraveling the pathogenic mechanisms that underpin these neurodegenerative conditions.
Collapse
Affiliation(s)
- Myra E Conway
- Department of Applied Sciences, University of the West of England Bristol, UK
| | - Matthew Harris
- Department of Applied Sciences, University of the West of England Bristol, UK
| |
Collapse
|
26
|
Sapra A, Ramadan D, Thorpe C. Multivalency in the inhibition of oxidative protein folding by arsenic(III) species. Biochemistry 2014; 54:612-21. [PMID: 25506675 PMCID: PMC4303313 DOI: 10.1021/bi501360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
renewed use of arsenicals as chemotherapeutics has rekindled
interest in the biochemistry of As(III) species. In this work, simple
bis- and tris-arsenical derivatives were synthesized with the aim
of exploiting the chelate effect in the inhibition of thiol-disulfide
oxidoreductases (here, Quiescin sulfhydryl oxidase, QSOX, and protein
disulfide isomerase, PDI) that utilize two or more CxxC motifs in
the catalysis of oxidative protein folding. Coupling 4-aminophenylarsenoxide
(APAO) to acid chloride or anhydride derivatives yielded two bis-arsenical
prototypes, BA-1 and BA-2, and a tris-arsenical, TA-1. Unlike the
monoarsenical, APAO, these new reagents proved to be strong inhibitors
of oxidative protein folding in the presence of a realistic intracellular
concentration of competing monothiol (here, 5 mM reduced glutathione,
GSH). However, this inhibition does not reflect direct inactivation
of QSOX or PDI, but avid binding of MVAs to the reduced unfolded protein
substrates themselves. Titrations of reduced riboflavin-binding protein
with MVAs show that all 18 protein −SH groups can be captured
by these arsenicals. With reduced RNase, addition of substoichiometric
levels of MVAs is accompanied by the formation of Congo Red- and Thioflavin
T-positive fibrillar aggregates. Even with Kd values of ∼50 nM, MVAs are ineffective inhibitors
of PDI in the presence of millimolar levels of competing GSH. These
results underscore the difficulties of designing effective and specific
arsenical inhibitors for folded enzymes and proteins. Some of the
cellular effects of arsenicals likely reflect their propensity to
associate very tightly and nonspecifically to conformationally mobile
cysteine-rich regions of proteins, thereby interfering with folding
and/or function.
Collapse
Affiliation(s)
- Aparna Sapra
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|