1
|
Paton H, Sarkar P, Gurung P. An overview of host immune responses against Leishmania spp. infections. Hum Mol Genet 2025:ddaf043. [PMID: 40287829 DOI: 10.1093/hmg/ddaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leishmania spp. infections pose a significant global health challenge, affecting approximately 1 billion people across more than 88 endemic countries. This unicellular, obligate intracellular parasite causes a spectrum of diseases, ranging from localized cutaneous lesions to systemic visceral infections. Despite advancements in modern medicine and increased understanding of the parasite's etiology and associated diseases, treatment options remain limited to pentavalent antimonials, liposomal amphotericin B, and miltefosine. A deeper understanding of the interactions between immune and non-immune cells involved in the clearance of Leishmania spp. infections could uncover novel therapeutic strategies for this debilitating disease. This review highlights recent progress in elucidating how various cell types contribute to the regulation and resolution of Leishmania spp. infections.
Collapse
Affiliation(s)
- Hanna Paton
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
| | - Prabuddha Sarkar
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Center for Immunology and Immune Based Disease, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Iowa City Veterans Affairs (VA) Medical Center, 601 US-6, Iowa City, IA 52246, United States
| |
Collapse
|
2
|
Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022; 12:759021. [PMID: 35154068 PMCID: PMC8831752 DOI: 10.3389/fimmu.2021.759021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in L. mexicana -infected BALB/c mice as demonstrated in IL-4−/−, IL-13−/− and IL-4Rα-/- global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to L. mexicana. Previous studies have ruled out a role for IL-4-mediated protection on CD4+ T cells during L. mexicana infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in L. major infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by L. mexicana, since the outcome of cutaneous leishmaniasis often depends on the infecting Leishmania species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c+ DCs (CD11ccreIL-4Rα-/lox) were infected with L. mexicana promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11ccreIL-4Rα-/lox mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11ccreIL-4Rα-/lox mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11ccreIL-4Rα-/lox mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα-/lox mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or L. mexicana promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to L. mexicana. Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during L. mexicana infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against L. mexicana infection.
Collapse
Affiliation(s)
- Bernard Ong’ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zama Cele
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rebeng A. Maine
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| |
Collapse
|
3
|
Toepp AJ, Petersen CA. The balancing act: Immunology of leishmaniosis. Res Vet Sci 2020; 130:19-25. [PMID: 32109759 DOI: 10.1016/j.rvsc.2020.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Immune control of Leishmania infantum, the causative agent of most canine leishmaniosis (CanL), requires a balancing act between inflammatory and regulatory responses. This balance is specifically between the proinflammatory T helper 1 type (Th1) CD4+ T cells that are responsible for controlling parasite replication and T regulatory 1 cells which mediate an immunosuppressive, regulatory, response needed to dampen overabundant inflammation but if predominant, result in CanL progression. How this delicate immune cell interaction occurs in the dog will be highlighted in this review, focusing on the progressive changes observed within myeloid lineage cells (predominantly macrophages), B cells and T cells. After exposure to parasites, macrophages should become activated, eliminating L. infantum through release of reactive oxygen species. Unfortunately, multiple parasite and host factors can prevent macrophage activation allowing parasites to persist within them. T cells balance between a productive TH1 type CD4+ response capable of producing IFN-γ which aids macrophage activation versus T cell exhaustion which reduces T cell proliferation, IFN-γ production and allows parasite expansion within macrophages. Neutrophils and Th17 cells add to the inflammatory state, aiding in parasite removal, but also leading to pathology. A regulatory B cell population increases IL-10 production and down regulates the TH1 response allowing parasite growth. All of these immune challenges affect the balance between progression to clinical disease and maintaining sub-clinical disease. Vaccines and immunotherapies targeted at recovering or maintaining T and B cell function can be important factors in mending the immune balance required to survive CanL.
Collapse
Affiliation(s)
- Angela J Toepp
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, IA 52241, USA
| | - Christine A Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, IA 52241, USA.
| |
Collapse
|
4
|
B-1 lymphocytes are able to produce IL-10, but is not pathogenic during Leishmania (Leishmania) amazonensis infection. Immunobiology 2019; 225:151857. [PMID: 31744626 DOI: 10.1016/j.imbio.2019.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023]
Abstract
Over the years research has found an association between B lymphocytes and pathogenesis during Leishmania sp. infections. Recently we demonstrated that B-2 lymphocytes are the main producers of IL-10 during L. amazonensis infection, and that the disease severity in BALB/c mice was attributed to these IL-10-producing B-2 lymphocytes. Here, we aim to understand the role of peritoneal B-1 lymphocytes in the pathogenesis of L. amazonensis infection. We found that infection resulted in a decrease in the number of B-1a lymphocytes and increase in B-1b lymphocytes in the peritoneal cavity of WT BALB/c mice but not in B lymphocyte deficient mice (BALB/Xid) mice. In vitro interaction between B-1 lymphocytes and L. amazonensis showed that the amastigote form of the parasite was able to induce higher levels of IL-10 in B-1 lymphocytes derived from infected BALB/c mice than the promastigote. Moreover, B-1 lymphocytes derived from infected mice produced more IL-10 than B-1 lymphocytes derived from naïve mice under amastigote interaction. However, the repopulation of BALB/Xid mice with B-1 lymphocytes from WT BALB/c mice did not affect the lesion development. Together, these results suggest that although B-1 lymphocytes are able to produce IL-10 during in vitro interaction with L. amazonensis, they are not directly related to pathogenesis in vivo.
Collapse
|
5
|
Yaakov LB, Mutsafi Y, Porat Z, Dadosh T, Minsky A. Kinetics of Mimivirus Infection Stages Quantified Using Image Flow Cytometry. Cytometry A 2019; 95:534-548. [PMID: 31017743 PMCID: PMC6593739 DOI: 10.1002/cyto.a.23770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Due to the heterogeneity of viruses and their hosts, a comprehensive view of viral infection is best achieved by analyzing large populations of infected cells. However, information regarding variation in infected cell populations is lost in bulk measurements. Motivated by an interest in the temporal progression of events in virally infected cells, we used image flow cytometry (IFC) to monitor changes in Acanthamoeba polyphaga cells infected with Mimivirus. This first use of IFC to study viral infection required the development of methods to preserve morphological features of adherent amoeba cells prior to detachment and analysis in suspension. It also required the identification of IFC parameters that best report on key events in the Mimivirus infection cycle. The optimized IFC protocol enabled the simultaneous monitoring of diverse processes including generation of viral factories, transport, and fusion of replication centers within the cell, accumulation of viral progeny, and changes in cell morphology for tens of thousands of cells. After obtaining the time windows for these processes, we used IFC to evaluate the effects of perturbations such as oxidative stress and cytoskeletal disruptors on viral infection. Accurate dose‐response curves could be generated, and we found that mild oxidative stress delayed multiple stages of virus production, but eventually infection processes occurred with approximately the same amplitudes. We also found that functional actin cytoskeleton is required for fusion of viral replication centers and later for the production of viral progeny. Through this report, we demonstrate that IFC offers a quantitative, high‐throughput, and highly robust approach to study viral infection cycles and virus–host interactions. © The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Liran Ben Yaakov
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yael Mutsafi
- Biochemistry and Biophysics Center, NHLBI, NIH, 50 South Drive, 20892, Bethesda, Maryland, USA
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
6
|
Firmino-Cruz L, Ramos TD, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, Pratti JES, Cavazzoni C, Chaves SP, Oliveira Gomes DC, Morrot A, Freire-de-Lima L, Vale AM, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL. Immunomodulating role of IL-10-producing B cells in Leishmania amazonensis infection. Cell Immunol 2018; 334:20-30. [DOI: 10.1016/j.cellimm.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/06/2023]
|
7
|
Arnold KB, Chung AW. Prospects from systems serology research. Immunology 2017; 153:279-289. [PMID: 29139548 PMCID: PMC5795183 DOI: 10.1111/imm.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
Abstract
Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
8
|
Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2. Sci Rep 2017; 7:42095. [PMID: 28205579 PMCID: PMC5311873 DOI: 10.1038/srep42095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
T cell immunoglobulin mucin-3 (Tim-3) is an immune checkpoint inhibitor and its dysregulation has been related to T cell tolerance and many immune disorders, such as tumors and infection tolerance. However, the physiopathology roles of Tim-3 in innate immunity remain elusive. Here, we demonstrate that Tim-3 inhibits macrophage phagocytosis of L. monocytogenes by inhibiting the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway and increases bacterial burden. Tim-3 signaling promotes Nrf2 degradation by increasing its ubiquitination and, as a result, decreasing its nuclear translocation. CD36 and heme oxygenase-1 (HO-1), two downstream molecules in the Tim-3-Nrf2 signaling axis, are involved in the Tim-3- mediated immune evasion of L. monocytogenes both in vitro and in vivo. We here identified new mechanisms by which Tim-3 induces infection tolerance. By modulating the Tim-3 pathway, we demonstrate the feasibility of manipulating macrophage function as a potent tool for treating infectious diseases, such as Listeria infection.
Collapse
|
9
|
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017; 112:91-104. [PMID: 27642004 PMCID: PMC5857943 DOI: 10.1016/j.ymeth.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.
Collapse
Affiliation(s)
- Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Ivan A Vorobjev
- School of Science and Technology, Nazarbayev University, Kazakhstan; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia; Department of Cell Biology and Histology, M.V. Lomonosov Moscow State University, Russia
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States.
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, United States; Department of Pediatrics, Harvard Medical School, United States; School of Science and Technology, Nazarbayev University, Kazakhstan.
| |
Collapse
|
10
|
Portes A, Giestal-de-Araujo E, Fagundes A, Pandolfo P, de Sá Geraldo A, Lira MLF, Amaral VF, Lagrota-Candido J. Leishmania amazonensis infection induces behavioral alterations and modulates cytokine and neurotrophin production in the murine cerebral cortex. J Neuroimmunol 2016; 301:65-73. [DOI: 10.1016/j.jneuroim.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
|
11
|
Gardinassi LG, de Miranda Santos IKF. Comment on "Regulation of immunity during visceral Leishmania infection" and further discussions about the role of antibodies in infections with Leishmania. Parasit Vectors 2016; 9:386. [PMID: 27387545 PMCID: PMC4936235 DOI: 10.1186/s13071-016-1669-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
Comments on the article "Regulation of immunity during visceral Leishmania infection" published in Parasites & Vectors 2016, 9:118, and further discussions about the role of antibodies in infections with Leishmania.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | |
Collapse
|
12
|
Dekel E, Rivkin A, Heidenreich M, Nadav Y, Ofir-Birin Y, Porat Z, Regev-Rudzki N. Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. Methods 2016; 112:157-166. [PMID: 27350362 DOI: 10.1016/j.ymeth.2016.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Malaria is the most devastating parasitic disease of humans, caused by the unicellular protozoa of the Plasmodium genus, such as Plasmodium falciparum (Pf) and is responsible for up to a million deaths each year. Pf life cycle is complex, with transmission of the parasite between humans via mosquitos involving a remarkable series of morphological transformations. In the bloodstream, the parasites undergo asexual multiplications inside the red blood cell (RBC), where they mature through the ring (R), trophozoite (T) and schizont (S) stages, and sexual development, resulting in gametocytes (G). All symptoms of malaria pathology are caused by the asexual blood stage parasites. Flow cytometry methods were previously used to detect malaria infected (i) RBCs, in live or fixed cells, using DNA (Hoechst) and RNA (Thiazole Orange) stains. Here, by using imaging flow cytometry, we developed improved methods of identifying and quantifying each of the four parasite blood stages (R, T, S and G). This technique allows multi-channel, high resolution imaging of individual parasites, as well as detailed morphological quantification of Pf-iRBCs cultures. Moreover, by measuring iRBC morphological properties, we can eliminate corrupted and extracellular (dying) parasites from the analysis, providing accurate quantification and robust measurement of the parasitemia profile. This new method is a valuable tool in malaria molecular biology research and drug screen assays.
Collapse
Affiliation(s)
- Elya Dekel
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Rivkin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meta Heidenreich
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Nadav
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Ofir-Birin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Impact of reactive oxygen species (ROS) on the control of parasite loads and inflammation in Leishmania amazonensis infection. Parasit Vectors 2016; 9:193. [PMID: 27056545 PMCID: PMC4825088 DOI: 10.1186/s13071-016-1472-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/23/2016] [Indexed: 01/22/2023] Open
Abstract
Background Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/−) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Collapse
|
14
|
Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Menna-Barreto RFS, Almeida-Amaral EE. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action. PLoS Negl Trop Dis 2016; 10:e0004442. [PMID: 26862901 PMCID: PMC4749305 DOI: 10.1371/journal.pntd.0004442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/17/2016] [Indexed: 01/08/2023] Open
Abstract
Background The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis. Methodology/Principal Finding Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. Conclusions/Significance In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports further studies of apigenin as a candidate for the chemotherapeutic treatment of leishmaniasis. Leishmaniasis is an important neglected disease caused by protozoa of the genus Leishmania and affects more than 12 million people worldwide. Pentavalent antimonials and amphotericin B have been used for decades to treat leishmaniasis; however, these drugs result in numerous adverse side effects, have variable efficacy and are subject to parasite resistance. The lack of suitable therapy necessitates the development of novel antileishmanial compounds. In this study, we investigated the antileishmanial activity of apigenin in vitro and in vivo and described the mechanism of action against intracellular amastigotes of Leishmania amazonensis. Apigenin reduced the infection index in a dose-dependent manner and increased reactive oxygen species (ROS) generation. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, treatment with apigenin was also effective in vivo, showing oral bioavailability and significantly reducing lesion sizes and parasite burden without altering serological toxicity markers.
Collapse
Affiliation(s)
- Fernanda Fonseca-Silva
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Job D. F. Inacio
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Marilene M. Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
15
|
Jenner D, Ducker C, Clark G, Prior J, Rowland CA. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model. Cytometry A 2016; 89:328-37. [PMID: 26841315 DOI: 10.1002/cyto.a.22809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/02/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
Abstract
The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Dominic Jenner
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton down, Salisbury, SP4 0JQ, United Kingdom
| | - Catherine Ducker
- School of Biological Sciences, The University of Kent, Kent, Canterbury, CT2 7NZ, United Kingdom
| | - Graeme Clark
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton down, Salisbury, SP4 0JQ, United Kingdom
| | - Jo Prior
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton down, Salisbury, SP4 0JQ, United Kingdom
| | - Caroline A Rowland
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton down, Salisbury, SP4 0JQ, United Kingdom
| |
Collapse
|
16
|
Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 2015; 264:167-81. [PMID: 25703559 DOI: 10.1111/imr.12276] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Better understanding of the immunological components and their interactions necessary to prevent or control Mycobacterium tuberculosis (Mtb) infection in humans is critical for tuberculosis (TB) vaccine development strategies. Although the contributory role of humoral immunity in the protection against Mtb infection and disease is less defined than the role of T cells, it has been well-established for many other intracellular pathogens. Here we update and discuss the increasing evidence and the mechanisms of B cells and antibodies in the defense against Mtb infection. We posit that B cells and antibodies have a variety of potential protective roles at each stage of Mtb infection and postulate that such roles should be considered in the development strategies for TB vaccines and other immune-based interventions.
Collapse
|
17
|
Fatahaliha MH, Hosseini M, Rasolzadeh S, Bandi DS, Baradaran B, Jadidi-Niaragh F, Yousefi M. Analysis of human B cell response to recombinant Leishmania LPG3. ASIAN PAC J TROP MED 2015; 8:624-629. [DOI: 10.1016/j.apjtm.2015.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
|
18
|
Bockenstedt MM, Boggiatto PM, Jones DE. Characterization of the B cell response to Leishmania infection after anti-CD20 B cell depletion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6192-6202. [PMID: 26261496 PMCID: PMC4525830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Anti-CD20 depletion therapies targeting B cells are commonly used in malignant B cell disease and autoimmune diseases. There are concerns about the ability of B cells to respond to infectious diseases acquired either before or after B cell depletion. There is evidence that the B cell response to existing or acquired viral infections is compromised during treatment, as well as the antibody response to vaccination. Our laboratory has an experimental system using co-infection of C3H mice with both Leishmania major and Leishmania amazonensis that suggests that the B cell response is important to healing infected mice. We tested if anti-CD20 treatment would completely restrict the B cell response to these intracellular pathogens. Infected mice that received anti-CD20 B cell depletion therapy had a significant decrease in CD19(+) cells within their lymph nodes and spleens. However, splenic B cells were detected in depleted mice and an antigen-specific antibody response was produced. These results indicate that an antigen-specific B cell response towards intracellular pathogens can be generated during anti-CD20 depletion therapy.
Collapse
Affiliation(s)
- Marie M Bockenstedt
- Department of Veterinary Pathology and Preventive Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| | - Paola M Boggiatto
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| | - Douglas E Jones
- Department of Veterinary Pathology and Preventive Medicine, Iowa State University1600 S 16th St, Ames, IA 50011, USA
| |
Collapse
|
19
|
Clinical severity of visceral leishmaniasis is associated with changes in immunoglobulin g fc N-glycosylation. mBio 2014; 5:e01844. [PMID: 25467439 PMCID: PMC4324239 DOI: 10.1128/mbio.01844-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) has a high fatality rate if not treated; nevertheless, the majority of human infections with the causative agent, Leishmania infantum chagasi, are asymptomatic. Although VL patients often present with increased levels of serum immunoglobulins, the contribution of antibodies to resistance or progression to disease remains unknown. Effector and regulatory functions of antibodies rely on their interactions with type I and II Fc receptors, and these interactions are tuned by the patterns of antibody Fc N-glycosylation. In view of these facts, we applied a robust method of IgG Fc N-glycopeptide profiling of serum samples from 187 patients with VL, 177 asymptomatic individuals, 116 endemic controls (individuals residing in areas where VL is endemic) and 43 nonendemic controls (individuals living in an area where VL is not endemic). We show that, in comparison to the overall IgG Fc N-glycan profiles of asymptomatic or uninfected healthy individuals, those of patients with VL are profoundly altered. These changes correlate with levels of serum cytokines and the inflammation marker C-reactive protein. We also fitted univariate and multivariate ordinal logistic regression models to demonstrate the ability of IgG Fc N-glycosylation features and immunity regulators present in serum to predict disease severity in VL patients. Importantly, we show that Fc N-glycosylation profiles change after treatment of VL. This study introduces important concepts contributing to the understanding of antibody responses in infections with Leishmania parasites and provides new insights into the pathology of human VL. Immunoglobulins (Ig) have been shown to present pro- and anti-inflammatory functions according to the profile of carbohydrates attached to their Fc region. Glycosylation features of serum IgG have been examined in relation to several autoimmune and infectious diseases and provide a mechanistic basis for the protective or pathogenic role of antibodies. Leishmania infantum chagasi is the causative agent of visceral leishmaniasis (VL) in South America, and we show that VL patients produce IgG with patterns of Fc glycans similar to those found in other inflammatory conditions. Specific Fc N-glycosylation features and levels of serum cytokines and C-reactive protein are significantly associated with the development of severe clinical symptoms and, notably, Fc glycosylation changes after treatment. The modifications detected in the N-glycosylation features of IgG Fc from VL patients raise new perspectives on the effector or regulatory role of antibodies in immune responses elicited by infection with Leishmania parasites.
Collapse
|