1
|
Ivanova L, Rangel-Huerta OD, Tartor H, Dahle MK, Uhlig S, Fæste CK. Metabolomics and Multi-Omics Determination of Potential Plasma Biomarkers in PRV-1-Infected Atlantic Salmon. Metabolites 2024; 14:375. [PMID: 39057698 PMCID: PMC11279234 DOI: 10.3390/metabo14070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolomic analysis has been explored to search for disease biomarkers in humans for some time. The application to animal species, including fish, however, is still at the beginning. In the present study, we have used targeted and untargeted metabolomics to identify metabolites in the plasma of Atlantic salmon (Salmo salar) challenged with Piscine orthoreovirus (PRV-1), aiming to find metabolites associated with the progression of PRV-1 infection into heart and skeletal muscle inflammation (HSMI). The metabolomes of control and PRV-1-infected salmon were compared at three time points during disease development by employing different biostatistical approaches. Targeted metabolomics resulted in the determination of affected metabolites and metabolic pathways, revealing a substantial impact of PRV-1 infection on lipid homeostasis, especially on several (lyso)phosphatidylcholines, ceramides, and triglycerides. Untargeted metabolomics showed a clear separation of the treatment groups at later study time points, mainly due to effects on lipid metabolism pathways. In a subsequent multi-omics approach, we combined both metabolomics datasets with previously reported proteomics data generated from the same salmon plasma samples. Data processing with DIABLO software resulted in the identification of significant metabolites and proteins that were representative of the HSMI development in the salmon.
Collapse
Affiliation(s)
- Lada Ivanova
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; (O.D.R.-H.); (H.T.); (M.K.D.); (S.U.)
| | | | | | | | | | - Christiane Kruse Fæste
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; (O.D.R.-H.); (H.T.); (M.K.D.); (S.U.)
| |
Collapse
|
2
|
He XL, Guo HJ, Lei YR, Li J, Li JY, Li MH, Li N, Wang F, Mo CF. NAMPT promotes the malignant progression of HBV-associated hepatocellular carcinoma through activation of SREBP1-mediated lipogenesis. FASEB J 2024; 38:e23444. [PMID: 38252081 DOI: 10.1096/fj.202300070rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Metabolic reprogramming is a hallmark of cancer. The nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway maintains sufficient cellular NAD levels and is required for tumorigenesis and development. However, the molecular mechanism by which NAMPT contributes to HBV-associated hepatocellular carcinoma (HCC) remains not fully understood. In the present study, our results showed that NAMPT protein was obviously upregulated in HBV-positive HCC tissues compared with HBV-negative HCC tissues. NAMPT was positively associated with aggressive HCC phenotypes and poor prognosis in HBV-positive HCC patients. NAMPT overexpression strengthened the proliferative, migratory, and invasive capacities of HBV-associated HCC cells, while NAMPT-insufficient HCC cells exhibited decreased growth and mobility. Mechanistically, we demonstrated that NAMPT activated SREBP1 (sterol regulatory element-binding protein 1) by increasing the expression and nuclear translocation of SREBP1, leading to the transcription of SREBP1 downstream lipogenesis-related genes and the production of intracellular lipids and cholesterol. Altogether, our data uncovered an important molecular mechanism by which NAMPT promoted HBV-induced HCC progression through the activation of SREBP1-triggered lipid metabolism reprogramming and suggested NAMPT as a promising prognostic biomarker and therapeutic target for HBV-associated HCC patients.
Collapse
Affiliation(s)
- Xian-Lu He
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Hui-Jie Guo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ya-Ruo Lei
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jun Li
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing-Yi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Min-Hui Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Fei Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chun-Fen Mo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Pu W, Wang X, Zhong X, Zhao D, Zeng Z, Cai W, Zhong Y, Huang J, Tang D, Dai Y. Dysregulation of lipid metabolism in the pseudolobule promotes region-specific autophagy in hepatitis B liver cirrhosis. Hepatol Commun 2023; 7:e0187. [PMID: 37486962 PMCID: PMC10368385 DOI: 10.1097/hc9.0000000000000187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/21/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection leads to liver cirrhosis (LC), the end stage of liver fibrosis. The precise diagnosis and effective therapy for hepatitis B cirrhosis are still lacking. It is highly necessary to elucidate the metabolic alteration, especially the spatial distribution of metabolites, in LC progression. METHODS In this study, LC-MS/MS together with an airflow-assisted ionization mass spectrometry imaging system was applied to analyze and compare the metabolites' spatial distribution in healthy control (HC) and hepatitis B LC tissue samples. The liver samples were further divided into several subregions in HC and LC groups based on the anatomical characteristics and clinical features. RESULTS Both the LC-MS/MS and mass spectrometry imaging results indicated separated metabolite clusters between the HC and LC groups. The differential metabolites were mainly concentrated in lipid-like molecules and amino acids. The phosphatidylcholines (PCs), lysoPCs, several fatty acids, and amino acids reduced expression in the LC group with region specific. Acyl-CoA thioesterase 2 and choline/ethanolamine phosphotransferase 1, which regulate PC and fatty acid metabolism, were significantly decreased in the pseudolobule. Meanwhile, the increased expression of LC3B and p62 in the pseudolobule indicated the upregulation of autophagy. CONCLUSIONS Hepatitis B LC induced region-specific autophagy by increasing the expression of LC3B and p62 in the pseudolobule and by dysregulation of unsaturated fatty acids, amino acids, and PC metabolism. The mass spectrometry imaging system provided additional metabolites' spatial information, which can promote biomarker screening technology and support the exploration of novel mechanisms in LC.
Collapse
Affiliation(s)
- Wenjun Pu
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xi Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Xiaoni Zhong
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Dong Zhao
- Department of Nephrology Center, Department of Liver Transplant Center, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yafang Zhong
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jianrong Huang
- Department of Nephrology Center, Department of Liver Transplant Center, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
4
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
5
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
6
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
7
|
Skaar EP. Imaging Infection Across Scales of Size: From Whole Animals to Single Molecules. Annu Rev Microbiol 2021; 75:407-426. [PMID: 34343016 DOI: 10.1146/annurev-micro-041521-121457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
8
|
Xu T, Wang P, Zheng X, Yan Z, Li K, Xu J, Jiang C, Zhu F. The therapeutic effects and mechanisms of Long Chai Fang on chronic hepatitis B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:865. [PMID: 34164499 PMCID: PMC8184409 DOI: 10.21037/atm-21-1923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Long Chai Fang (LCF) is a traditional Chinese medicine (TCM) formula for treating chronic hepatitis B (CHB) in clinical settings; however, its related mechanism remains unclear. Methods To address this issue, network pharmacology and an integrative method that combines dot-blot hybridization and metabolomics analysis were employed. Network pharmacology was performed to investigate the material basis and potential mechanisms of LCF against CHB. The effect of LCF on Duck hepatitis B virus (DHBV) replication was evaluated. The metabolomics analysis was conducted to identify potential biomarkers in duck serum. Results The network pharmacology approach revealed 133 potential active components, 897 drug targets, 979 disease targets, and 185 drug-disease targets, while the Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 165 pathways. LCF significantly inhibited DHBV-deoxyribonucleic acid replication on day 10 and day 3 after the cessation of treatment. Notably, the low-dose LCF group showed the best inhibitory effect. The obviously sustained anti-DHBV activity of LCF inhibited viral replication, and a rebound reaction was found. Phosphatidylcholine and phosphatidylethanolamine classes, which are mainly involved in liver cell repair and energy metabolism through phospholipid metabolic pathways, were identified by metabolomics analysis. Conclusions our results showed that the main active ingredients of LCF appear to be metacarpi, isorhamnetin, glypallichalcone, and phaseolinisoflavan. This study provides novel strategies for using a LCF formula against CHB in future research.
Collapse
Affiliation(s)
- Tingting Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Pei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Zheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanpeng Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Kun Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jindi Xu
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Cuihua Jiang
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Fangshi Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Jain D, Torres R, Celli R, Koelmel J, Charkoftaki G, Vasiliou V. Evolution of the liver biopsy and its future. Transl Gastroenterol Hepatol 2021; 6:20. [PMID: 33824924 PMCID: PMC7829074 DOI: 10.21037/tgh.2020.04.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Liver biopsies are commonly used to evaluate a wide variety of medical disorders, including neoplasms and post-transplant complications. However, its use is being impacted by improved clinical diagnosis of disorders, and non-invasive methods for evaluating liver tissue and as a result the indications of a liver biopsy have undergone major changes in the last decade. The evolution of highly effective treatments for some of the common indications for liver biopsy in the last decade (e.g., viral hepatitis B and C) has led to a decline in the number of liver biopsies in recent years. At the same time, the emergence of better technologies for histologic evaluation, tissue content analysis and genomics are among the many new and exciting developments in the field that hold great promise for the future and are going to shape the indications for a liver biopsy in the future. Recent advances in slide scanners now allow creation of "digital/virtual" slides that have image of the entire tissue section present in a slide [whole slide imaging (WSI)]. WSI can now be done very rapidly and at very high resolution, allowing its use in routine clinical practice. In addition, a variety of technologies have been developed in recent years that use different light sources and/or microscopes allowing visualization of tissues in a completely different way. One such technique that is applicable to liver specimens combines multiphoton microscopy (MPM) with advanced clearing and fluorescent stains known as Clearing Histology with MultiPhoton Microscopy (CHiMP). Although it has not yet been extensively validated, the technique has the potential to decrease inefficiency, reduce artifacts, and increase data while being readily integrable into clinical workflows. Another technology that can provide rapid and in-depth characterization of thousands of molecules in a tissue sample, including liver tissues, is matrix assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI has already been applied in a clinical research setting with promising diagnostic and prognostic capabilities, as well as being able to elucidate mechanisms of liver diseases that may be targeted for the development of new therapies. The logical next step in huge data sets obtained from such advanced analysis of liver tissues is the application of machine learning (ML) algorithms and application of artificial intelligence (AI), for automated generation of diagnoses and prognoses. This review discusses the evolving role of liver biopsies in clinical practice over the decades, and describes newer technologies that are likely to have a significant impact on how they will be used in the future.
Collapse
Affiliation(s)
- Dhanpat Jain
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Romulo Celli
- Department of Anatomic Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
10
|
Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061419. [PMID: 32486341 PMCID: PMC7352397 DOI: 10.3390/cancers12061419] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
: Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death.
Collapse
|
11
|
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957-1971. [PMID: 29304189 PMCID: PMC6954408 DOI: 10.1093/bib/bbx170] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and mathematical modeling to data management, in the context of precision medicine.
Collapse
Affiliation(s)
| | - Vladimir Shulaev
- Corresponding author: Vladimir Shulaev, Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76210, USA. Tel.: 940-369-5368; Fax: 940-565-3821; E-mail:
| |
Collapse
|
12
|
Zhou J, Yang Y, Wang H, Bian B, Yang J, Wei X, Zhou Y, Si N, Zhao H. The Disturbance of Hepatic and Serous Lipids in Aristolochic Acid Ι Induced Rats for Hepatotoxicity Using Lipidomics Approach. Molecules 2019; 24:E3745. [PMID: 31627392 PMCID: PMC6832582 DOI: 10.3390/molecules24203745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Aristolochic acid I (AAI) was regarded as the major toxic component of aristolochic acid (AA). In addition to aristolochic acid nephropathy (AAN), liver cancers induced by AAI has aroused increasing attention recently. In this paper, the discovery of diagnostic biomarkers for AAI-induced liver injury has been studied, especially for the lipid markers. From the histopathological characteristics, the injury was observed clearly in the liver apart from the kidney after 30 mg/kg of AAΙ treatment for one week, while the lesion alleviated after AAΙ discontinuance. The serum biochemical indexes were manifested to the normal tendency after AAΙ discontinuance for two weeks. According to the evaluation of pathology slices and serum biochemical indexes, they indicated that the hepatotoxicity induced by AAΙ was reversible to some extent. A total of 44 lipid markers were identified in the liver, as well as 59 in the serum. Twenty-six common lipid markers were observed in both serum and liver. Furthermore, nine out of 26 lipids exhibited the excellent diagnostic ability to differentiate the control group from the AAΙ group and AAΙ discontinuance group with high sensitivity and specificity. The changed lipid markers might serve as characteristics to explain the mechanisms of pathogenesis and progression in hepatotoxicity induced by AAΙ.
Collapse
Affiliation(s)
- Junyi Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
13
|
Huang Q, Lei H, Ding L, Wang Y. Stimulated phospholipid synthesis is key for hepatitis B virus replications. Sci Rep 2019; 9:12989. [PMID: 31506451 PMCID: PMC6736851 DOI: 10.1038/s41598-019-49367-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B Virus (HBV) infection has high morbidity, high pathogenicity and unclear pathogenesis. To elucidate the relationship between HBV replication and host phospholipid metabolites, we measured 10 classes of phospholipids in serum of HBV infected patients and cells using ultra performance liquid chromatograph-triple quadruple mass spectrometry. We found that the levels of phosphatidylcholine (PC), phosphatidylethanolamine, and lyso-phosphatidic acid were increased in HBsAg (+) serum of infected patients compared with HBsAg (-), while phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and sphingomyelin were decreased, which were confirmed in an HBV infected HepG2.2.15 cell line. We further evaluated the enzyme levels of PC pathways and found that PCYT1A and LPP1 for PC synthesis were up-regulated after HBV infection. Moreover, HBV replication was inhibited when PCYT1A and LPP1 were inhibited. These results indicated that the PC synthesis in HBV infected host are regulated by PCYT1A and LPP1, which suggests that PCYT1A, LPP1 could be new potential targets for HBV treatment.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Laifeng Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore.
| |
Collapse
|
14
|
Noh SA, Kim SM, Park SH, Kim DJ, Lee JW, Kim YG, Moon JY, Lim SJ, Lee SH, Kim KP. Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. J Proteome Res 2019; 18:2803-2812. [PMID: 31244212 DOI: 10.1021/acs.jproteome.9b00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During aging, the kidney undergoes functional and physiological changes that are closely affiliated with chronic kidney disease (CKD). There is increasing evidence supporting the role of lipid or lipid-derived mediators in the pathogenesis of CKD and other aging-related diseases. To understand the role of lipids in various metabolic processes during kidney aging, we conducted matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) analysis in kidneys harvested from young (2 months old, n = 3) and old mice (24 months old, n = 3). MALDI-IMS analysis showed an increase in ceramide level and a decrease in sphingomyelin (SM) and phosphatidylcholine (PC) levels in kidneys of old mice. The increased expression of cPLA2 and SMPD1 protein in aged kidney was confirmed by immunohistochemistry and Western blot analysis. Our MALDI-IMS data showed the altered distribution of lipids in aged kidney as indicative of aging-related functional changes of the kidney. Combined analysis of MALDI-IMS and IHC confirmed lipidomic changes and expression levels of responsible enzymes as well as morphological changes.
Collapse
Affiliation(s)
- Sue Ah Noh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea
| | - Su-Mi Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Seon Hwa Park
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Dong-Jin Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea
| | - Yang Gyun Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Ju-Young Moon
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Sung-Jig Lim
- Department of Pathology , Kyung Hee University Hospital at Gangdong , Seoul , Republic of Korea
| | - Sang-Ho Lee
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
15
|
Atorvastatin provides a new lipidome improving early regeneration after partial hepatectomy in osteopontin deficient mice. Sci Rep 2018; 8:14626. [PMID: 30279550 PMCID: PMC6168585 DOI: 10.1038/s41598-018-32919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
Osteopontin (OPN), a multifunctional cytokine that controls liver glycerolipid metabolism, is involved in activation and proliferation of several liver cell types during regeneration, a condition of high metabolic demands. Here we investigated the role of OPN in modulating the liver lipidome during regeneration after partial-hepatectomy (PH) and the impact that atorvastatin treatment has over regeneration in OPN knockout (KO) mice. The results showed that OPN deficiency leads to remodeling of phosphatidylcholine and triacylglycerol (TG) species primarily during the first 24 h after PH, with minimal effects on regeneration. Changes in the quiescent liver lipidome in OPN-KO mice included TG enrichment with linoleic acid and were associated with higher lysosome TG-hydrolase activity that maintained 24 h after PH but increased in WT mice. OPN-KO mice showed increased beta-oxidation 24 h after PH with less body weight loss. In OPN-KO mice, atorvastatin treatment induced changes in the lipidome 24 h after PH and improved liver regeneration while no effect was observed 48 h post-PH. These results suggest that increased dietary-lipid uptake in OPN-KO mice provides the metabolic precursors required for regeneration 24 h and 48 h after PH. However, atorvastatin treatment offers a new metabolic program that improves early regeneration when OPN is deficient.
Collapse
|
16
|
Leopold J, Popkova Y, Engel KM, Schiller J. Visualizing phosphatidylcholine via mass spectrometry imaging: relevance to human health. Expert Rev Proteomics 2018; 15:791-800. [PMID: 30241449 DOI: 10.1080/14789450.2018.1526679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) techniques are nowadays widely used to obtain spatially resolved metabolite information from biological tissues. Since (phospho)lipids occur in all animal tissues and are very sensitively detectable, they are often in the focus of such studies. This particularly applies for phosphatidylcholines (PC) which are very sensitively detectable as positive ions due to the permanent positive charge of their choline headgroup. Areas covered: After a short introduction of lipid species occurring in biological systems and approaches normally used to obtain spatially resolved mass spectra (with the focus on matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) MSI) a survey will be given which diseases have so far been characterized by changes of the PC composition. Expert commentary: Since PC species are very sensitively detectable by MS, sensitivity is not a major issue. However, spatial resolution is still limited and cellular dimensions can be hardly resolved by MALDI-TOF MSI, which is a critical point of the available approaches. Due to lacks of reproducibility and standardization further development is required.
Collapse
Affiliation(s)
- Jenny Leopold
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Yulia Popkova
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Kathrin M Engel
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Jürgen Schiller
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| |
Collapse
|
17
|
Zhao C, Xie P, Yang T, Wang H, Chung ACK, Cai Z. Identification of glycerophospholipid fatty acid remodeling by using mass spectrometry imaging in bisphenol S induced mouse liver. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. MASS SPECTROMETRY REVIEWS 2018; 37:107-138. [PMID: 27276657 DOI: 10.1002/mas.21510] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
Lipids, particularly phospholipids (PLs), are key components of cellular membrane. PLs play important and diverse roles in cells such as chemical-energy storage, cellular signaling, cell membranes, and cell-cell interactions in tissues. All these cellular processes are pertinent to cells that undergo transformation, cancer progression, and metastasis. Thus, there is a strong possibility that some classes of PLs are expected to present in cancer cells and tissues in cellular physiology. The mass spectrometric soft-ionization techniques, electrospray ionization (ESI), and matrix-assisted laser desorption/ionization (MALDI) are well-established in the proteomics field, have been used for lipidomic analysis in cancer research. This review focused on the applications of mass spectrometry (MS) mainly on ESI-MS and MALDI-MS in the structural characterization, molecular composition and key roles of various PLs present in cancer cells, tissues, blood, and urine, and on their importance for cancer-related problems as well as challenges for development of novel PL-based biomarkers. The profiling of PLs helps to rationalize their functions in biological systems, and will also provide diagnostic information to elucidate mechanisms behind the control of cancer, diabetes, and neurodegenerative diseases. The investigation of cellular PLs with MS methods suggests new insights on various cancer diseases and clinical applications in the drug discovery and development of biomarkers for various PL-related different cancer diseases. PL profiling in tissues, cells and body fluids also reflect the general condition of the whole organism and can indicate the existence of cancer and other diseases. PL profiling with MS opens new prospects to assess alterations of PLs in cancer, screening specific biomarkers and provide a basis for the development of novel therapeutic strategies. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:107-138, 2018.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| |
Collapse
|
19
|
Sun H, Yang L, Li MX, Fang H, Zhang AH, Song Q, Liu XY, Su J, Yu MD, Makino T, Wang XJ. UPLC-G2Si-HDMS untargeted metabolomics for identification of metabolic targets of Yin-Chen-Hao-Tang used as a therapeutic agent of dampness-heat jaundice syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:41-50. [PMID: 29502028 DOI: 10.1016/j.jchromb.2018.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Yin-Chen-Hao-Tang (YCHT), the classic formulae of traditional Chinese medicine (TCM), is widely used to treat dampness-heat jaundice syndrome (DHJS) and various liver diseases. However, the therapeutic mechanism of YCHT is yet to have an integrated biological interpretation. In this work, we used metabolomics technology to reveal the adjustment of small molecule metabolites in body during the treatment of YCHT. Aim to discover the serum biomarkers which are associated with the treatment of DHJS against YCHT. Pathological results and biochemical indicators showed that the hepatic injury and liver index abnormalities caused by DHJS was effectively improve after treatment with YCHT. On the basis of effective treatment, ultra-high performance liquid chromatography (UPLC-G2Si-HDMS) combined with the multivariate statistical analysis method was utilized to analyze the serum samples. Finally, 22 biomarkers were identified by using mass spectrometry and illuminated the correlative metabolic pathways which play a significant role and as therapeutic targets in the treatment of DHJS. This work demonstrated that mass spectrometry metabolomics provides a new insight to elucidate the action mechanism of formulae.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Xing-Yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Die Yu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China.
| |
Collapse
|
20
|
Kwee SA, Wong L, Chan OTM, Kalathil S, Tsai N. PET/CT with 18F Fluorocholine as an Imaging Biomarker for Chronic Liver Disease: A Preliminary Radiopathologic Correspondence Study in Patients with Liver Cancer. Radiology 2018; 287:294-302. [PMID: 29315063 DOI: 10.1148/radiol.2018171333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose To determine the relationship between hepatic uptake at preoperative fluorine 18 (18F) fluorocholine combined positron emission tomography (PET) and computed tomography (CT) and the histopathologic features of chronic liver disease in patients with Child-Pugh class A or B disease who are undergoing hepatic resection for liver cancer. Materials and Methods Forty-eight patients with resectable liver tumors underwent preoperative 18F fluorocholine PET/CT. Mean liver standardized uptake value (SUVmean) measurements were obtained from PET images, while histologic indexes of inflammation and fibrosis were applied to nontumor liver tissue from resection specimens. Effects of histopathologic features on liver SUVmean were examined with analysis of variance. Results Liver SUVmean ranged from 4.3 to 11.6, correlating significantly with Knodell histologic activity index (ρ = -0.81, P < .001) and several clinical indexes of liver disease severity. Liver SUVmean also differed significantly across groups stratified by necroinflammatory severity and Metavir fibrosis stage (P < . 001). The area under the receiver operating characteristic curve for 18F fluorocholine PET/CT detecting Metavir fibrosis stage F1 or higher was 0.89 ± 0.05, with an odds-ratio of 3.03 (95% confidence interval: 1.59, 5.88) and sensitivity and specificity of 82% and 93%, respectively. Conclusion Correlations found in patients undergoing hepatic resection for liver cancer between liver 18F fluorocholine uptake and histopathologic indexes of liver fibrosis and inflammation support the use of 18F fluorocholine PET/CT as a potential imaging biomarker for chronic liver disease. © RSNA, 2018.
Collapse
Affiliation(s)
- Sandi A Kwee
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Linda Wong
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Owen T M Chan
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Sumodh Kalathil
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Naoky Tsai
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| |
Collapse
|
21
|
Li Z, Guan M, Lin Y, Cui X, Zhang Y, Zhao Z, Zhu J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics. Int J Mol Sci 2017; 18:ijms18122550. [PMID: 29182572 PMCID: PMC5751153 DOI: 10.3390/ijms18122550] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC). HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. METHODS A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS) and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS) was performed. RESULTS Triacylglycerols (TAGs) with the number of double bond (DB) > 2 (except 56:5 and 56:4 TAG) were significantly down-regulated; conversely, others (except 52:2 TAG) were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) were altered in a certain way. Sphingomyelin (SM) was up-regulated and ceramide (Cer) were down-regulated in HCC tissues. CONCLUSIONS To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH), may also be effective for the treatment of HCC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Xiao Cui
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
22
|
Wu T, Zheng X, Yang M, Zhao A, Li M, Chen T, Panee J, Jia W, Ji G. Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients. Sci Rep 2017; 7:42710. [PMID: 28198443 PMCID: PMC5309878 DOI: 10.1038/srep42710] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 01/03/2023] Open
Abstract
The incidences of chronic hepatitis B (CHB), Hepatitis B virus (HBV)-associated cirrhosis and HBV-associated carcinoma are high and increasing. This study was designed to evaluate serum lipid metabolite changes that are associated with the progression from CHB to HBV-associated cirrhosis and ultimately to HBV-associated HCC. A targeted metabolomic assay was performed in fasting sera from 136 CHB patients, 104 HBV-associated cirrhosis, and 95 HBV-associated HCC using ultra-performance liquid chromatography triple quadrupole mass spectrometry. A total of 140 metabolites were identified. Clear separations between each two groups were obtained using the partial least squares discriminate analysis of 9 lipid metabolites. Progressively lower levels of long-chain lysophosphatidylcholines (lysoPC a C18:2, lysoPC a C20:3, lysoPC a C20:4) were observed from CHB to cirrhosis to carcinoma; lower levels of lysoPC a C20:4 were found in patients with higher model for end-stage liver disease in the same disease group; and lysoPC a C20:3 levels were lower in Child-Pugh Class C than in Class A and Class B in HBV-associated cirrhosis and HBV-associated HCC groups. The octadecadienyl carnitine level was higher in HBV-associated cirrhosis group than in other two groups. Serum levels of selected long-chain lysoPCs are promising markers for the progression of HBV-associated liver diseases.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Ming Yang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Meng Li
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Monoa, Honolulu, Hawaii 96813, United States
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Feeding vitamin E may reverse sarcoplasmic reticulum membrane instability caused by feeding wet distillers grains plus solubles to cattle. ACTA ACUST UNITED AC 2017. [DOI: 10.15232/pas.2016-01569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
25
|
Jeon HJ, Lee YH, Mo HH, Kim MJ, Al-Wabel MI, Kim Y, Cho K, Kim TW, Ok YS, Lee SE. Chlorpyrifos-induced biomarkers in Japanese medaka (Oryzias latipes). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1071-1080. [PMID: 25966881 DOI: 10.1007/s11356-015-4598-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos (CHL) is an organophosphate compound that is widely used as an insecticide. Due to its repeated use and high environmental residual property, CHL is frequently passed into aquatic environments by runoff. Consequently, there may be an adverse effect on aquatic vertebrate animals, including fish. Therefore, in this study, we assessed how CHL affected Japanese medaka (Oryzias latipes). The acute toxicity of CHL in adult fish after 96 h of exposure was determined to be 212.50, 266.79, and 412.28 μg L(-1) (LC25, LC50, and LC95, respectively). Acetylcholinesterase (AChE), glutathione S-transferase (GST), and carboxylesterase (CE) activities were obtained from the livers of dead or surviving fish, and the results showed 4.8-fold lower, 4.5-fold higher, and 18.6-fold lower activities for the AChE, GST, and CE, respectively, for 64-h exposure at a concentration of 400 μg L(-1) of CHL. In the embryo toxicity test, curved spines were observed in embryos that were exposed to CHL for 48 h in a concentration-dependent manner. With identification of biomarkers for CHL in the fish, two protein peaks, 5550.86 and 5639.79 m/z, were found to be upregulated. These two proteins can be used as protein biomarkers for CHL contamination in aquatic systems. A phosphatidyl choline with an m/z ratio of 556.32 dramatically decreased after CHL exposure in the fish; thus, it may be considered as a lipid biomarker for CHL. It is assumed as the first report to identify a phospholipid biomarker using a lipidomics approach in fish toxicology. Taken together, these results demonstrated the adverse effects of CHL on Japanese medaka and reveal several candidate biomarkers that can be used as diagnostic tools for determining CHL.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Yong-Ho Lee
- Institute of Ecological Phytochemistry, Department of Plant Life and Environmental Science, Hankyong National University, Anseong, 456-749, Korea
| | - Hyoung-ho Mo
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Mohammad I Al-Wabel
- Saudi Biochar Research Group (SBRG), Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, PO Box 89770, Riyadh, 11692, Saudi Arabia
| | - Yongeun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-701, Korea
| | - Tae-Wan Kim
- Institute of Ecological Phytochemistry, Department of Plant Life and Environmental Science, Hankyong National University, Anseong, 456-749, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea.
| |
Collapse
|
26
|
Lipidomics comparing DCD and DBD liver allografts uncovers lysophospholipids elevated in recipients undergoing early allograft dysfunction. Sci Rep 2015; 5:17737. [PMID: 26635289 PMCID: PMC4669413 DOI: 10.1038/srep17737] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 12/14/2022] Open
Abstract
Finding specific biomarkers of liver damage in clinical evaluations could increase the pool of available organs for transplantation. Lipids are key regulators in cell necrosis and hence this study hypothesised that lipid levels could be altered in organs suffering severe ischemia. Matched pre- and post-transplant biopsies from donation after circulatory death (DCD, n = 36, mean warm ischemia time = 2 min) and donation after brain death (DBD, n = 76, warm ischemia time = none) were collected. Lipidomic discovery and multivariate analysis (MVA) were applied. Afterwards, univariate analysis and clinical associations were conducted for selected lipids differentiating between these two groups. MVA grouped DCD vs. DBD (p = 6.20 × 10(-12)) and 12 phospholipids were selected for intact lipid measurements. Two lysophosphatidylcholines, LysoPC (16:0) and LysoPC (18:0), showed higher levels in DCD at pre-transplantation (q < 0.01). Lysophosphatidylcholines were associated with aspartate aminotransferase (AST) 14-day post-transplantation (q < 0.05) and were more abundant in recipients undergoing early allograft dysfunction (EAD) (p < 0.05). A receiver-operating characteristics (ROC) curve combining both lipid levels predicted EAD with 82% accuracy. These findings suggest that LysoPC (16:0) and LysoPC (18:0) might have a role in signalling liver tissue damage due to warm ischemia before transplantation.
Collapse
|
27
|
Crecelius AC, Schubert US, von Eggeling F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 2015; 140:5806-20. [DOI: 10.1039/c5an00990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context.
Collapse
Affiliation(s)
- A. C. Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - F. von Eggeling
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Physical Chemistry
| |
Collapse
|