1
|
Mukhopadhya I, Louis P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol 2025:10.1038/s41579-025-01183-w. [PMID: 40360779 DOI: 10.1038/s41579-025-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Short-chain fatty acids (SCFAs) are a group of organic compounds produced by the fermentation of dietary fibre by the human gut microbiota. They play diverse roles in different physiological processes of the host with implications for human health and disease. This Review provides an overview of the complex microbial metabolism underlying SCFA formation, considering microbial interactions and modulating factors of the gut environment. We explore the multifaceted mechanistic interactions between SCFAs and the host, with a particular focus on the local actions of SCFAs in the gut and their complex interactions with the immune system. We also discuss how these actions influence intestinal and extraintestinal diseases and emerging therapeutic strategies using SCFAs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Petra Louis
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Lu H, Zhang M, Hu Y, Sun X, Zhang R, Zhang X, Zhang M, Tang C, Cui Q, Zhang Z, Wu Z, Wang W, Song S, Cui L, Zhu J, Yang X, Yang Z. Short-chain fatty acids alleviate cholestatic liver injury by improving gut microbiota and bile acid metabolism. Int Immunopharmacol 2025; 154:114564. [PMID: 40186906 DOI: 10.1016/j.intimp.2025.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Cholestasis, characterized by the obstruction of bile flow and the accumulation of bile acids, can lead to severe liver damage. Current treatments, such as ursodeoxycholic acid (UDCA) and obeticholic acid (OCA), are limited in effectiveness and have significant side effects, underscoring the need for new therapies. In our study, we investigated the effects of short-chain fatty acids (SCFAs) as a treatment in a mouse model of cholestasis induced by α-naphthylisothiocyanate (ANIT). Our findings demonstrated that SCFAs improved liver function, as indicated by reductions in liver function markers, decreased necrosis, and reduced bile duct proliferation and inflammation. Furthermore, SCFAs enhanced intestinal barrier function and increased the abundance of beneficial gut bacteria, such as Akkermansia muciniphila (A. muciniphila). SCFAs also triggered the FXR-Fgf15-Cyp7a1 pathway, reducing bile acid synthesis and improving bile acid metabolism. These findings indicate that SCFAs could offer a viable new treatment strategy for cholestatic liver conditions by improving gut-liver interactions, stabilizing bile acid metabolism, and alleviating inflammation.
Collapse
Affiliation(s)
- Han Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China; Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Mingmin Zhang
- Ili & Jiangsu Joint Institute of Health, Ili 835000, China; The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili 835000, China
| | - Yanan Hu
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 211800, China
| | - Xuewei Sun
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Ruonan Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Xinrui Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Mingyan Zhang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Chengliang Tang
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing 210008, China
| | - Zhuohan Zhang
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Zihan Wu
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Wenjing Wang
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shuang Song
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Xiaojun Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China.
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China.
| |
Collapse
|
3
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Jain V, Dalby MJ, Alexander EC, Burford C, Acford-Palmer H, Serghiou IR, Teng NM, Kiu R, Gerasimidis K, Zafeiropoulou K, Logan M, Verma A, Davenport M, Hall LJ, Dhawan A. Association of gut microbiota and gut metabolites and adverse outcomes in biliary atresia: A longitudinal prospective study. Hepatol Commun 2024; 8:e0550. [PMID: 39761011 PMCID: PMC11495700 DOI: 10.1097/hc9.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA. METHODS Fecal samples were prospectively collected in newly diagnosed BA infants (n = 55) before and after KPE. Age-matched healthy control (n = 19) and cholestatic control (n = 21) fecal samples were collected. Fecal 16S rRNA gene amplicon sequencing for gut microbiota and gas chromatography for fecal fatty acids was performed. RESULTS Increased abundance of Enterococcus in pre-KPE BA and cholestatic control infants, compared to healthy infants, was demonstrated. At the early post-KPE time points, increased alpha diversity was revealed in BA versus healthy cohorts. A lower relative abundance of Bifidobacterium and increased Enterococcus, Clostridium, Fusobacterium, and Pseudomonas was seen in infants with BA. Fecal acetate was reduced, and fecal butyrate and propionate were elevated in early post-KPE BA infants. Higher post-KPE alpha diversity was associated with nonfavorable clinical outcomes (6-month jaundice and liver transplantation). A higher relative abundance of post-KPE Streptococcus and Fusobacterium and a lower relative abundance of Dorea, Blautia, and Oscillospira were associated with nonfavorable clinical outcomes. Blautia inversely correlated to liver disease severity, and Bifidobacterium inversely correlated to fibrosis biomarkers. Bifidobacterium abundance was significantly lower in infants experiencing cholangitis within 6 months after KPE. CONCLUSIONS Increased diversity, enrichment of pathogenic, and depletion of beneficial microbiota early post-KPE are all factors associated with nonfavorable BA outcomes. Manipulation of gut microbiota in the early postsurgical period could provide therapeutic potential.
Collapse
Affiliation(s)
- Vandana Jain
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Matthew J. Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Emma C. Alexander
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Charlotte Burford
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | | | | | - Nancy M.Y. Teng
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Konstantina Zafeiropoulou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Michael Logan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Anita Verma
- Department of Infection Science, Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King’s College Hospital, London, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| |
Collapse
|
5
|
Li W, Ma Z, Su C, Liu F, Yan N, Duan X, Sun Z, Wang H, Ma Y, Wang Z, Ren F. The hepatoprotective effect of sodium butyrate on hepatic inflammatory injury mediated by the NLRP3 inflammatory pathway in subchronic fluoride-exposed mice. Mol Biol Rep 2024; 51:1022. [PMID: 39340679 PMCID: PMC11438657 DOI: 10.1007/s11033-024-09926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Excessive subchronic fluoride exposure can cause severe damage to detoxification organs, including the liver. Sodium butyrate has anti-inflammatory, antitumor, antioxidant and immunomodulatory properties. However, relatively few studies have investigated the effects of sodium butyrate on liver injury caused by subchronic fluoride exposure. The purpose of this research was to investigate the effect and mechanism of sodium butyrate on fluoride-induced hepatic inflammatory injury via the expression of nod-like receptor protein 3 (NLRP3). METHODS Mice were subjected to randomization into four groups, control group (C), fluorosis group (F), sodium butyrate alone group (S), and treatment group (Y). The mice in groups F and F + S drank 100 mg/L sodium fluoride-containing distilled water freely every day. After fluoride exposure lasted for 3 months, the mice in group S and F + S were gavaged with sodium butyrate daily at a concentration of 1000 mg/kg. Following the treatment regimen, liver specimens were collected for analysis. The mRNA and protein expression levels of inflammatory factors and NLRP3 and its downstream gene were measured by RT-qPCR and western blotting. RESULTS The histological hematoxylin and eosin (H&E) staining of liver showed that the subchronic fluoride-exposed group were chronic inflammation. The liver of treatment group were less vacuolar degeneration and inflammatory infiltration. The results of the biochemical assay showed that the subchronic fluoride-exposed group were liver injury. In addition, the detection of oxidative stress indicators showed that chronic subchronic fluoride exposure could lead to an increase in the level of oxidative stress in the liver, and the treatment alleviated this increase. RT-qPCR results showed that compared with those in the control group, the mRNA levels of the inflammatory factors TNF-α, IL-6 and IL-1β, the NLRP3 inflammasome and its downstream factors NLRP3, caspase-1, gasdermin D (GSDMD) and IL-18 increased in the liver tissue of mice in the subchronic fluoride-exposed group. Sodium butyrate released inflammatory factors during subchronic fluoride exposure and inhibited the protein expression of activated NLRP3 to a certain extent. CONCLUSIONS Sodium butyrate may play a protective role by antagonizing the production of activated inflammasomes and their downstream inflammatory factors in the livers of subchronic fluoride-exposed mice.
Collapse
Affiliation(s)
- Wen Li
- Liaoning Province Key Laboratory for Phenomics of of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, P.R. China
| | - Zhiyu Ma
- The Central Hospital of Shenyang Sujiatun, Shenyang, P.R. China
| | - Cuijing Su
- The Central Hospital of Shenyang Sujiatun, Shenyang, P.R. China
| | - Funing Liu
- The First Clinical Medical School, Shenyang Medical College, Shenyang, P.R. China
| | - Nan Yan
- The Rehabilitation Medical School, Shenyang Medical College, Shenyang, P.R. China
| | - Xiaoxu Duan
- The Public Health School, Shenyang Medical College, Shenyang, P.R. China
| | - Zhenxiang Sun
- Liaoning Province Key Laboratory for Phenomics of of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, P.R. China
| | - Hongbo Wang
- Liaoning Province Key Laboratory for Phenomics of of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, P.R. China
| | - Yufei Ma
- The First Clinical Medical School, Shenyang Medical College, Shenyang, P.R. China
| | - Zhengdong Wang
- Liaoning Province Key Laboratory for Phenomics of of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, P.R. China.
| | - Fu Ren
- Liaoning Province Key Laboratory for Phenomics of of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, P.R. China.
- , No. 146, Huanghe North Street, Shenyang, 110034, Liaoning, P.R. China.
| |
Collapse
|
6
|
Winiarska-Mieczan A, Jachimowicz-Rogowska K, Kwiecień M, Borsuk-Stanulewicz M, Tomczyk-Warunek A, Stamirowska-Krzaczek E, Purwin C, Stryjecka M, Tomaszewska M. Regular Consumption of Green Tea as an Element of Diet Therapy in Drug-Induced Liver Injury (DILI). Nutrients 2024; 16:2837. [PMID: 39275155 PMCID: PMC11396919 DOI: 10.3390/nu16172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The liver is a highly metabolically active organ, and one of the causes of its dysfunction is the damage caused by drugs and their metabolites as well as dietary supplements and herbal preparations. A common feature of such damage is drugs, which allows it to be defined as drug-induced liver injury (DILI). In this review, we analysed available research findings in the global literature regarding the effects of green tea and/or its phenolic compounds on liver function in the context of protective action during prolonged exposure to xenobiotics. We focused on the direct detoxifying action of epigallocatechin gallate (EGCG) in the liver, the impact of EGCG on gut microbiota, and the influence of microbiota on liver health. We used 127 scientific research publications published between 2014 and 2024. Improving the effectiveness of DILI detection is essential to enhance the safety of patients at risk of liver damage and to develop methods for assessing the potential hepatotoxicity of a drug during the research phase. Often, drugs cannot be eliminated, but appropriate nutrition can strengthen the body and liver, which may mitigate adverse changes resulting from DILI. Polyphenols are promising owing to their strong antioxidant and anti-inflammatory properties as well as their prebiotic effects. Notably, EGCG is found in green tea. The results of the studies presented by various authors are very promising, although not without uncertainties. Therefore, future research should focus on elucidating the therapeutic and preventive mechanisms of polyphenols in the context of liver health through the functioning of gut microbiota affecting overall health, with particular emphasis on epigenetic pathways.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Borsuk-Stanulewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Ewa Stamirowska-Krzaczek
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Marzena Tomaszewska
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| |
Collapse
|
7
|
Rong Y, Xu M, Hu T, Zhang S, Fu J, Liu H. Effects of butyrate on intestinal ischemia-reperfusion injury via the HMGB1-TLR4-MyD88 signaling pathway. Aging (Albany NY) 2024; 16:7961-7978. [PMID: 38709282 PMCID: PMC11131991 DOI: 10.18632/aging.205797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.
Collapse
Affiliation(s)
- Yuanyuan Rong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Meili Xu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Shasha Zhang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Huaqin Liu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
8
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
9
|
Han S, Wang K, Shen J, Xia H, Lu Y, Zhuge A, Li S, Qiu B, Zhang S, Dong X, Yao M, Li L. Probiotic Pediococcus pentosaceus Li05 Improves Cholestasis through the FXR-SHP and FXR-FGF15 Pathways. Nutrients 2023; 15:4864. [PMID: 38068723 PMCID: PMC10708340 DOI: 10.3390/nu15234864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Primary sclerosing cholangitis (PSC), a rare chronic cholestatic liver disease, is characterized by intrahepatic or extrahepatic strictures accompanied by biliary fibrosis. So far, there are no effective therapies to slow down the progression of this disease. Farnesoid X receptors (FXRs) are ligand-activated transcription factors involved in the control of bile acid (BA) synthesis and enterohepatic circulation. Therefore, targeting FXRs holds promise as a potential approach for treating PSC. Pediococcus pentosaceus Li05 is a probiotic that was isolated from healthy volunteers and has previously been shown to have an anti-inflammatory effect in DSS-induced colitis. In this study, we established a 3,5-diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-induced cholestasis mouse model and investigated the effects of Pediococcus pentosaceus Li05 on PSC. Our findings revealed that administration of Li05 significantly attenuated liver damage, hepatic inflammation, and fibrosis, as well as bile duct hyperplasia. Li05 activated the hepatic FXR-SHP and ileal FXR-FGF15 signaling pathways to decrease the expression of Cyp7a1. In addition, the Li05-modulated gut microbiota structure especially improved the abundance of 7α-dehydroxylation bacteria like Eubacterium. The intervention of Li05 also improved the intestinal barrier and reduced bacterial endotoxin translocation. Based on these findings, Li05 shows promise for future application as a therapeutic strategy for cholestasis.
Collapse
Affiliation(s)
- Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanmeng Lu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Aoxiang Zhuge
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xiangmin Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|
10
|
Sun Y, Song J, Lan X, Ma F, Jiang M, Jiang C. Calcium-Sensitive Receptors Alters Intestinal Microbiota Metabolites Especially SCFAs and Ameliorates Intestinal Barrier Damage in Neonatal Rat Endotoxemia. Infect Drug Resist 2023; 16:5707-5717. [PMID: 37667808 PMCID: PMC10475303 DOI: 10.2147/idr.s420689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose The calcium-sensing receptor (CaSR) acts as a major modulator of tissue responses related to calcium homeostasis and expresses highly in the mammalian intestine. Endotoxemia tends to impair intestinal barrier function and poses significant obstacles in clinical treatment. This work is designed to decipher whether CaSR can protect lipopolysaccharide (LPS)-induced intestinal barrier dysfunction in neonatal rats by targeting intestinal metabolites. Patient and Methods In this study, we utilized gas chromatography (GC) combined with liquid chromatography-mass spectrometry (LC-MS) to quantitatively analyze SCFAs and metabolites in fecal samples of 24 neonatal rats with LPS induced endotoxemia. Results Our results showed that CaSR alleviated endotoxin damage to the intestinal tight junction structure and upregulated the levels of butyric acid, propionic acid, valeric acid, and isovaleric acid in short-chain fatty acids (SCFAs). Non-targeted metabolomics analysis indicated that CaSR improved intestinal metabolic disorders by regulating glycerophospholipid metabolism, α-linolenic acid metabolism, as well as sphingolipids metabolism. Conclusion CaSR can alter intestinal microbiota metabolites, especially SCFAs, and improve intestinal barrier damage in neonatal rat endotoxemia.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| | - Xue Lan
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Fei Ma
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| | - Mingyu Jiang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
| | - Chunming Jiang
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People’s Republic of China
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, Guangdong, 519060, People’s Republic of China
| |
Collapse
|
11
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Abstract
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
Collapse
|
13
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
14
|
Petakh P, Isevych V, Kamyshnyi A, Oksenych V. Weil's Disease-Immunopathogenesis, Multiple Organ Failure, and Potential Role of Gut Microbiota. Biomolecules 2022; 12:1830. [PMID: 36551258 PMCID: PMC9775223 DOI: 10.3390/biom12121830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is an important zoonotic disease, causing about 60,000 deaths annually. In this review, we have described in detail the immunopathogenesis of leptospirosis, the influence of cytokines, genetic susceptibility on the course of the disease, and the evasion of the immune response. These data are combined with information about immunological and pathomorphological changes in the kidneys, liver, and lungs, which are most affected by Weil's disease. The review also suggests a possible role of the gut microbiota in the clinical course of leptospirosis, the main mechanisms of the influence of gut dysbiosis on damage in the liver, kidneys, and lungs through several axes, i.e., gut-liver, gut-kidney, and gut-lungs. Modulation of gut microbiota by probiotics and/or fecal microbiota transplantation in leptospirosis may become an important area of scientific research.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
| | - Vitaliia Isevych
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
15
|
Pohl K, Moodley P, Dhanda A. The effect of increasing intestinal short-chain fatty acid concentration on gut permeability and liver injury in the context of liver disease: A systematic review. J Gastroenterol Hepatol 2022; 37:1498-1506. [PMID: 35612373 PMCID: PMC9545839 DOI: 10.1111/jgh.15899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The gut barrier protects the liver through tight junctions, which are disrupted in liver disease either from dysbiosis, inflammation, or the effects of ingested compounds such as alcohol. Strengthening of the gut barrier may ameliorate liver injury of varying etiologies. Short chain fatty acids (SCFAs) have been shown to improve gut barrier function. This systematic review aims to synthesize all studies that have trialed SCFA supplementation as a therapy for liver disease. METHODS A systematic review assessing the impact of SCFA supplementation on liver injury and intestinal permeability was conducted. All forms of intervention that specifically increased intestinal SCFA concentration and measured both liver injury and permeability were eligible. Two independent reviewers assessed each study for outcomes, risk of bias, and quality using checklists relevant to the study's methodology. RESULTS Seventeen studies were identified; two utilized a human model (15 murine). Fifty-eight markers of liver injury were identified, with 26 different measures of permeability. Given the numerous designs, no meta-analysis was possible. SCFA supplements included oral and enteral butyrate, probiotics, and prebiotics. Fourteen studies demonstrated improved permeability. All studies showed a significant amelioration of liver injury. CONCLUSIONS Short chain fatty acid supplementation to reduce intestinal permeability represents a potential therapy in a variety of liver disease models. A large number of outcome measures were reported however not all are practical in human studies. Future work should evaluate methods to increase luminal SCFA concentrations and the effect of this on gut permeability and liver inflammation in people with liver disease.
Collapse
Affiliation(s)
- Keith Pohl
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Prebashan Moodley
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Ashwin Dhanda
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| |
Collapse
|
16
|
Fu K, Ma C, Wang C, Zhou H, Gong L, Zhang Y, Li Y. Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder. Biomed Pharmacother 2022; 151:113185. [PMID: 35623173 DOI: 10.1016/j.biopha.2022.113185] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Liver fibrosis is a chronic and progressive disease with complex pathogenesis related to bile acids (BAs) and gut microbiota. Forsythiaside A (FTA), isolated from the traditional Chinese medicine Forsythiae Fructus (Lian Qiao), is a natural hepatoprotective agent. The purpose of this study was to investigate the protective effect of FTA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Liver fibrosis was induced in mice by intraperitoneal injection of 2 mL/kg CCl4 three times a week for 4 weeks. FTA attenuated CCl4-induced liver fibrosis in mice, which was proved by the results of Masson and Sirius red staining, liver hydroxyproline, hyaluronic acid, laminin, type III procollagen, and type IV collagen assays. FTA inhibited hepatic stellate cell activation, and reduced hepatic inflammation and oxidative stress in mice treated with CCl4. What's more, FTA ameliorated CCl4-induced gut dysbiosis, maintained intestinal barrier function, increased the production of short-chain fatty acids (SCFAs), and improved endotoxemia, as manifested by decreased serum lipopolysaccharide levels and increased expression of ileal tight junction proteins. Besides, FTA can modulate the genes related to bile acid metabolism to alter the distribution of fecal BAs in fibrotic mice. In a word, FTA can improve liver fibrosis by inhibiting inflammation and oxidative stress, regulating gut microbiota and BA metabolism, and increasing the content of SCFAs. The results of this study provided an important reference for the study on the mechanisms by which natural products prevent liver fibrosis.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
17
|
Non-Alcoholic Components in Huangjiu as Potential Factors Regulating the Intestinal Barrier and Gut Microbiota in Mouse Model of Alcoholic Liver Injury. Foods 2022; 11:foods11111537. [PMID: 35681289 PMCID: PMC9180658 DOI: 10.3390/foods11111537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Different alcoholic beverages and drinking patterns might exert divergent impacts on alcoholic liver disease (ALD) progression. Whether the abundant non-alcoholic components (NAC) in fermented wine could alleviate ethanol (EtOH)-induced adverse influences on the liver remains unknown. Hence, the chronic ALD mouse model was established to compare the effects of Huangjiu (a typical fermented wine) and EtOH feeding on the liver, intestinal barrier, gut microbiota, and intestinal short-chain fatty acids (SCFAs) content. Although Huangjiu intake led to slight hepatic steatosis, it mitigated oxidative stress, inflammation, and intestinal damage relative to EtOH intake. In comparison with EtOH feeding, Huangjiu significantly improved the intestinal barrier integrity and reduced hepatic lipopolysaccharide levels by up-regulating the expression of intestinal tight junction proteins (ZO-1 and occludin) and antimicrobial activity peptides (Reg3β and Reg3γ). The administration of Huangjiu NAC partially restored alcohol-induced gut microbiota dysbiosis via recovering the abundance of Lactobacillus, Faecalibaculum, and Akkermansia. Moreover, mice receiving Huangjiu showed higher SCFAs levels (such as acetic acid and butyric acid) than those receiving EtOH. Huangjiu consumption resulted in lower hepatotoxicity than pure EtOH, at the same alcohol dose. The NAC in Huangjiu might attenuate the progression of ALD by regulating intestinal barrier function and microbiota-meditated gut ecology.
Collapse
|
18
|
Kawasoe J, Uchida Y, Kawamoto H, Miyauchi T, Watanabe T, Saga K, Tanaka K, Ueda S, Terajima H, Taura K, Hatano E. Propionic Acid, Induced in Gut by an Inulin Diet, Suppresses Inflammation and Ameliorates Liver Ischemia and Reperfusion Injury in Mice. Front Immunol 2022; 13:862503. [PMID: 35572528 PMCID: PMC9097600 DOI: 10.3389/fimmu.2022.862503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Liver ischemia and reperfusion injury (IRI) is one of the obstacles in liver surgery such as liver resection and transplantation. In this study, we investigated the preventive effect on mouse liver IRI by feeding mice with inulin, which is a heterogeneous blend of indigestible fructose polymer. Mice were fed either a control ordinary diet (CD) or an inulin diet (ID) containing 5% inulin in the CD, for 14 days before the ischemia and reperfusion (IR) maneuver. IR induced-liver damages were significantly ameliorated in the ID group, compared with those in the CD group. Feeding mice with an ID, but not a CD, elevated levels of Bacteroidetes among gut microbiota, and especially increased Bacteroides acidifaciens in mouse feces, which resulted in significant elevation of short-chain fatty acids (SCFAs) in the portal vein of mice. Among SCFAs, propionic acid (PA) was most significantly increased. The microbial gene functions related to PA biosynthesis were much higher in the fecal microbiome of the ID group compared to the CD. However, the action of PA on liver IRI has not been yet clarified. Direct intraperitoneal administration of PA alone prior to the ischemia strongly suppressed liver cell damages as well as inflammatory responses caused by liver IR. Furthermore, PA suppressed the secretion of inflammatory cytokines from peritoneal macrophages stimulated in vitro through TLR-4 with high-mobility group box 1 protein (HMGB-1), known to be released from apoptotic liver cells during the IR insult. The present study shows that PA may play a key role in the inulin-induced amelioration of mouse liver IRI.
Collapse
Affiliation(s)
- Junya Kawasoe
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Yoichiro Uchida
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
- *Correspondence: Yoichiro Uchida,
| | - Hiroshi Kawamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Tomoyuki Miyauchi
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Takeshi Watanabe
- Division of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenichi Saga
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Kosuke Tanaka
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Hiroaki Terajima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Teixeira KTR, Moreira LDSG, Borges NA, Brum I, de Paiva BR, Alvarenga L, Nakao LS, Leal VDO, Carraro-Eduardo JC, Rodrigues SD, Lima JD, Ribeiro-Alves M, Mafra D. Effect of cranberry supplementation on toxins produced by the gut microbiota in chronic kidney disease patients: A pilot randomized placebo-controlled trial. Clin Nutr ESPEN 2022; 47:63-69. [DOI: 10.1016/j.clnesp.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 12/26/2022]
|
20
|
Huang Q, Cai G, Liu T, Liu Z. Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. Int J Gen Med 2022; 15:2003-2023. [PMID: 35795301 PMCID: PMC9252587 DOI: 10.2147/ijgm.s353276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
Stroke is a highly lethal disease and disabling illness while ischemic stroke accounts for the majority of stroke. It has been found that inflammation plays a key role in the initiation and progression of stroke, and atherosclerotic plaque rupture is considered to be the leading cause of ischemic stroke. Furthermore, chronic inflammatory diseases, such as obesity, type 2 diabetes mellitus (T2DM) and hypertension, are also considered as the high-risk factors for stroke. Recently, the topic on how gut microbiota affects human health has aroused great concern. The initiation and progression of ischemic stroke has been found to have close relation with gut microbiota dysbiosis. Hence, this manuscript briefly summarizes the roles of gut microbiota in ischemic stroke and its related risk factors, and the practicability of preventing and alleviating ischemic stroke by reconstructing gut microbiota.
Collapse
Affiliation(s)
- Qinhong Huang
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Guannan Cai
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
- Correspondence: Ting Liu; Zhihua Liu, Email ;
| | - Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
| |
Collapse
|
21
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Zhang L, Ko CY, Zeng YM. Immunoregulatory Effect of Short-Chain Fatty Acids from Gut Microbiota on Obstructive Sleep Apnea-Associated Hypertension. Nat Sci Sleep 2022; 14:393-405. [PMID: 35299627 PMCID: PMC8922759 DOI: 10.2147/nss.s354742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
The intestine is the largest bacterial ecosystem and immune response organ of the human body. The microbiota regulates the metabolic and immune functions of the host through their metabolites. Short-chain fatty acids (SCFAs) are part of the metabolites of the gut microbiota (GM), providing energy to intestinal epithelial cells and regulating the immune system. A decrease in SCFA-producing bacteria, imbalanced effector T-helper cells (Th cells), and increasing corresponding inflammatory cytokine were found in both animal models and clinical patients with obstructive sleep apnea (OSA) and hypertension (HTN). Intervention with probiotics, prebiotics, or postbiotics in animal models simulating OSA-associated HTN restored blood pressure to normal, which allows the hypothesis that GM are involved in the pathophysiology of OSA-induced HTN patients through their metabolites' SCFAs; however, the exact regulatory mechanism is not completely clear. This review describes the potential mechanisms of SCFAs, a major metabolite of the GM, in the pathology of OSA-induced HTN, from the perspective of immune system regulation in the available studies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, People's Republic of China
| |
Collapse
|
23
|
Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021; 12:775526. [PMID: 34956204 PMCID: PMC8703161 DOI: 10.3389/fimmu.2021.775526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women. Nutrients 2021; 13:nu13061749. [PMID: 34063900 PMCID: PMC8224042 DOI: 10.3390/nu13061749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are the product of the anaerobic intestinal bacterial fermentation of dietary fiber and resistant starch. An abnormal intestinal microbiota may cause a reduction in the production of SCFAs, which stimulate the development of intestinal epithelial cells, nourish enterocytes, influence their maturation and proper differentiation, reduce the pH, and are an additional source of energy for the host. There have been reports of the special role of SCFAs in the regulation of glucose and lipid metabolism during pregnancy. AIM The aim of the study was to analyze the correlation of SCFAs with lipid and hepatic metabolism during pregnancy in relation to the body weight of pregnant women. MATERIAL AND METHODS This study was conducted in pregnant women divided into two groups: Obese (OW-overweight and obese women; n = 48) and lean (CG-control group; n = 48) individuals. The biochemical plasma parameters of lipid metabolism (TG, CH, LDL, HDL), inflammation (CRP), and liver function (ALT, AST, GGT) were determined in all of the subjects. SCFA analysis was performed in the stool samples to measure acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0 i), butyric acid (C 4:0 n), isovaleric acid (C 5:0 i) valeric acid (C 5:0 n), isocaproic acid (C 6:0 i), caproic acid (C 6:0 n), and heptanoic acid (C 7:0). RESULTS Statistically significant differences in the concentrations of C 3:0 and C 6:0 n were found between women in the OW group compared to the CG group. The other SCFAs tested did not differ significantly depending on BMI. The C 2:0, C 3:0, and C 4:0 n ratios showed differences in both OW and CG groups. In the OW group, no relationship was observed between the concentrations of the SCFAs tested and CRP, ALT, AST. A surprising positive relationship between C 5:0 n and all fractions of the tested lipids and branched C 5:0 with CHL, HDL, and LDL was demonstrated. In the OW group, HDL showed a positive correlation with C 3:0. However, lower GGT concentrations were accompanied by higher C 4:0 and C 5:0 values, and this tendency was statistically significant. CONCLUSIONS The results of our research show that some SCFAs are associated with hepatic lipid metabolism and CRP concentrations, which may vary with gestational weight. Obesity in pregnancy reduces the amount of SCFAs in the stool, and a decrease in the level of butyrate reduces liver function.
Collapse
|
25
|
Biesterveld BE, Siddiqui AZ, O'Connell RL, Remmer H, Williams AM, Shamshad A, Smith WM, Kemp MT, Wakam GK, Alam HB. Valproic Acid Protects Against Acute Kidney Injury in Hemorrhage and Trauma. J Surg Res 2021; 266:222-229. [PMID: 34023578 DOI: 10.1016/j.jss.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Trauma is the leading cause of death among young people. These patients have a high incidence of kidney injury, which independently increases the risk of mortality. As valproic acid (VPA) treatment has been shown to improve survival in animal models of lethal trauma, we hypothesized that it would also attenuate the degree of acute kidney injury. METHODS We analyzed data from two separate experiments where swine were subjected to lethal insults. Model 1: hemorrhage (50% blood volume hemorrhage followed by 72-h damage control resuscitation). Model 2: polytrauma (traumatic brain injury, 40% blood volume hemorrhage, femur fracture, rectus crush and grade V liver laceration). Animals were resuscitated with normal saline (NS) +/- VPA 150 mg/kg after a 1-h shock phase in both models (n = 5-6/group). Serum samples were analyzed for creatinine (Cr) using colorimetry on a Liasys 330 chemistry analyzer. Proteomic analysis was performed on kidney tissue sampled at the time of necropsy. RESULTS VPA treatment significantly (P < 0.05) improved survival in both models. (Model 1: 80% vs 20%; Model 2: 83% vs. 17%). Model 1 (Hemorrhage alone): Cr increased from a baseline of 1.2 to 3.0 in NS control animals (P < 0.0001) 8 h after hemorrhage, whereas it rose only to 2.1 in VPA treated animals (P = 0.004). Model 2 (Polytrauma): Cr levels increased from baseline of 1.3 to 2.5 mg/dL (P = 0.01) in NS control animals 4 h after injury but rose to only 1.8 in VPA treated animals (P = 0.02). Proteomic analysis of kidney tissue identified metabolic pathways were most affected by VPA treatment. CONCLUSIONS A single dose of VPA (150 mg/kg) offers significant protection against acute kidney injury in swine models of polytrauma and hemorrhagic shock.
Collapse
Affiliation(s)
| | - Ali Z Siddiqui
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rachel L O'Connell
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Surgery, Northwestern University, Chicago, IL
| | - Henriette Remmer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Alizeh Shamshad
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William M Smith
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Michael T Kemp
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Glenn K Wakam
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
26
|
Singh D, Gupta S. Butyrate: A Review on Beneficial Pharmacological and Therapeutic Effect. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201029210912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Short-chain fatty acids (SCFAs), generally acetate, propionate along with
butyrate, are aliphatic organic acids formed in the gut mucosa through bacterial fermentation of
mostly undigested nutritional carbohydrates, again to a minor degree by natural and dietary proteins,
such as mucous and shed epithelial cells.
Methods::
Many sources were used to collect information about Butyrate, such as Pub med, Google
Scholar, Pubmed, Scopus and other reliable sources.
:
Endogenous butyrate formation, absorption, and transportation by colon cells have now been well
acknowledged. Butyrate exerts its action features by way of appearing as a histone deacetylase inhibitor,
even signaling through a few protein receptors. Lately, butyrate has received special consideration
for its favorable result on intestinal equilibrium and also energy metabolism. There is a
growing interest in butyrate as its impact on epigenetic mechanisms will result in much more certain
and also efficacious healing techniques for the prevention and therapy of various diseases that
range from genetic conditions to other body disorders.
Conclusion::
With this assessment, we compile the existing information on the attributes of butyrate,
particularly its potential effects and also mechanisms involved in cancer, inflammation, diabetes
mellitus, neurological and cardiovascular disorder.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
27
|
Biesterveld BE, O'Connell R, Kemp MT, Wakam GK, Williams AM, Pai MP, Alam HB. Validation of intraosseous delivery of valproic acid in a swine model of polytrauma. Trauma Surg Acute Care Open 2021; 6:e000683. [PMID: 33791436 PMCID: PMC7978107 DOI: 10.1136/tsaco-2021-000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 11/03/2022] Open
Abstract
Background Intraosseous (IO) drug delivery may be necessary in emergency situations when intravenous access is unattainable. Valproic acid (VPA) is a histone deacetylase inhibitor that has previously been shown to improve survival in preclinical models of lethal polytrauma. In this study, we sought to compare serum levels of intravenously and IO-delivered VPA, and to analyze the effect of IO-delivered VPA. Methods Swine were subjected to 40% blood volume hemorrhage, brain injury, femur fracture, rectus crush injury and liver laceration. After 1 hour of shock, animals were randomized (n=3/group) to receive normal saline resuscitation (control), normal saline+intravenous VPA 150 mg/kg (intravenous group) or normal saline +IO VPA 150 mg/kg (IO group). Serum levels of VPA were assessed between groups, and proteomics analyses were performed on IO and control groups on heart, lung and liver samples. Results Intravenous and IO serum VPA levels were similar at 1, 3, 5 and 7 hours after starting the infusion (p>0.05). IO-delivered VPA induced significant proteomics changes in the heart, lung and liver, which were most pronounced in the lung. Biologic processes affected included inflammation, metabolism and transcriptional & translational machinery. The control group had 0% survival, and the intravenous and IO group both had 100% survival to the end of the experiment (p<0.05). Discussion IO-delivered VPA is noninferior to intravenous administration and is a viable option in emergent situations when intravenous access is unattainable. Level of evidence Not applicable (animal study).
Collapse
Affiliation(s)
- Ben E Biesterveld
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel O'Connell
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Surgery, Northwestern University, Evanston, Illinois, USA
| | - Michael T Kemp
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn K Wakam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Surgery, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
28
|
Zhang Y, Xie Q, You L, Cheung PCK, Zhao Z. Behavior of Non-Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Anti-Obesity Effect. EFOOD 2021. [DOI: 10.2991/efood.k.210310.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
29
|
Wark G, Samocha-Bonet D, Ghaly S, Danta M. The Role of Diet in the Pathogenesis and Management of Inflammatory Bowel Disease: A Review. Nutrients 2020; 13:nu13010135. [PMID: 33396537 PMCID: PMC7823614 DOI: 10.3390/nu13010135] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases, which include ulcerative colitis and Crohn’s disease, are chronic relapsing and remitting inflammatory diseases of the gastrointestinal tract that are increasing in prevalence and incidence globally. They are associated with significant morbidity, reduced quality of life to individual sufferers and are an increasing burden on society through direct and indirect costs. Current treatment strategies rely on immunosuppression, which, while effective, is associated with adverse events. Epidemiological evidence suggests that diet impacts the risk of developing IBD and modulates disease activity. Using diet as a therapeutic option is attractive to patients and clinicians alike due to its availability, low cost and few side effects. Diet may influence IBD risk and disease behaviour through several mechanisms. Firstly, some components of the diet influence microbiota structure and function with downstream effects on immune activity. Secondly, dietary components act to alter the structure and permeability of the mucosal barrier, and lastly dietary elements may have direct interactions with components of the immune response. This review will summarise the mechanisms of diet–microbial–immune system interaction, outline key studies examining associations between diet and IBD and evidence demonstrating the impact of diet on disease control. Finally, this review will outline current prescribed dietary therapies for active CD.
Collapse
Affiliation(s)
- Gabrielle Wark
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
| | - Dorit Samocha-Bonet
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Simon Ghaly
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
| | - Mark Danta
- St Vincent’s Clinical School, UNSW, Sydney, NSW 2052, Australia; (G.W.); (D.S.-B.); (S.G.)
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Sydney, SW 2010, Australia
- Correspondence:
| |
Collapse
|
30
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr 2020; 62:1-12. [PMID: 33261516 DOI: 10.1080/10408398.2020.1854675] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids with carbon atom numbers less than 6, which are important metabolites of gut microbiome. Existing research shows that SCFAs play a vital role in the health and disease of the host. First, SCFAs are the key energy source for colon and ileum cells, and affect the intestinal epithelial barrier and defense functions by regulating related gene expression. Second, SCFAs regulate the function of innate immune cells to participate in the immune system, such as macrophages, neutrophils and dendritic cells. Third, SCFAs can also regulate the differentiation of T cells and B cells and the antigen-specific adaptive immunity mediated by them. Besides, SCFAs are raw materials for sugar and lipid synthesis, which provides a theoretical basis for studying the potential role of SCFAs in regulating energy homeostasis and metabolism. There are also studies showing that SCFAs inhibit tumor cell proliferation and promote apoptosis. In this article, we summarized in detail the role of SCFAs in immunity, inflammation and metabolism, and briefly introduced the role of SCFAs in tumor cell survival. It provides a systematic theoretical basis for the study of SCFAs as potential drugs to promote human health.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Ochoa-Repáraz J, Ramelow CC, Kasper LH. A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Front Immunol 2020; 11:510113. [PMID: 33193297 PMCID: PMC7604426 DOI: 10.3389/fimmu.2020.510113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota constitutes a complex ecosystem in constant reciprocal interactions with the immune, neuroendocrine, and neural systems of the host. Recent molecular technological advances allow for the exploration of this living organ and better facilitates our understanding of the biological importance of intestinal microbes in health and disease. Clinical and experimental studies demonstrate that intestinal microbes may be intimately involved in the progression of diseases of the central nervous system (CNS), including those of affective and psychiatric nature. Gut microbes regulate neuroinflammatory processes, play a role in balancing the concentrations of neurotransmitters and could provide beneficial effects against neurodegeneration. In this review, we explore some of these reciprocal interactions between gut microbes and the CNS during experimental disease and suggest that therapeutic approaches impacting the gut-brain axis may represent the next avenue for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States
| |
Collapse
|
32
|
Deng Z, Luo XM, Liu J, Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 2020; 10:538077. [PMID: 33102249 PMCID: PMC7546212 DOI: 10.3389/fcimb.2020.538077] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The intestine is a particularly dynamic environment in which the host constantly interacts with trillions of symbiotic bacteria called the microbiota. Using quorum sensing (QS) communication, bacteria can coordinate their social behavior and influence host cell activities in a non-invasive manner. Nowadays, a large amount of research has greatly spurred the understanding of how bacterial QS communication regulates bacterial cooperative behaviors due to coexistence and host-microbe interactions. In this review, we discuss bacterial QS in the gut and its role in biofilm formation. As a biological barrier, the mucosal immune system can effectively prevent pathogenic microorganisms and other immunogenic components from entering the internal environment of the host. We focus on the relationship between biofilm and intestinal mucosal immunity, and how probiotic bacteria may regulate them. This review is to provide a theoretical basis for the development of new techniques including probiotics targeting the intestinal barrier function, thereby improving gut health.
Collapse
Affiliation(s)
- Zhaoxi Deng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Haifeng Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Haifeng Wang
| |
Collapse
|
33
|
Wang X, Zhang M, Wang W, Lv H, Zhang H, Liu Y, Tan Z. The in vitro Effects of the Probiotic Strain, Lactobacillus casei ZX633 on Gut Microbiota Composition in Infants With Diarrhea. Front Cell Infect Microbiol 2020; 10:576185. [PMID: 33072628 PMCID: PMC7533593 DOI: 10.3389/fcimb.2020.576185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
We investigated the in vitro effects of Lactobacillus casei ZX633 on gut microorganism composition in infants with diarrhea. For this purpose, 103 feces samples from healthy infants (healthy group) and 300 diarrhea samples from infants (diarrhea group) were collected, and diarrhea feces were treated with L. casei ZX633, which was previously isolated from healthy infant feces (treatment group). We used microbial dilution plate methods, high performance liquid chromatography (HPLC) and high-throughput sequencing approaches to analyze viable main microorganism counts, short chain fatty acid (SCFA) concentrations, and intestinal microbiota composition in feces, respectively. Our data showed that L. casei ZX633 supplementation increased the numbers of Escherichia coli, yeasts, lactic acid bacteria (LAB) and aerobic-bacteria, raised propionic acid levels but reduced four other SCFAs, which are close to the healthy group. Alpha diversity results indicated that microbial diversity and richness decreased in treatment group. Bacterial community analyses revealed that microbial structures of the treatment group tended toward the healthy group; i.e., Escherichia-Shigella and Clostridioides abundance increased, and there was a reduction in the abundance of Streptococcus, Bacteroides, Enterococcus and Veillonella. In conclusion, L. casei ZX633 isolated from healthy infant feces, may be effective in improving infant diarrhea microbiota, potentially providing a new probiotic strain to reduce the incidence of diarrhea associated with bacterial disease in infants.
Collapse
Affiliation(s)
- Xing Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Weidong Wang
- The Third Affiliated Hospital Xinxiang Medical University, Xinxiang, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yuan Liu
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Couto MR, Gonçalves P, Magro F, Martel F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res 2020; 159:104947. [DOI: 10.1016/j.phrs.2020.104947] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
|
35
|
Ahmed LA, Salem MB, Seif El-Din SH, El-Lakkany NM, Ahmed HO, Nasr SM, Hammam OA, Botros SS, Saleh S. Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: Role of LPS/TLR4 and autophagy pathways. Eur J Pharmacol 2020; 887:173461. [PMID: 32758573 DOI: 10.1016/j.ejphar.2020.173461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a crucial factor in pathogenesis of non-alcoholic steatohepatitis (NASH). Therefore, targeting the gut-liver axis might be a novel therapeutic approach to treat NASH. This study aimed to investigate the therapeutic effects of a probiotic (Lactobacillus reuteri) and metronidazole (MTZ) (an antibiotic against Bacteroidetes) either alone or in combination with metformin (MTF) in experimentally-induced NASH. NASH was induced by feeding rats high fat diet (HFD) for 12 weeks. MTF (150 mg/kg/day) or L. reuteri (2x109 colony forming unit/day) were given orally for 8 weeks; meanwhile, MTZ (15 mg/kg/day, p.o.) was administered for 1 week. Treatment with L. reuteri and MTZ in combination with MTF showed additional benefit compared to MTF alone concerning lipid profile, liver function, oxidative stress, inflammatory and autophagic markers. Furthermore, combined regimen succeeded to modulate acetate: propionate: butyrate ratios as well as Firmicutes and Bacteroidetes fecal contents with improvement of insulin resistance (IR). Yet, the administration of MTF alone failed to normalize Bacteriodetes and acetate contents which could be the reason for its moderate effect. In conclusion, gut microbiota modulation may be an attractive therapeutic avenue against NASH. More attention should be paid to deciphering the crosstalk mechanisms linking gut microbiota to non-alcoholic fatty liver disease (NAFLD) to identify new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha B Salem
- Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt.
| | | | | | - Hend O Ahmed
- Biochemistry, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Sami M Nasr
- Biochemistry, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Olfat A Hammam
- Pathology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Sanaa S Botros
- Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Samira Saleh
- Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
36
|
Han SJ, Kim M, Novitsky E, D'Agati V, Lee HT. Intestinal TLR9 deficiency exacerbates hepatic IR injury via altered intestinal inflammation and short-chain fatty acid synthesis. FASEB J 2020; 34:12083-12099. [PMID: 32738096 DOI: 10.1096/fj.202000314r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Mice deficient in intestinal epithelial TLR9 develop small intestinal Paneth cell hyperplasia and higher Paneth cell IL-17A levels. Since small intestinal Paneth cells and IL-17A play critical roles in hepatic ischemia reperfusion (IR) injury, we tested whether mice lacking intestinal TLR9 have increased hepatic IR injury. Mice lacking intestinal TLR9 had profoundly increased liver injury after hepatic IR compared to WT mice with exacerbated hepatocyte necrosis, apoptosis, neutrophil infiltration, and inflammatory cytokine generation. Moreover, we observed increased small intestinal inflammation and apoptosis after hepatic IR in intestinal TLR9 deficient mice. As a potential explanation for increased hepatic IR injury, fecal short-chain fatty acids butyrate and propionate levels were lower in intestinal TLR9 deficient mice. Suggesting a potential therapy for hepatic IR, exogenous administration of butyrate or propionate protected against hepatic IR injury in intestinal TLR9 deficient mice. Mechanistically, butyrate induced small intestinal IL-10 expression and downregulated the claudin-2 expression. Finally, IL-10 neutralization abolished the protective effects of butyrate against hepatic IR injury. Our studies show intestinal TLR9 deficiency results in exacerbated hepatic IR injury with increased small intestinal apoptosis and inflammation. Furthermore, short-chain fatty acids butyrate and propionate protect against hepatic IR injury and intestinal apoptosis/inflammation in intestinal TLR9 deficient mice.
Collapse
Affiliation(s)
- Sang Jun Han
- Anesthesiology Research Laboratories, Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Mihwa Kim
- Anesthesiology Research Laboratories, Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Ella Novitsky
- Anesthesiology Research Laboratories, Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - H Thomas Lee
- Anesthesiology Research Laboratories, Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression. Int J Biol Macromol 2020; 164:1565-1574. [PMID: 32735924 DOI: 10.1016/j.ijbiomac.2020.07.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/20/2023]
Abstract
The study aimed to investigate the potential attenuation effect of chitosan in liver ischemia/reperfusion injury (I/R), and its relevant protective mechanisms. Chitosan (200 mg/kg) has been administered orally for 30 days, later animals underwent liver 45 min ischemia and reperfusion for 60 min. Following treatment with chitosan, the levels of serum aminotransferases and lactate dehydrogenase were significantly reduced. Similarly, hepatic (GSH, SOD, CAT, GST and GPx) were enhanced, and the level of tissue malondialdehyde (MDA) was decreased. In addition, inflammatory cytokinesis (TNF-α and TGF-β) have recorded a significant decrease in their mRNA expression and protein levels using qPCR and ELISA respectively. Marked reduction of apoptosis has been indicated by the elevation in BCL2, and decreasing in BAX, Caspace-3 and Cytochrome-c expression levels, which furthermore confirmed by DNA fragmentation assay. The enhancement of the previous parameters resulted in a marked improvement in the liver architectures after chitosan administration. In conclusion, chitosan has proved its efficiency as an anti-inflammatory and antioxidant agent through its inhibitory effect of cytokines and reducing ROS respectively. In addition, chitosan could modulate the changes in histological structure and alleviate apoptosis induced by liver I/R, which recommend it as an efficient agent for protection against liver I/R injury.
Collapse
|
38
|
Tran NT, Tang Y, Li Z, Zhang M, Wen X, Ma H, Li S. Galactooligosaccharides and Resistant Starch Altered Microbiota and Short-Chain Fatty Acids in an in vitro Fermentation Study Using Gut Contents of Mud Crab ( Scylla paramamosain). Front Microbiol 2020; 11:1352. [PMID: 32695078 PMCID: PMC7338486 DOI: 10.3389/fmicb.2020.01352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
Dietary carbohydrates are anaerobically fermented by gut microbiota to short-chain fatty acids (SCFAs), conferring gut health benefits. Of all tested prebiotics, galactooligosaccharides (GOS) and resistant starch (RS) stimulated the SCFA production in mud crab (Scylla paramamosain), a crustacean model, to a greater extent than the other carbohydrates tested. Using in vitro anaerobic fermentation cultures, this study further explored the prebiotic potential of GOS and RS in mud crab by assessing their impacts on gut microbiota changes and SCFA production. Both GOS and RS significantly promoted SCFA production. Bacterial diversity in the GOS group was lower than in the RS or control group. GOS promoted the growth of Bacteroidetes, while RS promoted Tenericutes. A strong positive correlation was found between SCFA production and bacterial abundance; most bacteria per se correlated with each other. The findings demonstrated the prebiotic potential of GOS and RS in mud crab.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yong Tang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Zhongzhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
39
|
Elnozahi NA, Said EA, Bistawroos AE, Aly RG. Effect of sodium butyrate on gastric ulcer aggravation and hepatic injury inflicted by bile duct ligation in rats. Saudi Pharm J 2020; 28:675-682. [PMID: 32550798 PMCID: PMC7292876 DOI: 10.1016/j.jsps.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIM Cholestasis is positively associated with an increased risk of peptic ulceration. The present study investigated the aggravating effect of cholestasis on piroxicam-induced gastric ulceration. The study also evaluated the effect of sodium butyrate (SoB) on piroxicam-induced gastric ulceration in cholestatic animals and its effect on hepatic tissues and both effects were compared to ursodeoxycholic acid (UDCA) as a standard anticholestatic drug. METHODS Bile duct ligation was adopted for induction of cholestasis in rats. The cholestatic animals received saline, SoB (P.O, 400 mg/kg, twice daily) or UDCA (P.O, 30 mg/kg/day) for 4 days starting from the first day of surgery. On the 4th day, blood samples were collected for determination of serum hepatic markers, then gastric ulcers were induced by piroxicam administration (P.O, 50 mg/kg) and 4 h later, the stomach was isolated and gastric mucosa was collected for biochemical determinations. The ulcer indices for the investigated drugs were compared to omeprazole as a standard acid suppressive drug. RESULTS Piroxicam-induced ulceration was exacerbated in cholestatic rats. Gastric mucosa showed a significant elevation of MDA and TNF-α together with a significant decrease in GSH &VEGF levels. SoB treatment significantly attenuated ulcer development. The afforded protection was higher than that provided by UDCA and was not significantly different from that afforded by omeprazole. SoB significantly decreased gastric mucosal MDA and TNF-α level, whereas UDCA failed to alter these parameters. Both drugs significantly elevated GSH, VEGF and IL10 levels. Similar to UDCA, SoB showed a significant reduction in AST, ALT, GGT, ALP and bilirubin level. Histopathological examination confirmed the attenuating effect of SoB on gastric and hepatic injury. CONCLUSIONS Sodium butyrate effectively protected gastric and hepatic tissues against cholestasis-induced damage. Gastroprotection was mediated through antioxidant, anti-inflammatory and angiogenic activities.
Collapse
Affiliation(s)
- Neveen A. Elnozahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Esraa A. Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Azza E. Bistawroos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania G. Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
40
|
Pickell Z, Williams AM, Alam HB, Hsu CH. Histone Deacetylase Inhibitors: A Novel Strategy for Neuroprotection and Cardioprotection Following Ischemia/Reperfusion Injury. J Am Heart Assoc 2020; 9:e016349. [PMID: 32441201 PMCID: PMC7428975 DOI: 10.1161/jaha.120.016349] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ischemia/reperfusion injury is a complex molecular cascade that causes deleterious cellular damage and organ dysfunction. Stroke, sudden cardiac arrest, and acute myocardial infarction are the most common causes of ischemia/reperfusion injury without effective pharmacologic therapies. Existing preclinical evidence suggests that histone deacetylase inhibitors may be an efficacious, affordable, and clinically feasible therapy that can improve neurologic and cardiac outcomes following ischemia/reperfusion injury. In this review, we discuss the pathophysiology and epigenetic modulations of ischemia/reperfusion injury and focus on the neuroprotective and cardioprotective effects of histone deacetylase inhibitors. We also summarize the protective effects of histone deacetylase inhibitors for other vital organs and highlight the key research priorities for their successful translation to the bedside.
Collapse
Affiliation(s)
- Zachary Pickell
- College of Literature Science and the Arts University of Michigan Ann Arbor MI.,Department of Emergency Medicine Michigan Medicine University of Michigan Ann Arbor MI
| | - Aaron M Williams
- Department of Surgery Michigan Medicine University of Michigan Ann Arbor MI
| | - Hasan B Alam
- Department of Surgery Michigan Medicine University of Michigan Ann Arbor MI
| | - Cindy H Hsu
- Department of Emergency Medicine Michigan Medicine University of Michigan Ann Arbor MI.,Department of Surgery Michigan Medicine University of Michigan Ann Arbor MI.,Michigan Center for Integrative Research in Critical Care University of Michigan Ann Arbor MI
| |
Collapse
|
41
|
Neag MA, Catinean A, Muntean DM, Pop MR, Bocsan CI, Botan EC, Buzoianu AD. Probiotic Bacillus Spores Protect Against Acetaminophen Induced Acute Liver Injury in Rats. Nutrients 2020; 12:nu12030632. [PMID: 32120994 PMCID: PMC7146158 DOI: 10.3390/nu12030632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Acetaminophen (APAP) is one of the most used analgesics and antipyretic agents in the world. Intoxication with APAP is the main cause of acute liver toxicity in both the US and Europe. Spore-forming probiotic bacteria have the ability to resist harsh gastric and intestinal conditions. The aim of this study was to investigate the possible protective effect of Bacillus (B) species (sp) spores (B. licheniformis, B. indicus, B. subtilis, B. clausii, B. coagulans) against hepatotoxicity induced by APAP in rats. A total of 35 rats were randomly divided into seven groups: group I served as control; group II received silymarin; group III received MegaSporeBioticTM (MSB); group IV received APAP and served as the model of hepatotoxicity; group V received APAP and silymarin; group VI received APAP and MSB; group VII received APAP, silymarin and MSB. The livers for histopathological examination and blood samples were collected on the last day of the experiment. We determined aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total antioxidant capacity (TAC) levels and zonula occludens (ZO-1), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) expression. APAP overdose increased AST and ALT. It slowly decreased TAC compared to the control group, but pretreatment with silymarin and MSB increased TAC levels. Elevated plasma concentrations were identified for ZO-1 in groups treated with APAP overdose compared with those without APAP or receiving APAP in combination with silymarin, MSB or both. The changes were positively correlated with the levels of other proinflammatory cytokines (TNF-α, IL-1β). In addition, histopathological hepatic injury was improved by preadministration of MSB or silymarin versus the disease model group. Bacillus sp spores had a protective effect on acute hepatic injury induced by APAP. Pretreatment with MSB resulted in a significant reduction in serum AST, ALT, TNF-α, IL-1β, ZO-1, TAC and also hepatocyte necrosis, similar to the well-known hepatoprotective agent—silymarin.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400006, Romania
- Correspondence: ; Tel.: +40-752122466
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400010, Romania;
| | - Maria Raluca Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | - Corina Ioana Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| | | | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; (M.A.N.); (M.R.P.); (C.I.B.); (A.D.B.)
| |
Collapse
|
42
|
de Paiva BR, Esgalhado M, Borges NA, Kemp JA, Alves G, Leite PEC, Macedo R, Cardozo LFMF, de Brito JS, Mafra D. Resistant starch supplementation attenuates inflammation in hemodialysis patients: a pilot study. Int Urol Nephrol 2020; 52:549-555. [PMID: 32008198 DOI: 10.1007/s11255-020-02392-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In chronic kidney disease (CKD) patients, dysbiosis is associated with inflammation and cardiovascular risk, so many nutritional strategies are being studied to reduce these complications. Resistant starch (RS) can be considered a prebiotic that promotes many benefits, including modulation of gut microbiota which is linked to immune-modulatory effects. The aim of this study was to evaluate the effects of RS supplementation on proinflammatory cytokines in CKD patients on hemodialysis (HD). METHODS A double-blind, placebo-controlled, randomized trial was conducted with sixteen HD patients (55.3 ± 10.05 years, body mass index (BMI) 25.9 ± 5.42 kg/m2, 56% men, time on dialysis 38.9 ± 29.23 months). They were allocated to the RS group (16 g RS/day) or placebo group (manioc flour). The serum concentration of ten cytokines and growth factors was detected through a multiparametric immunoassay based on XMap-labeled magnetic microbeads (Luminex Corp, USA) before and after 4 weeks with RS supplementation. RESULTS After RS supplementation, there was a reduction of Regulated upon Activation, Normal T-Cell Expressed and Secreted (p < 0.001), platelet-derived growth factor (two B subunits) (p = 0.014) and interferon-inducible protein 10 (IP-10) (p = 0.027). The other parameters did not change significantly. CONCLUSION This preliminary result indicates that RS may contribute to a desirable profile of inflammatory markers in CKD patients.
Collapse
Affiliation(s)
- Bruna Regis de Paiva
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil. .,Hospital Universitário Antônio Pedro, Rua Marquês do Paraná nº 303, 4º andar, Niterói, Rio de Janeiro, Brazil.
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | | | - Julie Ann Kemp
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Gutemberg Alves
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Science-Dimav, National Institute of Metrology Quality and Technology-INMETRO, Duque de Caxias, RJ, Brazil
| | - Renata Macedo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Jessyca Sousa de Brito
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, RJ, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
43
|
Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ, Borges NA, Nakao LS, Mafra D. Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct 2019; 9:6508-6516. [PMID: 30468238 DOI: 10.1039/c8fo01876f] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance of gut microbiota is considered a new cardiovascular risk factor for chronic kidney disease (CKD) patients, since it is directly associated with increased uremic toxin production, inflammation and oxidative stress. Strategies such as prebiotic supplementation have been suggested to mitigate these complications. We hypothesized that prebiotic-resistant starch could ameliorate uremic toxins levels, oxidative stress, and inflammatory states in hemodialysis (HD) patients. This pilot study evaluated 31 HD patients assigned to either resistant starch (16 g of resistant starch Hi-Maize® 260) or placebo (manioc flour) supplementation, which they received for 4 weeks on alternate days through cookies on dialysis days and powder in a sachet on non-dialysis days. Levels of interleukin (IL)-6, high-sensitive C-reactive protein, thiobarbituric acid reactive substances plasma (TBARS), protein carbonylation, indoxyl sulfate (IS) and p-cresyl sulfate were measured. Anthropometric and biochemical parameters, as well as, food intake were also evaluated. As expected, resistant starch group increased fiber intake (p > 0.01), in addition the prebiotic supplementation reduced IL-6 (p = 0.01), TBARS (p > 0.01), and IS (p > 0.01) plasma levels. No significant differences were evident in the placebo group. Prebiotic-resistant starch supplementation seems to be a promising nutritional strategy to improve inflammation, oxidative stress and to reduce IS plasma levels in CKD patients on HD.
Collapse
Affiliation(s)
- Marta Esgalhado
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meng X, Zhou HY, Shen HH, Lufumpa E, Li XM, Guo B, Li BZ. Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmun Rev 2019; 18:455-475. [PMID: 30844549 DOI: 10.1016/j.autrev.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.
Collapse
Affiliation(s)
- Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Anhui, Hefei, China
| | - Eniya Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiao-Mei Li
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Biao Guo
- The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
45
|
Caesar R. Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Can J Diabetes 2019; 43:224-231. [PMID: 30929665 DOI: 10.1016/j.jcjd.2019.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiota is an important regulator of host metabolism. Metagenome analyses have demonstrated that the gut microbiota differs between patients with type 2 diabetes and healthy subjects, and several studies have shown that impaired glucose metabolism is associated with decreased levels of butyrate-producing bacteria. Gut microbiota-produced metabolites, such as short-chain fatty acids, amino acid derivatives and secondary bile acids, participate in metabolic and immunologic processes and, hence, pose putative links between the gut microbiota and glucose homeostasis. Strategies to prevent and treat type 2 diabetes through manipulation of the gut microbiota are being developed. These include replacement of the gut microbiota by fecal transplantation, consumption of fibres to promote the function and growth of beneficial bacteria and treatment with probiotic bacterial strains. Furthermore, it has been shown that many drugs, including drugs used for treatment of diabetes, have major impacts on gut microbiota and, thereby, potentially on glucose metabolism. In particular, the commonly used drug metformin has been shown to influence the functional capacity of the gut microbiota, and recent evidence indicates that this may contribute to the antidiabetes effect of metformin.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Jia Q, Xie Y, Lu C, Zhang A, Lu Y, Lv S, Zhang J. Endocrine organs of cardiovascular diseases: Gut microbiota. J Cell Mol Med 2019; 23:2314-2323. [PMID: 30688023 PMCID: PMC6433674 DOI: 10.1111/jcmm.14164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota (GM) is a collection of bacteria, fungi, archaea, viruses and protozoa, etc. They inhabit human intestines and play an essential role in human health and disease. Close information exchange between the intestinal microbes and the host performs a vital role in digestion, immune defence, nervous system regulation, especially metabolism, maintaining a delicate balance between itself and the human host. Studies have shown that the composition of GM and its metabolites are firmly related to the occurrence of various diseases. More and more researchers have demonstrated that the intestinal microbiota is a virtual 'organ' with endocrine function and the bioactive metabolites produced by it can affect the physiological role of the host. With deepening researches in recent years, clinical data indicated that the GM has a significant effect on the occurrence and development of cardiovascular diseases (CVD). This article systematically elaborated the relationship between metabolites of GM and its effects, the relationship between intestinal dysbacteriosis and cardiovascular risk factors, coronary heart disease, myocardial infarction, heart failure and hypertension and the possible pathogenic mechanisms. Regulating the GM is supposed to be a potential new therapeutic target for CVD.
Collapse
Affiliation(s)
- Qiujin Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunmiao Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Epidemiology, College of Global Public Health, New York University, New York, New York
| | - Yanmin Lu
- Tianjin Nankai Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
47
|
Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne) 2019; 10:82. [PMID: 30837951 PMCID: PMC6390476 DOI: 10.3389/fendo.2019.00082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 2 billion overweight and obese individuals worldwide, surpassing for the first time, the number of people affected by undernutrition. Obesity and its comorbidities inflict a heavy burden on the global economies and have become a serious threat to individuals' wellbeing with no immediate cure available. The causes of obesity are manifold, involving several factors including physiological, metabolic, neural, psychosocial, economic, genetics and the environment, among others. Recent advances in genome sequencing and metagenomic profiling have added another dimension to this complexity by implicating the gut microbiota as an important player in energy regulation and the development of obesity. As such, accumulating evidence demonstrate the impact of the gut microbiota on body weight, adiposity, glucose, lipid metabolism, and metabolic syndrome. This also includes the role of microbiota as a modulatory signal either directly or through its bioactive metabolites on intestinal lumen by releasing chemosensing factors known to have a major role in controlling food intake and regulating body weight. The importance of gut signaling by microbiota signaling is further highlighted by the presence of taste and nutrient receptors on the intestinal epithelium activated by the microbial degradation products as well as their role in release of peptides hormones controlling appetite and energy homeostasis. This review present evidence on how gut microbiota interacts with intestinal chemosensing and modulates the release and activity of gut peptides, particularly GLP-1 and PYY.
Collapse
Affiliation(s)
- Mihai Covasa
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Mihai Covasa
| | - Richard W. Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Toderean
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| | - Claudiu Cobuz
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| |
Collapse
|
48
|
Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol 2018; 315:G896-G907. [PMID: 30095295 DOI: 10.1152/ajpgi.00237.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of short-chain fatty acids (SCFAs) in the control of colonic motility is controversial. Germ-free (GF) mice are unable to produce these metabolites and serve as a model to study how their absence affects colonic motility. GF transit is slower than controls, and colonization of these mice improves transit and serotonin [5-hydroxytryptamine (5-HT)] levels. Our aim was to determine the role SCFAs play in improving transit and whether this is dependent on mucosal 5-HT signaling. Motility was assessed in GF mice via spatiotemporal mapping. First, motor patterns in the whole colon were measured ex vivo with or without luminal SCFA, and outflow from the colon was recorded to quantify outflow caused by individual propulsive contractions. Second, artificial fecal pellet propulsion was measured. Motility was then assessed in tryptophan hydroxylase-1 (TPH1) knockout (KO) mice, devoid of mucosal 5-HT, with phosphate buffer, butyrate, or propionate intraluminal perfusion. GF mice exhibited a lower proportion of propulsive contractions, lower volume of outflow/contraction, slower velocity of contractions, and slower propulsion of fecal pellets compared with controls. SCFAs changed motility patterns to that of controls in all parameters. Butyrate administration increased the proportion of propulsive contractions in controls yet failed to in TPH1 KO mice. Propionate inhibited propulsive contractions in all mice. Our results reveal significant abnormalities in the propulsive nature of colonic motor patterns in GF mice, explaining the decreased transit time in in vivo studies. We show that butyrate but not propionate activates propulsive motility and that this may require mucosal 5-HT. NEW & NOTEWORTHY Understanding the role that the microbiota play in governing the physiology of colonic motility is lacking. Here, we offer for the first time, to our knowledge, a detailed analysis of colonic motor patterns and pellet propulsion using spatiotemporal mapping in the absence of microbiota. We show a striking difference in germ-free and control phenotypes and attribute this to a lack of fermentation-produced short-chain fatty acid. We then show that butyrate but not propionate can restore motility and that the butyrate effect likely requires mucosal 5-hydroxytryptamine.
Collapse
Affiliation(s)
- Alexander D Vincent
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Sean P Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Waliul I Khan
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
49
|
Sun B, Jia Y, Hong J, Sun Q, Gao S, Hu Y, Zhao N, Zhao R. Sodium Butyrate Ameliorates High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease through Peroxisome Proliferator-Activated Receptor α-Mediated Activation of β Oxidation and Suppression of Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7633-7642. [PMID: 29961332 DOI: 10.1021/acs.jafc.8b01189] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays a protective role against non-alcoholic fatty liver disease (NAFLD). Sodium butyrate (NaB) has been shown to alleviate NAFLD, yet whether and how PPARα is involved in the action of NaB remains elusive. In this study, NaB administration alleviated high-fat-diet-induced NAFLD in adult rats, with a decrease of hepatic triglyceride content from 108.18 ± 5.77 to 81.34 ± 7.94 μg/mg ( p < 0.05), which was associated with a significant activation of PPARα. Nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB)-mediated nucleotide-binding domain-like receptor protein 3 signaling and pro-inflammatory cytokine release were diminished by NaB treatment. NaB-induced PPARα upregulation coincided with a reduced protein content of histone deacetylase 1 and promoted histone H3 acetyl K9 (H3K9Ac) modification on the promoter of PPARα, whereas NaB-induced suppression of inflammation was linked to significantly increased PPARα binding with p-p65. NaB acts as a histone deacetylase inhibitor to upregulate PPARα expression with enhanced H3K9Ac modification on it promoter. NaB-induced PPARα activation stimulates fatty acid β oxidation and inhibits NF-κB-mediated inflammation pathways via protein-protein interaction, thus contributing to amelioration of high-fat-diet-induced NAFLD in adult rats.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. The purpose of this review is to summarize recent studies reporting gastrointestinal microbiota aberrations associated with the systemic sclerosis disease state. RECENT FINDINGS The studies described herein have identified common changes in gut microbial composition. Specifically, patients with SSc have decreased abundance of beneficial commensal genera (e.g., Faecalibacterium, Clostridium, and Bacteroides) and increased abundance of pathobiont genera (e.g., Fusobacterium, Prevotella, Erwinia). In addition, some studies have linked specific genera with the severity of gastrointestinal symptoms in systemic sclerosis. More research is needed to further characterize the gastrointestinal microbiota in systemic sclerosis and understand how microbiota perturbations can affect inflammation, fibrosis, and clinical outcomes. Interventional studies aimed at addressing/correcting these perturbations, either through dietary modification, pro/pre-biotic supplementation, or fecal transplantation, may lead to improved outcomes for patients with systemic sclerosis.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, University of Milan, Milan, Italy
| | - Elizabeth R Volkmann
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Ste 32-59, Los Angeles, CA, 90095, USA.
| |
Collapse
|