1
|
Liu M, Khasiyev F, Spagnolo-Allende A, Sanchez DL, Andrews H, Yang Q, Beiser A, Qiao Y, Romero JR, Rundek T, Brickman AM, Manly JJ, Elkind MSV, Seshadri S, Chen C, Del Brutto OH, Hilal S, Wasserman BA, Tosto G, Fornage M, Gutierrez J. Multi-population Genome-Wide Association Study Identifies Multiple Novel Loci associated with Asymptomatic Intracranial Large Artery Stenosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25327093. [PMID: 40385396 PMCID: PMC12083599 DOI: 10.1101/2025.05.06.25327093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Background Intracranial large artery stenosis (ILAS) is one of the most common causes of stroke worldwide and is associated with the risk for future vascular events. Asymptomatic ILAS is a frequent finding on neuroimaging and shares many risk factors with atherosclerotic vascular disease. Whether asymptomatic ILAS is driven by genetic variants is not well-understood. Methods and Results This study included 4960 participants from seven geographically diverse population-based cohorts (34% Whites, 16% African Americans, 22% Hispanics, 24% Asians, 5% native Ecuadorians). We defined asymptomatic ILAS as luminal stenosis > 50% in any large brain artery using time-of-flight magnetic resonance angiography (MRA). A genome-wide association study revealed one variant in RP11-552D8.1 (rs75615271; OR, 1.22 [1.11-1.33]; P=4.85×10-8) associated with global ILAS at genome-wide significance (P<5×10-8). Gene-based association analysis identified a gene-set enriched in chr1q32 region, including NEK2, LPGAT1, INTS7, DTL, and TMEM206, in global ILAS (P=1.34 ×10-7) and anterior ILAS (P=1.77 ×10-8). Conclusion This study reveals one variant rs75615271 associated with asymptomatic ILAS in a multi-population. Further functional studies may help elucidate the role that this variant plays in the pathophysiology of asymptomatic ILAS.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Farid Khasiyev
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Antonio Spagnolo-Allende
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Danurys L Sanchez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Howard Andrews
- Biostatistics Department, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Alexa Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Ye Qiao
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Rafael Romero
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam M Brickman
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mitchell SV Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Christopher Chen
- School of Medicine and Research Center, Universidad Espíritu Santo – Ecuador, Samborondón, Ecuador
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo – Ecuador, Samborondón, Ecuador
| | - Saima Hilal
- Memory Aging and Cognition Center, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bruce A Wasserman
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giuseppe Tosto
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Li J, Zhou Z, Zhang Z, Zheng X, Sun Y, Guo S, Li Y, Yang X, Kong S, Cai D, Lin D, Mo Y, Cai B, Nie Q. Indigenous broilers in crossbreeding: impacts on meat quality and candidate gene screening. Poult Sci 2025; 104:105245. [PMID: 40344706 DOI: 10.1016/j.psj.2025.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
In the fierce market competition, high-quality chicken products often stand out. There are significant differences in meat quality between yellow and white feathered chickens. However, the underlying mechanisms that lead to the differences in their meat quality remain unclear. Single nucleotide polymorphisms (SNP) are effective molecular markers that can be utilized in marker-assisted breeding programs targeting chicken meat quality traits. Our research findings indicated that the bloodline of yellow-feathered chickens can significantly alter the meat quality traits of chickens, especially in terms of the shear force and meat color of the breast muscle. Additionally, through metabolomic, lipidomic, and RNA-seq, we identified differentially expressed metabolites, lipids, and genes that influence meat quality. Furthermore, we discovered a key gene, the purinergic receptor P2 × 5 (P2RX5), which significantly contributes to meat quality traits. We identified five SNP sites within the P2RX5 gene and conducted genotyping. Three of these SNP sites were found to be significantly associated with meat quality traits in chickens, such as the a*value and cooking loss. These results indicated that our findings provide potential molecular markers for changing meat quality traits in chickens. However, due to our small sample size and the absence of testing on males, the generalizability of the results may be insufficient.
Collapse
Affiliation(s)
- Jiahao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Zhen Zhou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Zhaofeng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Xinyi Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Yu Sun
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Siyu Guo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Yaohua Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Xin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Shaofen Kong
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Danfeng Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Duo Lin
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Yu Mo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Bolin Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, PR China.
| |
Collapse
|
3
|
Cabral-García GA, Cruz-Muñoz JR, Valdez-Morales EE, Barajas-Espinosa A, Liñán-Rico A, Guerrero-Alba R. Pharmacology of P2X Receptors and Their Possible Therapeutic Potential in Obesity and Diabetes. Pharmaceuticals (Basel) 2024; 17:1291. [PMID: 39458933 PMCID: PMC11509955 DOI: 10.3390/ph17101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The role of P2X ionotropic receptors in the behavior of purinergic signaling on pathophysiological processes has been widely studied. In recent years, the important participation of P2X receptors in physiological and pathological processes, such as energy metabolism, characteristic inflammatory responses of the immune system, and nociceptive activity in response to pain stimuli, has been noted. Here, we explore the molecular characteristics of the P2X receptors and the use of the different agonist and antagonist agents recently described, focusing on their potential as new therapeutic targets in the treatment of diseases with emphasis on obesity, diabetes, and some of the complications derived from these pathologies.
Collapse
Affiliation(s)
- Guillermo A. Cabral-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - José R. Cruz-Muñoz
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| | - Eduardo E. Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes 43000, Hidalgo, Mexico;
| | - Andrómeda Liñán-Rico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (G.A.C.-G.); (J.R.C.-M.); (E.E.V.-M.)
| |
Collapse
|
4
|
Santiago-Carvalho I, Banuelos A, Borges da Silva H. Tissue- and temporal-specific roles of extracellular ATP on T cell metabolism and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00025. [PMID: 37143525 PMCID: PMC10150631 DOI: 10.1097/in9.0000000000000025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
The activation and function of T cells is fundamental for the control of infectious diseases and cancer, and conversely can mediate several autoimmune diseases. Among the signaling pathways leading to T cell activation and function, the sensing of extracellular adenosine triphosphate (eATP) has been recently appreciated as an important component. Through a plethora of purinergic receptors, most prominently P2RX7, eATP sensing can induce a wide variety of processes in T cells, such as proliferation, subset differentiation, survival, or cell death. The downstream roles of eATP sensing can vary according to (a) the T cell subset, (b) the tissue where T cells are, and (c) the time after antigen exposure. In this mini-review, we revisit the recent findings on how eATP signaling pathways regulate T-cell immune responses and posit important unanswered questions on this field.
Collapse
Affiliation(s)
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | |
Collapse
|
5
|
Isali I, McClellan P, Wong TR, Sun C, Stout AC, Schumacher FR, Markt S, Wilfred Wu CH, Penney KL, El-Nashar S, Hijaz A, Sheyn D. A systematic review and in silico study of potential genetic markers implicated in cases of overactive bladder. Am J Obstet Gynecol 2023; 228:36-47.e3. [PMID: 35932882 PMCID: PMC10152473 DOI: 10.1016/j.ajog.2022.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The contribution of genetic factors to the presence of an overactive bladder is recognized. This study aimed to (1) assemble and synthesize available data from studies assessing differential gene expression in patients with overactive bladder vs controls without overactive bladder and (2) determine possible correlations and functional pathways between genes. DATA SOURCES We searched PubMed, Ovid or Medline, and Wiley Cochrane Central Register of Controlled Trials databases between January 1, 2000, and December 15, 2021. STUDY ELIGIBILITY CRITERIA Studies were included if gene expression was detected and quantified using molecular approaches performed on human bladder tissue specimens directly and excluded if the gene expression analysis was carried out from blood and urine specimens alone. METHODS A systematic review was completed to identify publications that reported differently expressed gene candidates among patients with overactive bladder vs healthy individuals. Gene networking connections and pathway analysis were performed employing Metascape software, where inputs were identified from our systematic review of differentially expressed genes in overactive bladder. RESULTS A total of 9 studies were included in the final analysis and 11 genes were identified as being up-regulated (purinergic receptor P2X 2 [P2RX2], smoothelin [SMTN], growth-associated protein 43 [GAP43], transient receptor potential cation channel subfamily M member 8 [TRPM8], cadherin 11 [CDH1], gap junction protein gamma 1 [GJC1], cholinergic receptor muscarinic 2 [CHRM2], cholinergic receptor muscarinic 3 [CHRM3], and transient receptor potential cation channel subfamily V member 4 [TRPV4]) or down-regulated (purinergic receptor P2X 2 [P2RX3] and purinergic receptor P2X 5 [P2RX5]) in patients with overactive bladder. Gene network analysis showed that genes are involved in chemical synaptic transmission, smooth muscle contraction, blood circulation, and response to temperature stimulus. Network analysis demonstrated a significant genetic interaction between TRPV4, TRPM8, P2RX3, and PR2X2 genes. CONCLUSION Outcomes of this systematic review highlighted potential biomarkers for treatment efficacy and have laid the groundwork for developing future gene therapies for overactive bladder in clinical settings.
Collapse
Affiliation(s)
- Ilaha Isali
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Phillip McClellan
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Thomas R Wong
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - Clara Sun
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | | | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Sarah Markt
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sherif El-Nashar
- Department of Obstetrics and Gynecology, Mayo Clinic, Jacksonville, FL
| | - Adonis Hijaz
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH
| | - David Sheyn
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH.
| |
Collapse
|
6
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
7
|
Schiller IC, Jacobson KA, Wen Z, Malisetty A, Schmalzing G, Markwardt F. Dihydropyridines Potentiate ATP-Induced Currents Mediated by the Full-Length Human P2X5 Receptor. Molecules 2022; 27:molecules27061846. [PMID: 35335209 PMCID: PMC8948676 DOI: 10.3390/molecules27061846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The P2X5 receptor, an ATP-gated cation channel, is believed to be involved in tumor development, inflammatory bone loss and inflammasome activation after bacterial infection. Therefore, it is a worthwhile pharmacological target to treat the corresponding diseases, especially in minority populations that have a gene variant coding for functional homotrimeric P2X5 channels. Here, we investigated the effects of dihydropyridines on the human full-length P2X5 receptor (hP2X5FL) heterologously expressed in Xenopus oocytes using the two-microelectrode voltage clamp method. Agonist dependency, kinetics and permeation behavior, including Cl− permeability, were similar to hP2X5FL expressed in HEK293 or 1321N1 cells. Additionally, 1,4-dihydropyridines have been shown to interact with various other purinergic receptors, and we have examined them as potential hP2X5 modulators. Of seven commercially available and four newly synthesized dihydropyridines tested at hP2X5FL, only amlodipine exerted an inhibitory effect, but only at a high concentration of 300 µM. Isradipine and—even more—nimodipine stimulated ATP-induced currents in the low micromolar range. We conclude that common dihydropyridines or four new derivatives of amlodipine are not suitable as hP2X5 antagonists, but amlodipine might serve as a lead for future synthesis to increase its affinity. Furthermore, a side effect of nimodipine therapy could be a stimulatory effect on inflammatory processes.
Collapse
Affiliation(s)
- Ida C. Schiller
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06097 Halle, Germany;
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.J.); (Z.W.)
| | - Zhiwei Wen
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.J.); (Z.W.)
| | - Aparna Malisetty
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.M.); (G.S.)
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.M.); (G.S.)
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06097 Halle, Germany;
- Correspondence:
| |
Collapse
|
8
|
Jeong YH, Walsh MC, Yu J, Shen H, Wherry EJ, Choi Y. Mice Lacking the Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2020; 205:760-766. [PMID: 32540996 DOI: 10.4049/jimmunol.1901423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1β production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1β or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jiyeon Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hao Shen
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Zyma M, Pawliczak R. Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response. Int Rev Immunol 2020; 39:97-117. [PMID: 32037918 DOI: 10.1080/08830185.2020.1723582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide adenosine-5'-triphosphate (ATP) is mostly thought to be energy carrier, but evidence presented in multiple studies proves ATP involvement into variety of processes, due to its neuromodulatory capabilities. ATP and its metabolite-adenosine, bind to the purinergic receptors, which are divided into two types: adenosine binding P1 receptor and ADP/ATP binding P2 receptor. These receptors are expressed in different tissues and organs. Recent studies report their immunomodulatory characteristics, connected with varying immunological processes, such as immunological response or antigen presentation. Besides, they seem to play an important role in medical conditions such as bronchial asthma or variety of cancers. In this article, we would like to review recent discoveries on the field of purinergic receptors research focusing on their role in immunological system, and shed a new light upon the importance of these receptors in modern medicine development.
Collapse
Affiliation(s)
- Marharyta Zyma
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Fenninger F, Jefferies WA. What's Bred in the Bone: Calcium Channels in Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1021-1030. [PMID: 30718290 DOI: 10.4049/jimmunol.1800837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; .,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; and.,Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
12
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
13
|
Schmid R, Evans RJ. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu Rev Physiol 2018; 81:43-62. [PMID: 30354932 DOI: 10.1146/annurev-physiol-020518-114259] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom;
| |
Collapse
|
14
|
Khalid M, Manzoor S, Ahmad H, Asif A, Bangash TA, Latif A, Jaleel S. Purinoceptor expression in hepatocellular virus (HCV)-induced and non-HCV hepatocellular carcinoma: an insight into the proviral role of the P2X4 receptor. Mol Biol Rep 2018; 45:2625-2630. [PMID: 30343397 DOI: 10.1007/s11033-018-4432-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
The basic idea behind this study was to discover the association and prevalence of purinoceptors in hepatitis C virus (HCV) and non-HCV hepatocellular carcinoma (HCC). Immunohistochemistry was performed to study the expression of P2X4 and P2X7 receptors on ex-planted liver tissue samples that were collected from HCC patients. Antibodies specific for the P2X4 and P2X7 receptors were used to target the specific receptors and secondary antibody was used with 3,3'-diaminobenzidine (DAB) detection system to visualize the color change in case of any positive expression There was a substantial increase in P2X4 receptor expression in HCV induced HCC as compared to non-HCV HCC. Surprisingly, there was no increase in the P2X7 receptor expression in both HCV HCC and non-HCV HCC. We conclude that P2X4 receptor expression was significant in the presence of HCV HCC. This may confirms the potential role of P2X4 receptor in the presence of virus in liver pathology. However insignificant expression of P2X7 receptor may avert our attention towards understanding the role of this receptor in pro-inflammatory and immune responses.
Collapse
Affiliation(s)
- Madiha Khalid
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Arun Asif
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tariq Ali Bangash
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Amer Latif
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
15
|
|
16
|
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47:15-31. [PMID: 28723547 DOI: 10.1016/j.immuni.2017.06.020] [Citation(s) in RCA: 880] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Diego Dal Ben
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Lu S, Ma S, Wang Y, Huang T, Zhu Z, Zhao G. Mus musculus-microRNA-449a ameliorates neuropathic pain by decreasing the level of KCNMA1 and TRPA1, and increasing the level of TPTE. Mol Med Rep 2017; 16:353-360. [DOI: 10.3892/mmr.2017.6559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
|
18
|
Abstract
Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
19
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA. Tweeters, Woofers and Horns: The Complex Orchestration of Calcium Currents in T Lymphocytes. Front Immunol 2015; 6:234. [PMID: 26052328 PMCID: PMC4440397 DOI: 10.3389/fimmu.2015.00234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022] Open
Abstract
Elevation of intracellular calcium ion (Ca2+) levels is a vital event that regulates T lymphocyte homeostasis, activation, proliferation, differentiation, and apoptosis. The mechanisms that regulate intracellular Ca2+ signaling in lymphocytes involve tightly controlled concinnity of multiple ion channels, membrane receptors, and signaling molecules. T cell receptor (TCR) engagement results in depletion of endoplasmic reticulum (ER) Ca2+ stores and subsequent sustained influx of extracellular Ca2+ through Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane. This process termed store-operated Ca2+ entry (SOCE) involves the ER Ca2+ sensing molecule, STIM1, and a pore-forming plasma membrane protein, ORAI1. However, several other important Ca2+ channels that are instrumental in T cell function also exist. In this review, we discuss the role of additional Ca2+ channel families expressed on the plasma membrane of T cells that likely contribute to Ca2+ influx following TCR engagement, which include the TRP channels, the NMDA receptors, the P2X receptors, and the IP3 receptors, with a focus on the voltage-dependent Ca2+ (CaV) channels.
Collapse
Affiliation(s)
- Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Shawna R Stanwood
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Kyla D Omilusik
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada ; Centre for Blood Research, University of British Columbia , Vancouver, BC , Canada ; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia , Vancouver, BC , Canada ; Department of Medical Genetics, University of British Columbia , Vancouver, BC , Canada ; Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|