1
|
Petrucci AN, Jones AR, Kreitlow BL, Buchanan GF. Peri-ictal activation of dorsomedial dorsal raphe serotonin neurons reduces mortality associated with maximal electroshock seizures. Brain Commun 2024; 6:fcae052. [PMID: 38487550 PMCID: PMC10939444 DOI: 10.1093/braincomms/fcae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Over one-third of patients with epilepsy will develop refractory epilepsy and continue to experience seizures despite medical treatment. These patients are at the greatest risk for sudden unexpected death in epilepsy. The precise mechanisms underlying sudden unexpected death in epilepsy are unknown, but cardiorespiratory dysfunction and arousal impairment have been implicated. Substantial circumstantial evidence suggests serotonin is relevant to sudden unexpected death in epilepsy as it modulates sleep/wake regulation, breathing and arousal. The dorsal raphe nucleus is a major serotonergic center and a component of the ascending arousal system. Seizures disrupt the firing of dorsal raphe neurons, which may contribute to reduced responsiveness. However, the relevance of the dorsal raphe nucleus and its subnuclei to sudden unexpected death in epilepsy remains unclear. The dorsomedial dorsal raphe may be a salient target due to its role in stress and its connections with structures implicated in sudden unexpected death in epilepsy. We hypothesized that optogenetic activation of dorsomedial dorsal raphe serotonin neurons in TPH2-ChR2-YFP (n = 26) mice and wild-type (n = 27) littermates before induction of a maximal electroshock seizure would reduce mortality. In this study, pre-seizure activation of dorsal raphe nucleus serotonin neurons reduced mortality in TPH2-ChR2-YFP mice with implants aimed at the dorsomedial dorsal raphe. These results implicate the dorsomedial dorsal raphe in this novel circuit influencing seizure-induced mortality. It is our hope that these results and future experiments will define circuit mechanisms that could ultimately reduce sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Allysa R Jones
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin L Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gordon F Buchanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
4
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
5
|
Khan KM, Bierlein-De La Rosa G, Biggerstaff N, Pushpavathi Selvakumar G, Wang R, Mason S, Dailey ME, Marcinkiewcz CA. Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 2023; 107:419-431. [PMID: 35907582 PMCID: PMC10289137 DOI: 10.1016/j.bbi.2022.07.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Natalie Biggerstaff
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Suzanne Mason
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Michael E Dailey
- Iowa Neuroscience Institute, University of Iowa, United States; Department of Biology, University of Iowa, United States
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, United States; Iowa Neuroscience Institute, University of Iowa, United States.
| |
Collapse
|
6
|
Otsu Y, Aubrey KR. Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J Physiol 2022; 600:4187-4205. [PMID: 35979937 PMCID: PMC9540474 DOI: 10.1113/jp283021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn (SDH) of the spinal cord that are involved in the modulation of nociception, the development of chronic pain and itch, and an important analgesic target for opioids. This projection is primarily inhibitory, but the relative contribution of GABAergic and glycinergic transmission is unknown and there is limited knowledge about the SDH neurons targeted. Additionally, the details of how spinal opioids mediate analgesia remain unclear, and no study has investigated the opioid modulation of this synapse. We address this using ex vivo optogenetic stimulation of RVM fibres in conjunction with whole-cell patch-clamp recordings from the SDH in spinal cord slices. We demonstrate that both GABAergic and glycinergic neurotransmission is employed and show that SDH target neurons have diverse morphological and electrical properties, consistent with both inhibitory and excitatory interneurons. Then, we describe a subtype of SDH neurons that have a glycine-dominant input, indicating that the quality of descending inhibition across cells is not uniform. Finally, we discovered that the kappa-opioid receptor agonist U69593 presynaptically suppressed most RVM-SDH synapses. By contrast, the mu-opioid receptor agonist DAMGO acted both pre- and post-synaptically at a subset of synapses, and the delta-opioid receptor agonist deltorphin II had little effect. These data provide important mechanistic information about a descending control pathway that regulates spinal circuits. This information is necessary to understand how sensory inputs are shaped and develop more reliable and effective alternatives to current opioid analgesics. Abstract figure legend We combined ex vivo optogenetic stimulation of RVM fibres with whole cell electrophysiology of SDH neurons to investigate the final synapse in a key descending pain modulatory pathway. We demonstrate that both glycine and GABA mediate signalling at the RVM-SDH synapse, that the SDH targets of RVM projections have diverse electrical and morphological characteristics, and that presynaptic inhibition is directly and consistently achieved by kappa opioid agonists. Opioid receptors shown are sized relative to the proportion of neurons that responded to its specific agonists (81 and 84percent of DF and non-DF neurons responded to kappa opioid receptor agonists, respectively. Responses that occurred in <255 percentage of neurons are not indicated here). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yo Otsu
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Principal Neurons and Interneurons in the Anterior Piriform Cortex. Front Neuroanat 2022; 16:821695. [PMID: 35221934 PMCID: PMC8864633 DOI: 10.3389/fnana.2022.821695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
- “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Magor L. Lőrincz,
| |
Collapse
|
8
|
Araragi N, Alenina N, Bader M. Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation. Heliyon 2022; 8:e08692. [PMID: 35024491 PMCID: PMC8732788 DOI: 10.1016/j.heliyon.2021.e08692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/07/2022] Open
Abstract
Optogenetics enables activation/silencing of specific neurons with unprecedented temporal and spatial resolution. The method, however, is prone to artefacts associated with biophysics of light used for illuminating opsin-expressing neurons. Here we employed Tph2-mhChR2-YFP transgenic mice, which express channelrhodopsin (ChR2) only in serotonergic neurons in the brain, to investigate behavioral effects of optogenetic stimulation of serotonergic neurons. Surprisingly, optogenetic stimulation enhanced locomotion even in ChR2-negative mice. Such unspecific effects are likely to be due to visual agitation caused by light leakage from the dental cement, which is commonly used to fixate optic fiber ferrules on the skull. When we employed black dental cement made by mixing carbons with dental cement powders, such unspecific effects were abolished in ChR2-negative mice, but not in ChR2-positive mice, confirming that enhanced locomotion resulted from serotonergic activation. The method allows extracting genuine behavioral effects of optogenetic stimulation without contamination from visual stimuli caused by light leakage. Dental cement for fixating optic fiber ferrules was shown to permit light leakage. Such light leakage was quantified as photon counts. Leaked light induced locomotive enhancement through visual stimuli. By adding carbon to the dental cement mixture, such light leakage can be prevented. The method enables behavioral experiments without confounding visual factors.
Collapse
Affiliation(s)
- Naozumi Araragi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Charité - Berlin University of Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, University Embankment 7-9, 199034 St. Petersburg, Russia
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Charité - Berlin University of Medicine, Charitéplatz 1, 10117 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.,Institute for Biology, University of Lübeck, Germany
| |
Collapse
|
9
|
Wyrick D, Mazzucato L. State-Dependent Regulation of Cortical Processing Speed via Gain Modulation. J Neurosci 2021; 41:3988-4005. [PMID: 33858943 PMCID: PMC8176754 DOI: 10.1523/jneurosci.1895-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
To thrive in dynamic environments, animals must be capable of rapidly and flexibly adapting behavioral responses to a changing context and internal state. Examples of behavioral flexibility include faster stimulus responses when attentive and slower responses when distracted. Contextual or state-dependent modulations may occur early in the cortical hierarchy and may be implemented via top-down projections from corticocortical or neuromodulatory pathways. However, the computational mechanisms mediating the effects of such projections are not known. Here, we introduce a theoretical framework to classify the effects of cell type-specific top-down perturbations on the information processing speed of cortical circuits. Our theory demonstrates that perturbation effects on stimulus processing can be predicted by intrinsic gain modulation, which controls the timescale of the circuit dynamics. Our theory leads to counterintuitive effects, such as improved performance with increased input variance. We tested the model predictions using large-scale electrophysiological recordings from the visual hierarchy in freely running mice, where we found that a decrease in single-cell intrinsic gain during locomotion led to an acceleration of visual processing. Our results establish a novel theory of cell type-specific perturbations, applicable to top-down modulation as well as optogenetic and pharmacological manipulations. Our theory links connectivity, dynamics, and information processing via gain modulation.SIGNIFICANCE STATEMENT To thrive in dynamic environments, animals adapt their behavior to changing circumstances and different internal states. Examples of behavioral flexibility include faster responses to sensory stimuli when attentive and slower responses when distracted. Previous work suggested that contextual modulations may be implemented via top-down inputs to sensory cortex coming from higher brain areas or neuromodulatory pathways. Here, we introduce a theory explaining how the speed at which sensory cortex processes incoming information is adjusted by changes in these top-down projections, which control the timescale of neural activity. We tested our model predictions in freely running mice, revealing that locomotion accelerates visual processing. Our theory is applicable to internal modulation as well as optogenetic and pharmacological manipulations and links circuit connectivity, dynamics, and information processing.
Collapse
Affiliation(s)
- David Wyrick
- Department of Biology and Institute of Neuroscience
| | - Luca Mazzucato
- Department of Biology and Institute of Neuroscience
- Departments of Mathematics and Physics, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
10
|
Cazettes F, Reato D, Morais JP, Renart A, Mainen ZF. Phasic Activation of Dorsal Raphe Serotonergic Neurons Increases Pupil Size. Curr Biol 2021; 31:192-197.e4. [PMID: 33186549 PMCID: PMC7808753 DOI: 10.1016/j.cub.2020.09.090] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 11/27/2022]
Abstract
Transient variations in pupil size (PS) under constant luminance are coupled to rapid changes in arousal state,1-3 which have been interpreted as vigilance,4 salience,5 or a surprise signal.6-8 Neural control of such fluctuations presumably involves multiple brain regions5,9-11 and neuromodulatory systems,3,12,13 but it is often associated with phasic activity of the noradrenergic system.9,12,14,15 Serotonin (5-HT), a neuromodulator also implicated in aspects of arousal16 such as sleep-wake transitions,17 motivational state regulation,18 and signaling of unexpected events,19 seems to affect PS,20-24 but these effects have not been investigated in detail. Here we show that phasic 5-HT neuron stimulation causes transient PS changes. We used optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DRN) of head-fixed mice performing a foraging task. 5-HT-driven modulations of PS were maintained throughout the photostimulation period and sustained for a few seconds after the end of stimulation. We found no evidence that the increase in PS with activation of 5-HT neurons resulted from interactions of photostimulation with behavioral variables, such as locomotion or licking. Furthermore, we observed that the effect of 5-HT on PS depended on the level of environmental uncertainty, consistent with the idea that 5-HT could report a surprise signal.19 These results advance our understanding of the neuromodulatory control of PS, revealing a tight relationship between phasic activation of 5-HT neurons and changes in PS.
Collapse
Affiliation(s)
- Fanny Cazettes
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| | - Davide Reato
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - João P Morais
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | |
Collapse
|
11
|
Smith SA, Trotter PD, McGlone FP, Walker SC. Effects of Acute Tryptophan Depletion on Human Taste Perception. Chem Senses 2020; 46:6024443. [PMID: 33277648 DOI: 10.1093/chemse/bjaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Taste perception has been reported to vary with changes in affective state. Distortions of taste perception, including blunted recognition thresholds, intensity, and hedonic ratings have been identified in those suffering from depressive disorders. Serotonin is a key neurotransmitter implicated in the etiology of anxiety and depression; systemic and peripheral manipulations of serotonin signaling have previously been shown to modulate taste detection. However, the specific effects of central serotonin function on taste processing have not been widely investigated. Here, in a double-blind placebo-controlled study, acute tryptophan depletion was used to investigate the effect of reduced central serotonin function on taste perception. Twenty-five female participants aged 18-28 attended the laboratory on two occasions at least 1 week apart. On one visit, they received a tryptophan depleting drink and on the other, a control drink was administered. Approximately, 6 h after drink consumption, they completed a taste perception task which measured detection thresholds and supra-threshold perceptions of the intensity and pleasantness of four basic tastes (sweet, sour, bitter, and salt). While acutely reducing central levels of serotonin had no effect on the detection thresholds of sweet, bitter, or sour tastes, it significantly enhanced detection of salt. For supra-threshold stimuli, acutely reduced serotonin levels significantly enhanced the perceived intensity of both bitter and sour tastes and blunted pleasantness ratings of bitter quinine. These findings show manipulation of central serotonin levels can modulate taste perception and are consistent with previous reports that depletion of central serotonin levels enhances neural and behavioral responsiveness to aversive signals.
Collapse
Affiliation(s)
- Sharon A Smith
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Paula D Trotter
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Francis P McGlone
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK.,Department of Psychology, University of Liverpool, Liverpool, UK
| | - Susannah C Walker
- Research Centre for Brain and Behaviour, School of Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
12
|
Abstract
Altered prepulse inhibition (PPI) is an endophenotype associated with multiple brain disorders, including schizophrenia. Circuit mechanisms that regulate PPI have been suggested, but none has been demonstrated through direct manipulations. IRSp53 is an abundant excitatory postsynaptic scaffold implicated in schizophrenia, autism spectrum disorders, and attention-deficit/hyperactivity disorder. We found that mice lacking IRSp53 in cortical excitatory neurons display decreased PPI. IRSp53-mutant layer 6 cortical neurons in the anterior cingulate cortex (ACC) displayed decreased excitatory synaptic input but markedly increased neuronal excitability, which was associated with excessive excitatory synaptic input in downstream mediodorsal thalamic (MDT) neurons. Importantly, chemogenetic inhibition of mutant neurons projecting to MDT normalized the decreased PPI and increased excitatory synaptic input onto MDT neurons. In addition, chemogenetic activation of MDT-projecting layer 6 neurons in the ACC decreased PPI in wild-type mice. These results suggest that the hyperactive ACC-MDT pathway suppresses PPI in wild-type and IRSp53-mutant mice.
Collapse
Affiliation(s)
- Yangsik Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea,Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,To whom correspondence should be addressed; Mental Health Research Institute, National Center for Mental Health, Yongmasan-ro 127, Gwangjin-gu, Seoul, South Korea 04933; tel: +82-2-2204-0502, fax: +82-2-2204-0393, e-mail:
| | - Young Woo Noh
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
13
|
Two Functionally Distinct Serotonergic Projections into Hippocampus. J Neurosci 2020; 40:4936-4944. [PMID: 32414785 DOI: 10.1523/jneurosci.2724-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/12/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022] Open
Abstract
Hippocampus receives dense serotonergic input specifically from raphe nuclei. However, what information is carried by this input and its impact on behavior has not been fully elucidated. Here we used in vivo two-photon imaging of activity of hippocampal median raphe projection fibers in behaving male and female mice and identified two distinct populations: one linked to reward delivery and the other to locomotion. Local optogenetic manipulation of these fibers confirmed a functional role for these projections in the modulation of reward-induced behavior. The diverse function of serotonergic inputs suggests a key role in integrating locomotion and reward information into the hippocampal CA1.SIGNIFICANCE STATEMENT Information constantly flows in the hippocampus, but only some of it is captured as a memory. One potential process that discriminates which information should be remembered is concomitance with reward. In this work, we report a neuromodulatory pathway, which delivers reward signal as well as locomotion signal to the hippocampal CA1. We found that the serotonergic system delivers heterogeneous input that may be integrated by the hippocampus to support its mnemonic functions. It is dynamically involved in regulating behavior through interaction with the hippocampus. Our results suggest that the serotonergic system interacts with the hippocampus in a dynamic and behaviorally specific manner to regulate reward-related information processing.
Collapse
|
14
|
Azimi Z, Barzan R, Spoida K, Surdin T, Wollenweber P, Mark MD, Herlitze S, Jancke D. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 2020; 9:e53552. [PMID: 32252889 PMCID: PMC7138610 DOI: 10.7554/elife.53552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.
Collapse
Affiliation(s)
- Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| |
Collapse
|
15
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
16
|
Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020; 21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.
Collapse
|
17
|
|
18
|
Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, Northoff G. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry 2020; 25:82-93. [PMID: 30953003 DOI: 10.1038/s41380-019-0406-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/18/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Alterations in brain intrinsic activity-as organized in resting-state networks (RSNs) such as sensorimotor network (SMN), salience network (SN), and default-mode network (DMN)-and in neurotransmitters signaling-such as dopamine (DA) and serotonin (5-HT)-have been independently detected in psychiatric disorders like bipolar disorder and schizophrenia. Thus, the aim of this work was to investigate the relationship between such neurotransmitters and RSNs in healthy, by reviewing the relevant work on this topic and performing complementary analyses, in order to better understand their physiological link, as well as their alterations in psychiatric disorders. According to the reviewed data, neurotransmitters nuclei diffusively project to subcortical and cortical regions of RSNs. In particular, the dopaminergic substantia nigra (SNc)-related nigrostriatal pathway is structurally and functionally connected with core regions of the SMN, whereas the ventral tegmental area (VTA)-related mesocorticolimbic pathway with core regions of the SN. The serotonergic raphe nuclei (RNi) connections involve regions of the SMN and DMN. Coherently, changes in neurotransmitters activity impact the functional configuration and level of activity of RSNs, as measured by functional connectivity (FC) and amplitude of low-frequency fluctuations/temporal variability of BOLD signal. Specifically, DA signaling is associated with increase in FC and activity in the SMN (hypothetically via the SNc-related nigrostriatal pathway) and SN (hypothetically via the VTA-related mesocorticolimbic pathway), as well as concurrent decrease in FC and activity in the DMN. By contrast, 5-HT signaling (via the RNi-related pathways) is associated with decrease in SMN activity along with increase in DMN activity. Complementally, our empirical data showed a positive correlation between SNc-related FC and SMN activity, whereas a negative correlation between RNi-related FC and SMN activity (along with tilting of networks balance toward the DMN). According to these data, we hypothesize that the activity of neurotransmitter-related neurons synchronize the low-frequency oscillations within different RSNs regions, thus affecting the baseline level of RSNs activity and their balancing. In our model, DA signaling favors the predominance of SMN-SN activity, whereas 5-HT signaling favors the predominance of DMN activity, manifesting in distinct behavioral patterns. In turn, alterations in neurotransmitters signaling (or its disconnection) may favor a correspondent functional reorganization of RSNs, manifesting in distinct psychopathological states. The here suggested model carries important implications for psychiatric disorders, providing novel and well testable hypotheses especially on bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy. .,Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan. .,Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. .,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China. .,Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, Tumati S, Tan Z, Lee HC, Lane TJ, Amore M, Inglese M, Northoff G. Abnormal Functional Relationship of Sensorimotor Network With Neurotransmitter-Related Nuclei via Subcortical-Cortical Loops in Manic and Depressive Phases of Bipolar Disorder. Schizophr Bull 2020; 46:163-174. [PMID: 31150559 PMCID: PMC6942162 DOI: 10.1093/schbul/sbz035] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Manic and depressive phases of bipolar disorder (BD) show opposite psychomotor symptoms. Neuronally, these may depend on altered relationships between sensorimotor network (SMN) and subcortical structures. The study aimed to investigate the functional relationships of SMN with substantia nigra (SN) and raphe nuclei (RN) via subcortical-cortical loops, and their alteration in bipolar mania and depression, as characterized by psychomotor excitation and inhibition. METHOD In this resting-state functional magnetic resonance imaging (fMRI) study on healthy (n = 67) and BD patients (n = 100), (1) functional connectivity (FC) between thalamus and SMN was calculated and correlated with FC from SN or RN to basal ganglia (BG)/thalamus in healthy; (2) using an a-priori-driven approach, thalamus-SMN FC, SN-BG/thalamus FC, and RN-BG/thalamus FC were compared between healthy and BD, focusing on manic (n = 34) and inhibited depressed (n = 21) patients. RESULTS (1) In healthy, the thalamus-SMN FC showed a quadratic correlation with SN-BG/thalamus FC and a linear negative correlation with RN-BG/thalamus FC. Accordingly, the SN-related FC appears to enable the thalamus-SMN coupling, while the RN-related FC affects it favoring anti-correlation. (2) In BD, mania showed an increase in thalamus-SMN FC toward positive values (ie, thalamus-SMN abnormal coupling) paralleled by reduction of RN-BG/thalamus FC. By contrast, inhibited depression showed a decrease in thalamus-SMN FC toward around-zero values (ie, thalamus-SMN disconnection) paralleled by reduction of SN-BG/thalamus FC (and RN-BG/thalamus FC). The results were replicated in independent HC and BD datasets. CONCLUSIONS These findings suggest an abnormal relationship of SMN with neurotransmitters-related areas via subcortical-cortical loops in mania and inhibited depression, finally resulting in psychomotor alterations.
Collapse
Affiliation(s)
- Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- To whom correspondence should be addressed; Clinica Psichiatrica, Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy; tel: +390103537668, fax: +390103537669, e-mail:
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Capobianco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniel Russo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Adavastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Shankar Tumati
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Zhonglin Tan
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hsin-Chien Lee
- Department of Psychiatry, College of Medicine and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Timothy J Lane
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
20
|
Cardozo Pinto DF, Yang H, Pollak Dorocic I, de Jong JW, Han VJ, Peck JR, Zhu Y, Liu C, Beier KT, Smidt MP, Lammel S. Characterization of transgenic mouse models targeting neuromodulatory systems reveals organizational principles of the dorsal raphe. Nat Commun 2019; 10:4633. [PMID: 31604921 PMCID: PMC6789139 DOI: 10.1038/s41467-019-12392-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022] Open
Abstract
The dorsal raphe (DR) is a heterogeneous nucleus containing dopamine (DA), serotonin (5HT), γ-aminobutyric acid (GABA) and glutamate neurons. Consequently, investigations of DR circuitry require Cre-driver lines that restrict transgene expression to precisely defined cell populations. Here, we present a systematic evaluation of mouse lines targeting neuromodulatory cells in the DR. We find substantial differences in specificity between lines targeting DA neurons, and in penetrance between lines targeting 5HT neurons. Using these tools to map DR circuits, we show that populations of neurochemically distinct DR neurons are arranged in a stereotyped topographical pattern, send divergent projections to amygdala subnuclei, and differ in their presynaptic inputs. Importantly, targeting DR DA neurons using different mouse lines yielded both structural and functional differences in the neural circuits accessed. These results provide a refined model of DR organization and support a comparative, case-by-case evaluation of the suitability of transgenic tools for any experimental application.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongbin Yang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Iskra Pollak Dorocic
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Vivian J Han
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James R Peck
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kevin T Beier
- Departments of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92697, USA
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
21
|
Vahid-Ansari F, Zhang M, Zahrai A, Albert PR. Overcoming Resistance to Selective Serotonin Reuptake Inhibitors: Targeting Serotonin, Serotonin-1A Receptors and Adult Neuroplasticity. Front Neurosci 2019; 13:404. [PMID: 31114473 PMCID: PMC6502905 DOI: 10.3389/fnins.2019.00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent mental illness contributing to global disease burden. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are the first-line treatment for MDD, but are only fully effective in 30% of patients and require weeks before improvement may be seen. About 30% of SSRI-resistant patients may respond to augmentation or switching to another antidepressant, often selected by trial and error. Hence a better understanding of the causes of SSRI resistance is needed to provide models for optimizing treatment. Since SSRIs enhance 5-HT, in this review we discuss new findings on the circuitry, development and function of the 5-HT system in modulating behavior, and on how 5-HT neuronal activity is regulated. We focus on the 5-HT1A autoreceptor, which controls 5-HT activity, and the 5-HT1A heteroreceptor that mediates 5-HT actions. A series of mice models now implicate increased levels of 5-HT1A autoreceptors in SSRI resistance, and the requirement of hippocampal 5-HT1A heteroreceptor for neurogenic and behavioral response to SSRIs. We also present clinical data that show promise for identifying biomarkers of 5-HT activity, 5-HT1A regulation and regional changes in brain activity in MDD patients that may provide biomarkers for tailored interventions to overcome or bypass resistance to SSRI treatment. We identify a series of potential strategies including inhibiting 5-HT auto-inhibition, stimulating 5-HT1A heteroreceptors, other monoamine systems, or cortical stimulation to overcome SSRI resistance.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Brain and Mind Research Institute, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Grandjean J, Corcoba A, Kahn MC, Upton AL, Deneris ES, Seifritz E, Helmchen F, Mann EO, Rudin M, Saab BJ. A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat Commun 2019; 10:350. [PMID: 30664643 PMCID: PMC6341094 DOI: 10.1038/s41467-018-08256-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
Abstract
Central serotonin (5-HT) orchestrates myriad cognitive processes and lies at the core of many stress-related psychiatric illnesses. However, the basic relationship between its brain-wide axonal projections and functional dynamics is not known. Here we combine optogenetics and fMRI to produce a brain-wide 5-HT evoked functional map. We find that DRN photostimulation leads to an increase in the hemodynamic response in the DRN itself, while projection areas predominately exhibit a reduction of cerebral blood volume mirrored by suppression of cortical delta oscillations. We find that the regional distribution of post-synaptically expressed 5-HT receptors better correlates with DRN 5-HT functional connectivity than anatomical projections. Our work suggests that neuroarchitecture is not the primary determinant of function for the DRN 5-HT. With respect to two 5-HT elevating stimuli, we find that acute stress leads to circuit-wide blunting of the DRN output, while the SSRI fluoxetine noticeably enhances DRN functional connectivity. These data provide fundamental insight into the brain-wide functional dynamics of the 5-HT projection system. Serotonin is released throughout the brain from diverse projections of neurons in the dorsal raphe nucleus. Here, the authors use optogenetics and fMRI mediated mapping of the mouse brain-wide serotonin network in response to acute stress and treatment with SSRI.
Collapse
Affiliation(s)
- Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, 11 Biopolis Way, Singapore, 138667, Singapore. .,Neuroscience Center Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland. .,Institute for Biomedical Engineering, University of Zurich and ETH Zurich, CH-8093, Zurich, Switzerland.
| | - Alberto Corcoba
- Center for Psychiatric Neuroscience, University of Lausanne, CH-1008, Prilly-Lausanne, Switzerland
| | - Martin C Kahn
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich Hospital for Psychiatry, August-Forel-Str. 7, CH-8008, Zurich, Switzerland.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - A Louise Upton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Ion Channel Initiative, University of Oxford, Oxford, OX1 3PT, UK
| | - Evan S Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106-4975, USA
| | - Erich Seifritz
- Neuroscience Center Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland.,Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich Hospital for Psychiatry, August-Forel-Str. 7, CH-8008, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland.,Brain Research Institute, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.,Oxford Ion Channel Initiative, University of Oxford, Oxford, OX1 3PT, UK
| | - Markus Rudin
- Neuroscience Center Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland.,Institute for Biomedical Engineering, University of Zurich and ETH Zurich, CH-8093, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, CH-8093, Zurich, Switzerland
| | - Bechara J Saab
- Neuroscience Center Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland. .,Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich Hospital for Psychiatry, August-Forel-Str. 7, CH-8008, Zurich, Switzerland. .,Mobio Interactive, Thurwiesenstrasse 4, CH-8037, Zurich, Switzerland.
| |
Collapse
|
23
|
Garcia-Garcia AL, Canetta S, Stujenske JM, Burghardt NS, Ansorge MS, Dranovsky A, Leonardo ED. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT 1A receptor-dependent manner. Mol Psychiatry 2018; 23:1990-1997. [PMID: 28761080 PMCID: PMC5794659 DOI: 10.1038/mp.2017.165] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions.
Collapse
Affiliation(s)
- Alvaro L. Garcia-Garcia
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - Sarah Canetta
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Joseph M. Stujenske
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
| | - Nesha S. Burghardt
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065
| | - Mark S. Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Alex Dranovsky
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| | - E. David Leonardo
- Dranovsky-Leonardo (ADL) lab, Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032,Address correspondence to AGG at , to AD at and to EDL at . Telephone: (001) (646) 774-7105. Fax: (001) (646) 774-7117
| |
Collapse
|
24
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Lottem E, Banerjee D, Vertechi P, Sarra D, Lohuis MO, Mainen ZF. Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nat Commun 2018. [PMID: 29520000 PMCID: PMC5843608 DOI: 10.1038/s41467-018-03438-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuromodulator serotonin (5-HT) has been implicated in a variety of functions that involve patience or impulse control. Many of these effects are consistent with a long-standing theory that 5-HT promotes behavioral inhibition, a motivational bias favoring passive over active behaviors. To further test this idea, we studied the impact of 5-HT in a probabilistic foraging task, in which mice must learn the statistics of the environment and infer when to leave a depleted foraging site for the next. Critically, mice were required to actively nose-poke in order to exploit a given site. We show that optogenetic activation of 5-HT neurons in the dorsal raphe nucleus increases the willingness of mice to actively attempt to exploit a reward site before giving up. These results indicate that behavioral inhibition is not an adequate description of 5-HT function and suggest that a unified account must be based on a higher-order function.
Collapse
Affiliation(s)
- Eran Lottem
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Dhruba Banerjee
- School of Medicine, University of California, Irvine, CA, 92697-3950, USA
| | - Pietro Vertechi
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Dario Sarra
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Matthijs Oude Lohuis
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098XH, Amsterdam, The Netherlands
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal.
| |
Collapse
|
26
|
Budai D, Vizvári AD, Bali ZK, Márki B, Nagy LV, Kónya Z, Madarász D, Henn-Mike N, Varga C, Hernádi I. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLoS One 2018; 13:e0193836. [PMID: 29513711 PMCID: PMC5841794 DOI: 10.1371/journal.pone.0193836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length-impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis.
Collapse
Affiliation(s)
- Dénes Budai
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Attila D. Vizvári
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Zsolt K. Bali
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Balázs Márki
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Lili V. Nagy
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Dániel Madarász
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Nóra Henn-Mike
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - István Hernádi
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| |
Collapse
|
27
|
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. J Neurosci 2017; 37:11390-11405. [PMID: 29042433 PMCID: PMC5700422 DOI: 10.1523/jneurosci.1339-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms.SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state.
Collapse
|
28
|
Gölöncsér F, Baranyi M, Balázsfi D, Demeter K, Haller J, Freund TFF, Zelena D, Sperlágh B. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice. Front Mol Neurosci 2017; 10:325. [PMID: 29075178 PMCID: PMC5643475 DOI: 10.3389/fnmol.2017.00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM), whereas the selective 5-HT1A agonist buspirone (0.1 μM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM), and AZ-10606120 (0.1 μM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diána Balázsfi
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, Budapest, Hungary.,Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Demeter
- Unit of Behavioral Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Haller
- Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Unit of Behavioral Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F F Freund
- Laboratory of Cerebral Cortex, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
29
|
Beaudry H, Daou I, Ribeiro-da-Silva A, Séguéla P. Will optogenetics be used to treat chronic pain patients? Pain Manag 2017; 7:269-278. [PMID: 28726577 DOI: 10.2217/pmt-2016-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic pain affects a third of the population and current treatments produce limited relief and severe side effects. An alternative strategy to decrease pain would be to directly modulate somatosensory pathways using optogenetics. Optogenetics involves the use of genetically encoded and optically active proteins, namely opsins, to control neuronal circuits. In preclinical animal models, optical silencing of peripheral nociceptors has been shown to alleviate both inflammatory and neuropathic pain. An opsin-based gene therapy to treat chronic pain patients is not ready yet, but encouraging advances have been made in optical and viral technology. In view of the increasing burden of chronic pain in our aging society, innovative analgesic approaches based on optogenetics are definitely worth exploring.
Collapse
Affiliation(s)
- Hélène Beaudry
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Ihab Daou
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Alfredo Ribeiro-da-Silva
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Philippe Séguéla
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|
30
|
Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. J Neurosci 2017; 36:6820-35. [PMID: 27335411 DOI: 10.1523/jneurosci.3667-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.
Collapse
|
31
|
Matias S, Lottem E, Dugué GP, Mainen ZF. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 2017; 6:e20552. [PMID: 28322190 PMCID: PMC5360447 DOI: 10.7554/elife.20552] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/26/2017] [Indexed: 12/18/2022] Open
Abstract
Serotonin is implicated in mood and affective disorders. However, growing evidence suggests that a core endogenous role is to promote flexible adaptation to changes in the causal structure of the environment, through behavioral inhibition and enhanced plasticity. We used long-term photometric recordings in mice to study a population of dorsal raphe serotonin neurons, whose activity we could link to normal reversal learning using pharmacogenetics. We found that these neurons are activated by both positive and negative prediction errors, and thus report signals similar to those proposed to promote learning in conditions of uncertainty. Furthermore, by comparing the cue responses of serotonin and dopamine neurons, we found differences in learning rates that could explain the importance of serotonin in inhibiting perseverative responding. Our findings show how the activity patterns of serotonin neurons support a role in cognitive flexibility, and suggest a revised model of dopamine-serotonin opponency with potential clinical implications.
Collapse
Affiliation(s)
- Sara Matias
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- MIT-Portugal Program, Porto Salvo, Portugal
| | - Eran Lottem
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Guillaume P Dugué
- Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, UMR8197, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
32
|
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 2017; 74:401-422. [DOI: 10.1016/j.neubiorev.2016.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
|
33
|
Correia PA, Lottem E, Banerjee D, Machado AS, Carey MR, Mainen ZF. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife 2017; 6. [PMID: 28193320 PMCID: PMC5308893 DOI: 10.7554/elife.20975] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/16/2016] [Indexed: 01/12/2023] Open
Abstract
Serotonin (5-HT) is associated with mood and motivation but the function of endogenous 5-HT remains controversial. Here, we studied the impact of phasic optogenetic activation of 5-HT neurons in mice over time scales from seconds to weeks. We found that activating dorsal raphe nucleus (DRN) 5-HT neurons induced a strong suppression of spontaneous locomotor behavior in the open field with rapid kinetics (onset ≤1 s). Inhibition of locomotion was independent of measures of anxiety or motor impairment and could be overcome by strong motivational drive. Repetitive place-contingent pairing of activation caused neither place preference nor aversion. However, repeated 15 min daily stimulation caused a persistent increase in spontaneous locomotion to emerge over three weeks. These results show that 5-HT transients have strong and opposing short and long-term effects on motor behavior that appear to arise from effects on the underlying factors that motivate actions. DOI:http://dx.doi.org/10.7554/eLife.20975.001 The brain controls sleep, movement and the other behaviors that an animal needs to survive. A chemical called serotonin plays an important role in controlling these behaviors as it regulates the activity of nerve cells (known as neurons) throughout the brain. Serotonin is produced by a specific group of neurons found in an area at the base of the brain called the raphe nuclei. From there, serotonin is released into other parts of the brain to influence different behaviors. Although drugs that target serotonin are widely used as antidepressants, how this chemical signal acts in the brain remains a mystery. This is due, in part, to it being technically challenging to carry out experiments on the serotonin-producing neurons. A technique called optogenetics uses light to selectively activate or inhibit individual cells in live animals. Here, Correia, Lottem et al. use optogenetics to activate serotonin-producing neurons in the dorsal raphe nucleus of mice. The experiments show that triggering serotonin production for a few seconds causes the mice to move around more slowly as they explore their surroundings. This short-term release of serotonin only slows the mice down if they are not already occupied with other activities, such as finding water or balancing on a moving object. These experiments suggest that serotonin decreases an individual’s motivation to move but that this can be overcome by sufficiently powerful goals. In contrast, repeatedly activating the serotonin neurons over a period of several weeks led to long-term changes of the opposite kind – the mice begin to move around more quickly. The findings of Correia, Lottem et al. have possible implications for the use of drugs that target serotonin to treat mental disorders as it suggests important links between serotonin, movement, and the ability of the brain to change how it responds to certain situations. The next steps will be to investigate how the two different effects of serotonin are connected, which areas in the brain are involved and how best to apply these findings to clinical studies. DOI:http://dx.doi.org/10.7554/eLife.20975.002
Collapse
Affiliation(s)
- Patrícia A Correia
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Eran Lottem
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dhruba Banerjee
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.,School of Medicine, University of California, Irvine, United States
| | - Ana S Machado
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
34
|
Madelaine R, Lovett-Barron M, Halluin C, Andalman AS, Liang J, Skariah GM, Leung LC, Burns VM, Mourrain P. The hypothalamic NPVF circuit modulates ventral raphe activity during nociception. Sci Rep 2017; 7:41528. [PMID: 28139691 PMCID: PMC5282529 DOI: 10.1038/srep41528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 01/25/2023] Open
Abstract
RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates.
Collapse
Affiliation(s)
- Romain Madelaine
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering and CNC program, Stanford University, Stanford, CA 94305, USA
| | - Caroline Halluin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Aaron S Andalman
- Department of Bioengineering and CNC program, Stanford University, Stanford, CA 94305, USA
| | - Jin Liang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Gemini M Skariah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Vanessa M Burns
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,INSERM U1024, Ecole Normale Supérieure Paris, 75005, France
| |
Collapse
|
35
|
Correia PA, Matias S, Mainen ZF. Stereotaxic Adeno-associated Virus Injection and Cannula Implantation in the Dorsal Raphe Nucleus of Mice. Bio Protoc 2017; 7:e2549. [PMID: 29021994 DOI: 10.21769/bioprotoc.2549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Optogenetic methods are now widespread in neuroscience research. Here we present a detailed surgical procedure to inject adeno-associated viruses and implant optic fiber cannulas in the dorsal raphe nucleus (DRN) of living mice. Combined with transgenic mouse lines, this protocol allows specific targeting of serotonin-producing neurons in the brain. It includes fixing a mouse in a stereotaxic frame, performing a craniotomy, virus injection and fiber implantation. Animals can be later used in behavioral experiments, combined with optogenetic manipulations (Dugué et al., 2014; Correia et al., 2017) or monitoring of neuronal activity (Matias et al., 2017). The described procedure is a fundamental step in both optogenetic and fiber photometry experiments of deep brain areas. It is optimized for serotonin neurons in the DRN, but it can be applied to any other cell type and brain region. When using transgenic mouse lines that express functionally relevant levels of optogenetic tools or reporter lines, the virus injection step can be skipped and the protocol is reduced to the cannula implantation procedure.
Collapse
Affiliation(s)
- Patrícia A Correia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sara Matias
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
36
|
Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish. eNeuro 2016; 3:eN-NWR-0115-16. [PMID: 27844054 PMCID: PMC5093153 DOI: 10.1523/eneuro.0115-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 01/19/2023] Open
Abstract
Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.
Collapse
|
37
|
Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016; 30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.
Collapse
Affiliation(s)
- Eric J Horstick
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Thomas Mueller
- b Division of Biology , Kansas State University , Manhattan , KS , USA
| | - Harold A Burgess
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
38
|
Optogenetic Activation of Dorsal Raphe Serotonin Neurons Rapidly Inhibits Spontaneous But Not Odor-Evoked Activity in Olfactory Cortex. J Neurosci 2016; 36:7-18. [PMID: 26740645 DOI: 10.1523/jneurosci.3008-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Serotonin (5-hydroxytriptamine; 5-HT) is implicated in a variety of brain functions including not only the regulation of mood and control of behavior but also the modulation of perception. 5-HT neurons in the dorsal raphe nucleus (DRN) often fire locked to sensory stimuli, but little is known about how 5-HT affects sensory processing, especially on this timescale. Here, we used an optogenetic approach to study the effect of 5-HT on single-unit activity in the mouse primary olfactory (anterior piriform) cortex. We show that activation of DRN 5-HT neurons rapidly inhibits the spontaneous firing of olfactory cortical neurons, acting in a divisive manner, but entirely spares sensory-driven firing. These results identify a new role for serotonergic modulation in dynamically regulating the balance between different sources of neural activity in sensory systems, suggesting a possible role for 5-HT in perceptual inference. SIGNIFICANCE STATEMENT Serotonin is implicated in a wide variety of (pato)physiological functions including perception, but its precise role has remained elusive. Here, using optogenetic tools in vivo, we show that serotonergic neuromodulation prominently inhibits the spontaneous electrical activity of neurons in the primary olfactory cortex on a rapid (<1 s) timescale but leaves sensory responses unaffected. These results identify a new role for serotonergic modulation in rapidly changing the balance between different sources of neural activity in sensory systems.
Collapse
|
39
|
Song C, Knöpfel T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 2015; 15:97-109. [DOI: 10.1038/nrd.2015.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Hainer C, Mosienko V, Koutsikou S, Crook JJ, Gloss B, Kasparov S, Lumb BM, Alenina N. Beyond Gene Inactivation: Evolution of Tools for Analysis of Serotonergic Circuitry. ACS Chem Neurosci 2015; 6:1116-29. [PMID: 26132472 DOI: 10.1021/acschemneuro.5b00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the brain, serotonin (5-hydroxytryptamine, 5-HT) controls a multitude of physiological and behavioral functions. Serotonergic neurons in the raphe nuclei give rise to a complex and extensive network of axonal projections throughout the whole brain. A major challenge in the analysis of these circuits is to understand how the serotonergic networks are linked to the numerous functions of this neurotransmitter. In the past, many studies employed approaches to inactivate different genes involved in serotonergic neuron formation, 5-HT transmission, or 5-HT metabolism. Although these approaches have contributed significantly to our understanding of serotonergic circuits, they usually result in life-long gene inactivation. As a consequence, compensatory changes in serotonergic and other neurotransmitter systems may occur and complicate the interpretation of the observed phenotypes. To dissect the complexity of the serotonergic system with greater precision, approaches to reversibly manipulate subpopulations of serotonergic neurons are required. In this review, we summarize findings on genetic animal models that enable control of 5-HT neuronal activity or mapping of the serotonergic system. This includes a comparative analysis of several mouse and rat lines expressing Cre or Flp recombinases under Tph2, Sert, or Pet1 promoters with a focus on specificity and recombination efficiency. We further introduce applications for Cre-mediated cell-type specific gene expression to optimize spatial and temporal precision for the manipulation of serotonergic neurons. Finally, we discuss other temporally regulated systems, such as optogenetics and designer receptors exclusively activated by designer drugs (DREADD) approaches to control 5-HT neuron activity.
Collapse
Affiliation(s)
- Cornelia Hainer
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | | | | | | | - Bernd Gloss
- National Institute of Environmental Health Science, Durham, North Carolina 27709, United States
| | | | | | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Institute
of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
41
|
The neurobiology of offensive aggression: Revealing a modular view. Physiol Behav 2015; 146:111-27. [DOI: 10.1016/j.physbeh.2015.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/03/2023]
|
42
|
Abstract
The dorsal cochlear nucleus (DCN) is one of the first stations within the central auditory pathway where the basic computations underlying sound localization are initiated and heightened activity in the DCN may underlie central tinnitus. The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT), is associated with many distinct behavioral or cognitive states, and serotonergic fibers are concentrated in the DCN. However, it remains unclear what is the function of this dense input. Using a combination of in vitro electrophysiology and optogenetics in mouse brain slices, we found that 5-HT directly enhances the excitability of fusiform principal cells via activation of two distinct 5-HT receptor subfamilies, 5-HT2A/2CR (5-HT2A/2C receptor) and 5-HT7R (5-HT7 receptor). This excitatory effect results from an augmentation of hyperpolarization-activated cyclic nucleotide-gated channels (Ih or HCN channels). The serotonergic regulation of excitability is G-protein-dependent and involves cAMP and Src kinase signaling pathways. Moreover, optogenetic activation of serotonergic axon terminals increased excitability of fusiform cells. Our findings reveal that 5-HT exerts a potent influence on fusiform cells by altering their intrinsic properties, which may enhance the sensitivity of the DCN to sensory input.
Collapse
|
43
|
Fonseca M, Murakami M, Mainen Z. Activation of Dorsal Raphe Serotonergic Neurons Promotes Waiting but Is Not Reinforcing. Curr Biol 2015; 25:306-315. [DOI: 10.1016/j.cub.2014.12.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
44
|
Perrier JF, Cotel F. Serotonergic modulation of spinal motor control. Curr Opin Neurobiol 2014; 33:1-7. [PMID: 25553359 DOI: 10.1016/j.conb.2014.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either applying 5-HT in the extracellular medium or inducing its synaptic release. They produced strikingly different results suggesting that the net effect of 5-HT depends on the identity of the activated receptors and their location. Recent findings suggest that moderate release of 5-HT facilitates locomotion and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing. This latter effect is responsible for central fatigue and secures rotation of motor units.
Collapse
Affiliation(s)
| | - Florence Cotel
- Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|