1
|
Puravet A, Rieu B, Phere C, Kahouadji S, Pereira B, Jabaudon M, Andanson B, Brailova M, Sapin V, Bouvier D. Impact of storage temperature and time before analysis on electrolytes (Na +, K +, Ca 2+), lactate, glucose, blood gases (pH, pO 2, pCO 2), tHb, O 2Hb, COHb and MetHb results. Clin Chem Lab Med 2023; 61:1740-1749. [PMID: 37078234 DOI: 10.1515/cclm-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES The objective of our study is to evaluate the effect of storage temperature and time to analysis on arterial blood gas parameters in order to extend the CLSI recommendations. METHODS Stability of 12 parameters (pH, pCO₂, pO₂, Na+, K+, Ca2+, glucose, lactate, hemoglobin, oxyhemoglobin, carboxyhemoglobin, methemoglobin) measured by GEM PREMIER™ 5000 blood gas analyzer was studied at room temperature and at +4 °C (52 patients). The storage times were 30, 45, 60, 90 and 120 min. Stability was evaluated on the difference from baseline, the difference from the analyte-specific measurement uncertainty applied to the baseline value, and the impact of the variation on the clinical interpretation. RESULTS At room temperature, all parameters except the lactate remained stable for at least 60 min. A statistically significant difference was observed for pH at T45 and T60 and for pCO2 at T60 without modification of clinical interpretation. For lactate, clinical interpretation was modified from T45 and values were outside the range of acceptability defined by the measurement uncertainty. All parameters except pO2 remained stable for at least 120 min at +4 °C. CONCLUSIONS A one-hour transport at room temperature is compatible with the performance of all the analyses studied except lactate. If the delay exceeds 30 min, the sample should be placed at +4 °C for lactate measurement. If the samples are stored in ice, it is important to note that the pO2 cannot be interpreted.
Collapse
Affiliation(s)
- Antoine Puravet
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Benjamin Rieu
- Biochemistry and Molecular Genetic Department , CHU Clermont-Ferrand , Clermont-Ferrand , France
| | - Camille Phere
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department , CHU Clermont-Ferrand , Clermont-Ferrand , France
- Clermont Auvergne University, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- Biochemistry and Molecular Genetic Department , CHU Clermont-Ferrand , Clermont-Ferrand , France
- Clermont Auvergne University, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Benjamin Andanson
- Biochemistry and Molecular Genetic Department , CHU Clermont-Ferrand , Clermont-Ferrand , France
| | - Marina Brailova
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS, INSERM, GReD, Clermont-Ferrand, France
- Service de Biochimie et Génétique Moléculaire, Centre de Biologie, CHU Gabriel Montpied, Clermont-Ferrand, France
| |
Collapse
|
2
|
Khan AZ, Utheim TP, Jackson CJ, Tønseth KA, Eidet JR. Concise Review: Considering Optimal Temperature for Short-Term Storage of Epithelial Cells. Front Med (Lausanne) 2021; 8:686774. [PMID: 34485330 PMCID: PMC8416270 DOI: 10.3389/fmed.2021.686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Transplantation of novel tissue-engineered products using cultured epithelial cells is gaining significant interest. While such treatments can readily be provided at centralized medical centers, delivery to patients at geographically remote locations requires the establishment of suitable storage protocols. One important aspect of storage technology is temperature. This paper reviews storage temperature for above-freezing point storage of human epithelial cells for regenerative medicine purposes. The literature search uncovered publications on epidermal cells, retinal pigment epithelial cells, conjunctival epithelial cells, corneal/limbal epithelial cells, oral keratinocytes, and seminiferous epithelial cells. The following general patterns were noted: (1) Several studies across different cell types inclined toward 4 and 16°C being suitable short-term storage temperatures. Correspondingly, almost all studies investigating 37°C concluded that this storage temperature was suboptimal. (2) Cell death typically escalates rapidly following 7–10 days of storage. (3) The importance of the type of storage medium and its composition was highlighted by some of the studies; however, the relative importance of storage medium vs. storage temperature has not been investigated systematically. Although a direct comparison between the included investigations is not reasonable due to differences in cell types, storage media, and storage duration, this review provides an overview, summarizing the work carried out on each cell type during the past two decades.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Surgery, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Ifocus Eye Clinic, Haugesund, Norway
| | - Kim Alexander Tønseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Popova AN, Vorotelyak EA. The Problem of Terminal Differentiation and Apoptosis during Human Keratinocytes’ Cryostorage in Suspension. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Yazdani M, Shahdadfar A, Reppe S, Sapkota D, Vallenari EM, Lako M, Connon CJ, Figueiredo FC, Utheim TP. Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS One 2020; 15:e0243914. [PMID: 33326470 PMCID: PMC7744058 DOI: 10.1371/journal.pone.0243914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seeking to improve the access to regenerative medicine, this study investigated the structural and transcriptional effects of storage temperature on human oral mucosal epithelial cells (OMECs). METHODS Cells were stored at four different temperatures (4°C, 12°C, 24°C and 37°C) for two weeks. Then, the morphology, cell viability and differential gene expression were examined using light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene expression array cards, respectively. RESULTS Cells stored at 4°C had the most similar morphology to non-stored controls with the highest viability rate (58%), whereas the 37°C group was most dissimilar with no living cells. The genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition (TGFB2) were upregulated at 12°C and 24°C. Upregulation was also observed in multifunctional genes responsible for morphology, growth, adhesion and motility such as EFEMP1 (12°C) and EPHA4 (4°C-24°C). Among genes used as differentiation markers, PPARA and TP53 (along with its associated gene CDKN1A) were downregulated in all temperature conditions, whereas KRT1 and KRT10 were either unchanged (4°C) or downregulated (24°C and 12°C; and 24°C, respectively), except for upregulation at 12°C for KRT1. CONCLUSIONS Cells stored at 12°C and 24°C were stressed, although the expression levels of some adhesion-, growth- and apoptosis-related genes were favourable. Collectively, this study suggests that 4°C is the optimal storage temperature for maintenance of structure, viability and function of OMECs after two weeks.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Evan M. Vallenari
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Che J. Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Francisco C. Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
5
|
The Effects of Prolonged Storage on ARPE-19 Cells Stored at Three Different Storage Temperatures. Molecules 2020; 25:molecules25245809. [PMID: 33317020 PMCID: PMC7763992 DOI: 10.3390/molecules25245809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate how prolonged storage of adult retinal pigment epithelial (ARPE-19) cell sheets affects cell metabolism, morphology, viability, and phenotype. ARPE-19 cell sheets were stored at three temperatures (4 °C, 16 °C, and 37 °C) for three weeks. Metabolic status and morphology of the cells were monitored by sampling medium and examining cells by phase-contrast microscopy, respectively, throughout the storage period. Cell viability was analyzed by flow cytometry, and phenotype was determined by epifluorescence microscopy after the storage. Lactate production and glucose consumption increased heavily, while pH dropped considerably, through storage at 37 °C compared to 4 °C and 16 °C. During storage, morphology started to deteriorate first at 4 °C, then at 37 °C, and was maintained the longest at 16 °C. Viability of the cells after three weeks of storage was best preserved at 16 °C, while cells stored at 4 °C and 37 °C had reduced viability. Dedifferentiation indicated by reduced expression of retinal pigment epithelium-specific protein 65 (RPE65), zonula occludens protein 1 (ZO-1), and occludin after three weeks of storage was noticed in all experimental groups compared to control. We conclude that storage temperature affects the metabolic status of ARPE-19 cells and that 16 °C reduces metabolic activity while protecting viability and morphology.
Collapse
|
6
|
Kadam S, Vandana M, Kaushik KS. Reduced serum methods for contact-based coculture of human dermal fibroblasts and epidermal keratinocytes. Biotechniques 2020; 69:347-355. [PMID: 32867510 DOI: 10.2144/btn-2020-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Direct contact-based coculture of human dermal fibroblasts and epidermal keratinocytes has been a long-standing and challenging issue owing to different serum and growth factor requirements of the two cell types. Existing protocols employ high serum concentrations (up to 10% fetal bovine serum), complex feeder systems and a range of supplemental factors. These approaches are technically demanding and labor intensive, and pose scientific and ethical limitations associated with the high concentrations of animal serum. On the other hand, serum-free conditions often fail to support the proliferation of one or both cell types when they are cultured together. We have developed two reduced serum approaches (1-2% serum) that support the contact-based coculture of human dermal fibroblasts and immortalized keratinocytes and enable the study of cell migration and wound closure.
Collapse
Affiliation(s)
- Snehal Kadam
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, India
| | | | - Karishma S Kaushik
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, India
| |
Collapse
|
7
|
Ringstad H, Reppe S, Schøyen TH, Tønseth KA, Utheim TP, Jackson CJ. Stem cell function is conserved during short-term storage of cultured epidermal cell sheets at 12°C. PLoS One 2020; 15:e0232270. [PMID: 32433698 PMCID: PMC7239464 DOI: 10.1371/journal.pone.0232270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/10/2020] [Indexed: 11/18/2022] Open
Abstract
Transplantation of cultured epidermal cell sheets (CES) can be life-saving for patients with large area burns. CES have also been successfully used to regenerate eye and urethral epithelia in animal models. Short-term storage aims to extend the transplantation window, offers flexibility in timing surgery and allows testing of CES quality, phenotype and sterility. This study investigated extended CES storage and explored the effect of additional re-incubation recovery time following storage. The proliferative quality of stored confluent versus pre-confluent CES was also investigated using functional testing. CES were stored at 12°C and results compared to non-stored control CES. Investigation of timepoints during 15 days storage revealed that viability began to deteriorate by day 11 and was associated with increased lactate in the storage medium. The percentage of apoptotic cells also significantly increased by day 11. Flow cytometry analysis of integrin β1 expression and cell size indicated best retention of stem cells at 7 days of storage. Functional testing of pre-confluent and confluent cells following 7 days storage showed that pre-confluent cells responded well to 1-day re-incubation after storage; they became highly prolific, increasing in number by ~67%. Conversely, proliferation in stored confluent cells declined by ~50% with 1-day re-incubation. Pre-confluent stored CES also had far superior stem cell colony forming efficiency (CFE) performance compared to the confluent group. Re-incubation improved CFE in both groups, but the pre-confluent group again out-performed the confluent group with significantly more colonies. In conclusion, a maximum storage period of 7 days is recommended. Use of pre-confluent cells and one day recovery incubation greatly improves viability, colony-forming ability and proliferation of cells stored for 7 days at 12°C. Thus, these recommendations should be considered under culture and storage of high-quality CES for clinical use.
Collapse
Affiliation(s)
- Håkon Ringstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Tine Hiorth Schøyen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Kim Alexander Tønseth
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
8
|
High Throughput Screening of Additives Using Factorial Design to Promote Survival of Stored Cultured Epithelial Sheets. Stem Cells Int 2018; 2018:6545876. [PMID: 30581473 PMCID: PMC6276401 DOI: 10.1155/2018/6545876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 02/03/2023] Open
Abstract
There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undifferentiated epidermal cells using multifactorial design and an automated screening procedure. The cultured cells were stored for 7–11 days at 12°C in media supplemented with various additives. Effects were evaluated by calcein staining of live cells as well as morphology. Twenty-six additives were tested using (1) a two-level factorial design in which 10 additives were added or omitted in 64 different combinations and (2) a mixture design with 5 additives at 5 different concentrations in a total of 64 different mixtures. Automated microscopy and cell counting with Fiji enabled efficient processing of data. Significant regression models were identified by Design-Expert software. A calculated maximum increase of live cells to 37 ± 6% was achieved upon storage of cell sheets for 11 days in the presence of 6% glycerol. The beneficial effect of glycerol was shown for epidermal cell sheets from three different donors in two different storage media and with two different factorial designs. We have thus developed a high throughput screening system enabling robust assessment of live cells and identified glycerol as a beneficial additive that has a positive effect on epidermal cell sheet upon storage at 12°C. We believe this method could be of use in other cell culture optimization strategies where a large number of conditions are compared for their effect on cell viability or other quantifiable dependent variables.
Collapse
|
9
|
Elkhenany H, AlOkda A, El-Badawy A, El-Badri N. Tissue regeneration: Impact of sleep on stem cell regenerative capacity. Life Sci 2018; 214:51-61. [PMID: 30393021 DOI: 10.1016/j.lfs.2018.10.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
The circadian rhythm orchestrates many cellular functions, such as cell division, cell migration, metabolism and numerous intracellular biological processes. The physiological changes during sleep are believed to promote a suitable microenvironment for stem cells to proliferate, migrate and differentiate. These effects are mediated either directly by circadian clock genes or indirectly via hormones and cytokines. Hormones, such as melatonin and cortisol, are secreted in response to neural optic signals and act in harmony to regulate many biological functions during sleep. Herein, we correlate the effects of the main circadian genes on the expression of certain stem cell genes responsible for the regeneration of different tissues, including bone, cartilage, skin, and intestine. We also review the effects of different hormones and cytokines on stem cell activation or suppression and their relationship to the day/night cycle. The correlation of circadian rhythm with tissue regeneration could have implications in understanding the biology of sleep and tissue regeneration and in enhancing the efficacy and timing of surgical procedures.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, 22785, Egypt
| | - Abdelrahman AlOkda
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Ahmed El-Badawy
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Nagwa El-Badri
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt.
| |
Collapse
|
10
|
Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets. Sci Rep 2017; 7:8206. [PMID: 28811665 PMCID: PMC5557837 DOI: 10.1038/s41598-017-08586-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/17/2017] [Indexed: 11/11/2022] Open
Abstract
Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8–16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.
Collapse
|
11
|
Jackson C, Eidet JR, Reppe S, Aass HCD, Tønseth KA, Roald B, Lyberg T, Utheim TP. Effect of Storage Temperature on the Phenotype of Cultured Epidermal Cells Stored in Xenobiotic-Free Medium. Curr Eye Res 2015; 41:757-68. [PMID: 26398483 DOI: 10.3109/02713683.2015.1062113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Cultured epidermal cell sheets (CECS) are used in the treatment of large area burns to the body and have potential to treat limbal stem cell deficiency (LSCD) as shown in animal studies. Despite widespread use, storage options for CECS are limited. Short-term storage allows flexibility in scheduling surgery, quality control and improved transportation to clinics worldwide. Recent evidence points to the phenotype of cultured epithelial cells as a critical predictor of post-operative success following transplantation of CECS in burns and in transplantation of cultured epithelial cells in patients with LSCD. This study, therefore assessed the effect of a range of temperatures, spanning 4-37 °C, on the phenotype of CECS stored over a 2-week period in a xenobiotic-free system. MATERIALS AND METHODS Progenitor cell (p63, ΔNp63α and ABCG2) and differentiation (C/EBPδ and CK10) associated marker expression was assessed using immunocytochemistry. Immunohistochemistry staining of normal skin for the markers p63, ABCG2 and C/EBPδ was also carried out. Assessment of progenitor cell side population (SP) was performed using JC1 dye by flow cytometry. RESULTS P63 expression remained relatively constant throughout the temperature range but was significantly lower compared to control between 20 and 28 °C (p < 0.05). High C/EBPδ together with low p63 suggested more differentiation beginning at 20 °C and above. Lower CK10 and C/EBPδ expression most similar to control was seen at 12 °C. The percentage of ABCG2 positive cells was most similar to control between 8 and 24 °C. Between 4 and 24 °C, the SP fluctuated, but was not significantly different compared to control. Results were supported by staining patterns indicating differentiation status associated with markers in normal skin sections. CONCLUSIONS Lower storage temperatures, and in particular 12 °C, merit further investigation as optimal storage temperature for maintenance of undifferentiated phenotype in CECS.
Collapse
Affiliation(s)
- Catherine Jackson
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway
| | - Jon R Eidet
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Sjur Reppe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | | | - Kim A Tønseth
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,c Department of Plastic Surgery , Oslo University Hospital , Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Borghild Roald
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Torstein Lyberg
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Tor P Utheim
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,e Department of Oral Biology, Faculty of Dentistry , University of Oslo , Oslo , Norway
| |
Collapse
|
12
|
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. J Funct Biomater 2015; 6:863-88. [PMID: 26343740 PMCID: PMC4598682 DOI: 10.3390/jfb6030863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.
Collapse
Affiliation(s)
- Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
| | - Øygunn Aass Utheim
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Kristoffer Ommundsen
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| |
Collapse
|
13
|
Islam R, Jackson C, Eidet JR, Messelt EB, Corraya RM, Lyberg T, Griffith M, Dartt DA, Utheim TP. Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes. PLoS One 2015; 10:e0128306. [PMID: 26052937 PMCID: PMC4459984 DOI: 10.1371/journal.pone.0128306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose/Aims To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). Materials and Methods Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. Results Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. Conclusion We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Catherine Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jon R. Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Edward B. Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Rima Maria Corraya
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - Torstein Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - May Griffith
- Integrative Regenerative Medicine Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - Tor P. Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|