1
|
Fricker LD, Lemos Duarte M, Jeltyi A, Lueptow L, Fakira AK, Tashima AK, Hochgeschwender U, Wetsel WC, Devi LA. Mice heterozygous for a null mutation of Cpe show reduced expression of carboxypeptidase E mRNA and enzyme activity but normal physiology, behavior, and levels of neuropeptides. Brain Res 2022; 1789:147951. [PMID: 35618016 DOI: 10.1016/j.brainres.2022.147951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Carboxypeptidase E (CPE) is an essential enzyme that contributes to the biosynthesis of the vast majority of neuropeptides and peptide hormones. There are several reports claiming that small decreases in CPE activity cause physiological changes in animals and/or cultured cells, but these studies did not provide evidence that neuropeptide levels were affected by decreased CPE activity. In the present study, we tested if CPE is a rate-limiting enzyme in neuropeptide production using CpeNeo mice, which contain a neomycin cassette within the Cpe gene that eliminates enzyme expression. Homozygous CpeNeo/Neo mice show defects found in Cpefat/fat and/or Cpe global knockout (KO) mice, including greatly decreased levels of most neuropeptides, severely impaired fertility, depressive-like behavior, adult-onset obesity, and anxiety-like behavior. Removal of the neomycin cassette with Flp recombinase under a germline promoter restored expression of CPE activity and resulted in normal behavioral and physiological properties, including levels of neuropeptides. Mice heterozygous for the CpeNeo allele have greatly reduced levels of Cpe mRNA and CPE-like enzymatic activity. Despite the decreased levels of Cpe expression, heterozygous CpeNeo mice are behaviorally and physiologically identical to wild-type mice, with normal levels of most neuropeptides. These results indicate that CPE is not a rate-limiting enzyme in the production of most neuropeptides, casting doubt upon studies claiming small decreases in CPE activity contribute to obesity or other physiological effects.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461.
| | - Mariana Lemos Duarte
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Andrei Jeltyi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Lindsay Lueptow
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Amanda K Fakira
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Alexandre K Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP 04023-901, Brazil.
| | | | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Neurobiology, and Cell Biology, Duke University Medical Center, Durham, NC, 27710.
| | - Lakshmi A Devi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| |
Collapse
|
2
|
Lindberg I, Shu Z, Lam H, Helwig M, Yucer N, Laperle A, Svendsen C, Di Monte DA, Maidment NT. The proSAAS Chaperone Provides Neuroprotection and Attenuates Transsynaptic α-Synuclein Spread in Rodent Models of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1463-1478. [PMID: 35527562 PMCID: PMC9731515 DOI: 10.3233/jpd-213053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Parkinson's disease involves aberrant aggregation of the synaptic protein alpha-synuclein (aSyn) in the nigrostriatal tract. We have previously shown that proSAAS, a small neuronal chaperone, blocks aSyn-induced dopaminergic cytotoxicity in primary nigral cultures. OBJECTIVE To determine if proSAAS overexpression is neuroprotective in animal models of Parkinson's disease. METHODS proSAAS- or GFP-encoding lentivirus was injected together with human aSyn-expressing AAV unilaterally into the substantia nigra of rats and motor asymmetry assessed using a battery of motor performance tests. Dopamine neuron survival was assessed by nigral stereology and striatal tyrosine hydroxylase (TH) densitometry. To examine transsynaptic spread of aSyn, aSyn AAV was injected into the vagus of mice in the presence of AAVs encoding either GFP or proSAAS; the spread of aSyn-positive neurites into rostral nuclei was quantified following immunohistochemistry. RESULTS Coinjection of proSAAS-encoding lentivirus profoundly reduced the motor asymmetry caused by unilateral nigral AAV-mediated human aSyn overexpression. This was accompanied by significant amelioration of the human aSyn-induced loss of both nigral TH-positive cells and striatal TH-positive terminals, demonstrating clear proSAAS-mediated protection of the nigrostriatal tract. ProSAAS overexpression reduced human aSyn protein levels in nigra and striatum and reduced the loss of TH protein in both regions. Following vagal administration of human aSyn-encoding AAV, the number of human aSyn-positive neurites in the pons and caudal midbrain was considerably reduced in mice coinjected with proSAAS-, but not GFP-encoding AAV, supporting proSAAS-mediated blockade of transsynaptic aSyn transmission. CONCLUSION The proSAAS chaperone may represent a promising target for therapeutic development in Parkinson's disease.
Collapse
Affiliation(s)
- Iris Lindberg
- University of Maryland-Baltimore;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| | - Zhan Shu
- University of California-Los Angeles
| | - Hoa Lam
- University of California-Los Angeles
| | | | - Nur Yucer
- Cedars-Sinai Medical Center, Los Angeles
| | | | | | | | - Nigel T. Maidment
- University of California-Los Angeles;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| |
Collapse
|
3
|
Fujiwara Y, Torphy RJ, Sun Y, Miller EN, Ho F, Borcherding N, Wu T, Torres RM, Zhang W, Schulick RD, Zhu Y. The GPR171 pathway suppresses T cell activation and limits antitumor immunity. Nat Commun 2021; 12:5857. [PMID: 34615877 PMCID: PMC8494883 DOI: 10.1038/s41467-021-26135-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The recently identified G-protein-coupled receptor GPR171 and its ligand BigLEN are thought to regulate food uptake and anxiety. Though GPR171 is commonly used as a T cell signature gene in transcriptomic studies, its potential role in T cell immunity has not been explored. Here we show that GPR171 is transcribed in T cells and its protein expression is induced upon antigen stimulation. The neuropeptide ligand BigLEN interacts with GPR171 to suppress T cell receptor-mediated signalling pathways and to inhibit T cell proliferation. Loss of GPR171 in T cells leads to hyperactivity to antigen stimulation and GPR171 knockout mice exhibit enhanced antitumor immunity. Blockade of GPR171 signalling by an antagonist promotes antitumor T cell immunity and improves immune checkpoint blockade therapies. Together, our study identifies the GPR171/BigLEN axis as a T cell checkpoint pathway that can be modulated for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Emily N Miller
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Felix Ho
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, 63110, USA
| | - Tuoqi Wu
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Weizhou Zhang
- Department of Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Abid MSR, Mousavi S, Checco JW. Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chem Biol 2021; 16:251-263. [PMID: 33539706 DOI: 10.1021/acschembio.0c00950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these signaling pathways as potential therapeutic targets. Identifying the receptor(s) for a given peptide of interest is complicated by several factors. Most notably, cell-cell signaling peptides are generated through dynamic biosynthetic pathways, can act on many different families of receptor proteins, and can participate in complex ligand-receptor interactions that extend beyond a simple one-to-one archetype. Here, we discuss recent methodological advances to identify signaling partners for bioactive peptides. Recent efforts have centered on methods to identify candidate receptors via transcript expression, methods to match peptide-receptor pairs through high throughput screening, and methods to capture direct ligand-receptor interactions using chemical probes. Future applications of the receptor identification approaches discussed here, as well as technical advancements to address their limitations, promise to lead to a greater understanding of how cells communicate to deliver complex physiologies. Importantly, such advancements will likely provide novel targets for the treatment of human diseases within the central nervous and endocrine systems.
Collapse
Affiliation(s)
- Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
6
|
Shakya M, Yildirim T, Lindberg I. Increased expression and retention of the secretory chaperone proSAAS following cell stress. Cell Stress Chaperones 2020; 25:929-941. [PMID: 32607937 PMCID: PMC7591655 DOI: 10.1007/s12192-020-01128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Taha Yildirim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
8
|
Tillmaand EG, Anapindi KDB, De La Toba EA, Guo CJ, Krebs J, Lenhart AE, Liu Q, Sweedler JV. Quantitative Characterization of the Neuropeptide Level Changes in Dorsal Horn and Dorsal Root Ganglia Regions of the Murine Itch Models. J Proteome Res 2020; 19:1248-1257. [PMID: 31957451 PMCID: PMC7060821 DOI: 10.1021/acs.jproteome.9b00758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic itch can be extremely devastating and, in many cases, difficult to treat. One challenge in treating itch disorders is the limited understanding of the multitude of chemical players involved in the communication of itch sensation from the peripheral to the central nervous system. Neuropeptides are intercellular signaling molecules that are known to be involved in the transmission of itch signals from primary afferent neurons, which detect itch in the skin, to higher-order circuits in the spinal cord and brain. To investigate the role of neuropeptides in transmitting itch signals, we generated two mouse models of chronic itch-Acetone-Ether-Water (AEW, dry skin) and calcipotriol (MC903, atopic dermatitis). For peptide identification and quantitation, we analyzed the peptide content of dorsal root ganglia (DRG) and dorsal horn (DH) tissues from chronically itchy mice using liquid chromatography coupled to tandem mass spectrometry. De novo-assisted database searching facilitated the identification and quantitation of 335 peptides for DH MC903, 318 for DH AEW, 266 for DRG MC903, and 271 for DRG AEW. Of these quantifiable peptides, we detected 30 that were differentially regulated in the tested models, after accounting for multiple testing correction (q ≤ 0.1). These include several peptide candidates derived from neuropeptide precursors, such as proSAAS, protachykinin-1, proenkephalin, and calcitonin gene-related peptide, some of them previously linked to itch. The peptides identified in this study may help elucidate our understanding about these debilitating disorders. Data are available via ProteomeXchange with identifier PXD015949.
Collapse
Affiliation(s)
- Emily G. Tillmaand
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Krishna D. B. Anapindi
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Eduardo A. De La Toba
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Changxiong J. Guo
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jessica Krebs
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Ashley E. Lenhart
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jonathan V. Sweedler
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
10
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
11
|
Khoonsari PE, Musunri S, Herman S, Svensson CI, Tanum L, Gordh T, Kultima K. Systematic analysis of the cerebrospinal fluid proteome of fibromyalgia patients. J Proteomics 2019; 190:35-43. [DOI: 10.1016/j.jprot.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023]
|
12
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
DeAtley KL, Colgrave ML, Cánovas A, Wijffels G, Ashley RL, Silver GA, Rincon G, Medrano JF, Islas-Trejo A, Fortes MRS, Reverter A, Porto-Neto L, Lehnert SA, Thomas MG. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty. J Proteome Res 2018; 17:1852-1865. [PMID: 29510626 DOI: 10.1021/acs.jproteome.7b00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.
Collapse
Affiliation(s)
- Kasey L DeAtley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Michelle L Colgrave
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Gene Wijffels
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Ryan L Ashley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gail A Silver
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gonzalo Rincon
- Zoetis Animal Health , Kalamazoo , Michigan 49007 , United States
| | - Juan F Medrano
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Alma Islas-Trejo
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences , University of Queensland , St. Lucia , Queensland 4042 , Australia
- Queensland Alliance for Agriculture and Food Innovation, St. Lucia , Queensland 4072 , Australia
| | - Antonio Reverter
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Laercio Porto-Neto
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Sigrid A Lehnert
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Milton G Thomas
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
14
|
Abstract
Neuropeptides are the largest class of intercellular signaling molecules, contributing to a wide variety of physiological processes. Neuropeptide receptors are therapeutic targets for a broad range of drugs, including medications to treat pain, addiction, sleep disorders, and nausea. In addition to >100 peptides with known functions, many peptides have been identified in mammalian brain for which the cognate receptors have not been identified. Similarly, dozens of "orphan" G protein-coupled receptors have been identified in the mammalian genome. While it would seem straightforward to match the orphan peptides and receptors, this is not always easily accomplished. In this review we focus on peptides named PEN and big LEN, which are among the most abundant neuropeptides in mouse brain, and their recently identified receptors: GPR83 and GPR171. These receptors are co-expressed in some brain regions and are able to interact. Because PEN and big LEN are produced from the same precursor protein and co-secreted, the interaction of GPR83 and GPR171 is physiologically relevant. In addition to interactions of these two peptides/receptors, PEN and LEN are co-localized with neuropeptide Y and Agouti-related peptide in neurons that regulate feeding. In this review, using these peptide receptors as an example, we highlight the multiple modes of regulation of receptors and present the emerging view that neuropeptides function combinatorially to generate a network of signaling messages. The complexity of neuropeptides, receptors, and their signaling pathways is important to consider both in the initial deorphanization of peptides and receptors, and in the subsequent development of therapeutic applications.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
15
|
Berezniuk I, Rodriguiz RM, Zee ML, Marcus DJ, Pintar J, Morgan DJ, Wetsel WC, Fricker LD. ProSAAS-derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine. J Neurochem 2017; 143:268-281. [PMID: 28881029 DOI: 10.1111/jnc.14209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael L Zee
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - David J Marcus
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA.,Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lloyd D Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Proteomic analysis of the secretome of HepG2 cells indicates differential proteolytic processing after infection with dengue virus. J Proteomics 2016; 151:106-113. [PMID: 27427332 DOI: 10.1016/j.jprot.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023]
Abstract
Secretome analysis can be described as a subset of proteomics studies consisting in the analysis of the molecules secreted by cells or tissues. Dengue virus (DENV) infection can lead to a broad spectrum of clinical manifestations, with the severe forms of the disease characterized by hemostasis abnormalities and liver injury. The hepatocytes are a relevant site of viral replication and a major source of plasma proteins. Until now, we had limited information on the small molecules secreted by hepatic cells after infection by DENV. In the present study, we analysed a fraction of the secretome of mock- and DENV-infected hepatic cells (HepG2 cells) containing molecules with <10kDa, using different proteomic approaches. We identified 175 proteins, with 57 detected only in the samples from mock-infected cells, 59 only in samples from DENV-infected cells, and 59 in both conditions. Most of the peptides identified were derived from proteins larger than 10kDa, suggesting a proteolytic processing of the secreted molecules. Using in silico analysis, we predicted consistent differences between the proteolytic processing occurring in mock and DENV-infected samples, raising, for the first time, the hypothesis that differential proteolysis of secreted molecules would be involved in the pathogenesis of dengue. BIOLOGICAL SIGNIFICANCE Since the liver, one of the targets of DENV infection, is responsible for producing molecules involved in distinct biological processes, the identification of proteins and peptides secreted by hepatocytes after infection would help to a better understanding of the physiopathology of dengue. Proteomic analyses of molecules with <10kDa secreted by HepG2 cells after infection with DENV revealed differential proteolytic processing as an effect of DENV infection.
Collapse
|
17
|
Gomes I, Bobeck EN, Margolis EB, Gupta A, Sierra S, Fakira AK, Fujita W, Müller TD, Müller A, Tschöp MH, Kleinau G, Fricker LD, Devi LA. Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Sci Signal 2016; 9:ra43. [PMID: 27117253 DOI: 10.1126/scisignal.aad0694] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEN is an abundant peptide in the brain that has been implicated in the regulation of feeding. We identified a receptor for PEN in mouse hypothalamus and Neuro2A cells. PEN bound to and activated GPR83, a G protein (heterotrimeric guanine nucleotide)-binding protein)-coupled receptor (GPCR). Reduction of GPR83 expression in mouse brain and Neuro2A cells reduced PEN binding and signaling, consistent with GPR83 functioning as the major receptor for PEN. In some brain regions, GPR83 colocalized with GPR171, a GPCR that binds the neuropeptide bigLEN, another neuropeptide that is involved in feeding and is generated from the same precursor protein as is PEN. Coexpression of these two receptors in cell lines altered the signaling properties of each receptor, suggesting a functional interaction. Our data established PEN as a neuropeptide that binds GPR83 and suggested that these two ligand-receptor systems-PEN-GPR83 and bigLEN-GPR171-may be functionally coupled in the regulation of feeding.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin N Bobeck
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elyssa B Margolis
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Salvador Sierra
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda K Fakira
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wakako Fujita
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany. Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, 13125 Berlin, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany. Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin, 13125 Berlin, Germany
| | - Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lakshmi A Devi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Wang L, Chan JYW, Rêgo JV, Chong CM, Ai N, Falcão CB, Rádis-Baptista G, Lee SMY. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim Biophys Acta Gen Subj 2015; 1850:1253-60. [PMID: 25731980 DOI: 10.1016/j.bbagen.2015.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Animal venoms contain a diverse array of proteins and enzymes that are toxic toward various physiological systems. However, there are also some practical medicinal uses for these toxins including use as anti-bacterial and anti-tumor agents. METHODS In this study, we identified a nine-residue cryptic oligopeptide, KRFKKFFKK (EVP50) that is repeatedly encoded in tandem within vipericidin sequences. RESULTS EVP50 displayed in vivo potent lethal toxicity to zebrafish larvae (LD50=6 μM) when the peptide's N-terminus was chemically conjugated to rhodamine B (RhoB). In vitro, RhoB-conjugated EVP50 (RhoB-EVP50) exhibited a concentration-dependent cytotoxic effect toward MCF-7 and MDA-MB-231 breast cancer cells. In MCF-7 cells, the RhoB-EVP50 nonapeptide accumulated inside the cells within minutes. In the cytoplasm, the RhoB-EVP50 induced extracellular calcium influx and intracellular calcium release. Membrane budding was also observed after incubation with micromolar concentrations of the fluorescent EVP50 conjugate. CONCLUSIONS The conjugate's interference with calcium homeostasis, its intracellular accumulation and its induced membrane dysfunction (budding and vacuolization) seem to act in concert to disrupt the cell circuitry. Contrastively, unconjugated EVP50 peptide did not display neither toxic nor cytotoxic activities in our in vivo and in vitro models. GENERAL SIGNIFICANCE The synergic mechanism of toxicity was restricted to the structurally modified encrypted vipericidin nonapeptide.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Y W Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Juciane V Rêgo
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceara, Brazil; Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nana Ai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cláudio B Falcão
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil.
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|