1
|
Meng L, Tian XX, Xiang XY, Qi XY, Zhou HR, Xiao PY, An TQ, Meng FD, Wang HW. Epitope Mapping of Senecavirus A 3A Protein Using Monoclonal Antibodies. Transbound Emerg Dis 2025; 2025:3398924. [PMID: 40371172 PMCID: PMC12077972 DOI: 10.1155/tbed/3398924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Senecavirus A (SVA), an emerging pathogen causing vesicular disease in pigs, poses a significant threat to the swine industry. The nonstructural protein 3A of SVA plays an essential role in the viral replication cycle. In this study, we immunized mice with the prepared SVA 3A protein and produced two monoclonal antibodies (mAbs), AG4 and 2F3. MAb AG4 showed specific reactivity to the linear and conformational 3A protein, whereas mAb 2F3 did not recognize linear epitope of 3A protein. Through truncated 3A protein expression and alanine mutation analysis, we identified 1SPNEND6 as the minimal motif recognized by mAb AG4, with Asn3 being the critical residue. Additionally, we demonstrated that mAb 2F3 failed to recognize the SVA mutant with the 75QEETEG80 deletion in 3A protein, indicating that 75QEETEG80 constitutes an essential epitope for mAb 2F3. Further deletion analysis confirmed that 75QE76 is the crucial motif for mAb 2F3 recognition. Moreover, we found that 1SPNEND6 and 75QEETEG80 are highly conserved among different SVA strains and are exposed on the surface of the 3A protein. This study contributes to further explore the function of SVA 3A protein and develop diagnostic tools for SVA detection.
Collapse
Affiliation(s)
- Liang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Xiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xu-Yan Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin-Yu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Han-Rong Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pei-Yu Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Fan-Dan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hai-Wei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
2
|
Dobson SJ, Ward JC, Herod MR, Rowlands DJ, Stonehouse NJ. A highly discriminatory RNA strand-specific assay to facilitate analysis of the role of cis-acting elements in foot-and-mouth disease virus replication. J Gen Virol 2023; 104. [PMID: 37436428 DOI: 10.1099/jgv.0.001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting replication elements and provide direct evidence for their roles in negative-strand synthesis.
Collapse
Affiliation(s)
- Samuel J Dobson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph C Ward
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
3
|
Heat Shock Protein 60 Is Involved in Viral Replication Complex Formation and Facilitates Foot and Mouth Virus Replication by Stabilizing Viral Nonstructural Proteins 3A and 2C. mBio 2022; 13:e0143422. [PMID: 36106732 PMCID: PMC9601101 DOI: 10.1128/mbio.01434-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maintenance of viral protein homeostasis depends on the machinery of the infected host cells, giving us an insight into the interplay between host and virus. Accumulating evidence suggests that heat shock protein 60 (HSP60), as one molecular chaperone, is involved in regulating virus infection. However, the role of HSP60 during foot-and-mouth disease virus (FMDV) replication and its specific mechanisms have not been reported. We demonstrate that HSP60 modulates the FMDV life cycle. HSP60 plays a role at the postentry stage of the viral life cycle, including RNA replication and mRNA translation; however, HSP60 does not affect viral replication of Seneca Valley virus (SVA) or encephalomyocarditis virus (EMCV). We found that HSP60 is involved in FMDV replication complex (RC) formation. Furthermore, our results indicate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, key elements of the viral replication complex. We also show that HSP60 regulates the stability of 3A and 2C via caspase-dependent and autophagy-lysosome-dependent degradation, thereby promoting FMDV RNA synthesis and mRNA translation mediated by the RC. Additionally, we determined that the apical domain of HSP60 is responsible for interacting with 3A and 2C. The N terminus of 3A and ATPase domain of 2C are involved in binding to HSP60. Importantly, HSP60 depletion potently reduced FMDV pathogenicity in infected mice. Altogether, this study demonstrates a specific role of HSP60 in promoting FMDV replication. Furthermore, targeting host HSP60 will help us design the FMDV-specific antiviral drugs.
Collapse
|
4
|
Factors Involved in Removing the Non-Structural Protein of Foot-and-Mouth Disease Virus by Chloroform and Scale-Up Production of High-Purity Vaccine Antigens. Vaccines (Basel) 2022; 10:vaccines10071018. [PMID: 35891182 PMCID: PMC9319003 DOI: 10.3390/vaccines10071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an economically important and highly infectious viral disease, predominantly controlled by vaccination. The removal of non-structural proteins (NSPs) is very important in the process of FMD vaccine production, because vaccinated and naturally infected animals can be distinguished by the presence of NSP antibodies in the FMD serological surveillance. A previous study reported that 3AB protein, a representative of NSPs, was removed by chloroform treatment. Therefore, in this study, the causes of 3AB removal and factors affecting the effect of chloroform were investigated. As a result, the effectiveness of chloroform differed depending on the virus production medium and was eliminated by detergents. In addition, it was found that 3AB protein removal by chloroform is due to the transmembrane domain of the N-terminal region (59–76 amino acid domain). Further, industrial applicability was verified by applying the chloroform treatment process to scale-up FMD vaccine antigen production. A novel downstream process using ultrafiltration instead of polyethylene glycol precipitation for high-purity FMD vaccine antigen production was established. This result will contribute toward simplifying the conventional process of manufacturing FMD vaccine antigens and ultimately reducing the time and cost of vaccine production.
Collapse
|
5
|
Lee HW, Jiang YF, Chang HW, Cheng IC. Foot-and-Mouth Disease Virus 3A Hijacks Sar1 and Sec12 for ER Remodeling in a COPII-Independent Manner. Viruses 2022; 14:v14040839. [PMID: 35458569 PMCID: PMC9028839 DOI: 10.3390/v14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their own replication. The enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors operate on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites rather than COPI factors, is required for the replication of foot-and-mouth disease virus (FMDV). Therefore, further understanding regarding FMDV 3A could be key to explaining the differences and to understanding FMDV’s RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it was located at the ER without vesicular modification. This change was revealed using mGFP and APEX2 fusion constructs, and observed by fluorescence microscopy and electron tomography, respectively. For the other 3A truncation, the minimal region for modification was aa 42–92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12; both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1, as its C-terminus simultaneously interacted with Sec12, which could possibly enhance Sar1 activation. On the ER membrane, active Sar1 interacted with regions of aa 42–59 and aa 76–92 from 3A for vesicle formation. This mechanism was distinct from the traditional COPII pathway and could be critical for FMDV RO formation.
Collapse
Affiliation(s)
- Heng-Wei Lee
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
| | - Yi-Fan Jiang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Correspondence:
| |
Collapse
|
6
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
7
|
H L, Kumar Ganji V, Elango S, Krishnaswamy N, V U, Reddy GR, Sanyal A, Hj D. Expression of foot-and-mouth disease virus non-structural protein 3A upregulates the expression of autophagy and immune response genes in vitro. Virus Res 2020; 292:198247. [PMID: 33253718 DOI: 10.1016/j.virusres.2020.198247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Foot-and-mouth disease (FMD) virus 3A protein regulates viral replication and virulence; thus, we generated BHK-Flp-In cell line expressing 3A protein because it can serve as helper cell line for infecting a replication defective FMDV to produce a live disabled vaccine. FMDV Asia1 3A was amplified, cloned in pcDNA vector and confirmed by sequencing. The 3A gene was subcloned in pcEF/FRT vector and transfected in BHK-Flp-In cells and transformed cells were selected by resistance to hygromycin and susceptibility to zeocin antibiotics. The BHK-Flp-In cells expressing 3A protein was designated as Flp-In3A. Western blot and immunofluorescence confirmed that Flp-In3A cells expressed FMDV3A protein. Absolute quantitation of 3A transcripts showed peak expression at 6 h in Flp-In3A cells followed by a sharp decrease and the cells showed growth retardation for 2 h post-seeding with cytoplasmic vacuolations with advancing time. Response to infection with FMDV Asia1 virus revealed smaller plaques in Flp-In3A cells. Then, we investigated the effect of FMDV3A expression on autophagy related genes by real time PCR. Most autophagy genes were upregulated by 9 h post-seeding of which, autophagosome marker LC3B-II was demonstrated by western blot. Transient expression of 3A in PK-15 cells upregulated both Th1 and Th2 genes. The study suggested that the expressed 3A protein of FMDV cannot be used for 3A trans-supplementation in helper cells; however, it acts as an endogenously processed antigen that has the potential to elicit immune response in vivo.
Collapse
Affiliation(s)
- Lalzampuia H
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | | | - Subhadra Elango
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - Narayanan Krishnaswamy
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - Umapathi V
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - Golla Ramalinga Reddy
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - Aniket Sanyal
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India
| | - Dechamma Hj
- FMD Research Lab, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024, India.
| |
Collapse
|
8
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
9
|
Cellular Vimentin Interacts with Foot-and-Mouth Disease Virus Nonstructural Protein 3A and Negatively Modulates Viral Replication. J Virol 2020; 94:JVI.00273-20. [PMID: 32493819 DOI: 10.1128/jvi.00273-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids that is in most FMDVs examined to date, and it plays important roles in virus replication, virulence, and host range. To better understand the role of 3A during FMDV infection, we used coimmunoprecipitation followed by mass spectrometry to identify host proteins that interact with 3A in FMDV-infected cells. Here, we report that cellular vimentin is a host binding partner for 3A. The 3A-vimentin interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pull down, and immunofluorescence assays. Alanine-scanning mutagenesis indicated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin. Using reverse genetics, we demonstrate that mutations in 3A that disrupt the interaction between 3A and vimentin are also critical for virus growth. Overexpression of vimentin significantly suppressed the replication of FMDV, whereas knockdown of vimentin significantly enhanced FMDV replication. However, chemical disruption of the vimentin network by acrylamide resulted in a significant decrease in viral yield, suggesting that an intact vimentin network is needed for FMDV replication. These results indicate that vimentin interacts with FMDV 3A and negatively regulates FMDV replication and that the vimentin-3A interaction is essential for FMDV replication. This study provides information that should be helpful for understanding the molecular mechanism of FMDV replication.IMPORTANCE Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, host range, and virulence. To further understand the role of 3A during FMDV infection, identification of host cell factors that interact with FMDV 3A is needed. Here, we found that vimentin is a direct binding partner of FMDV 3A, and manipulation of vimentin has a negative effect on virus replication. We also demonstrated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin and that the 3A-vimentin interaction is critical for viral replication since the full-length cDNA clone harboring mutations in 3A, which were disrupt 3A-vimentin reactivity, could not produce viable virus progeny. This study provides information that not only provides us a better understanding of the mechanism of FMDV replication but also helps in the development of novel antiviral strategies in the future.
Collapse
|
10
|
Ren X, Zhang S, Gao X, Guo X, Xin T, Zhu H, Jia H, Hou S. Experimental immunization of mice with a recombinant bovine enterovirus vaccine expressing BVDV E0 protein elicits a long-lasting serologic response. Virol J 2020; 17:88. [PMID: 32611446 PMCID: PMC7331136 DOI: 10.1186/s12985-020-01338-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 01/22/2023] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is a cause of substantial economic loss to the cattle industry worldwide, and there are currently no effective treatment or preventive measures. Bovine enterovirus (BEV) has a broad host range with low virulence and is a good candidate as a viral vaccine vector. In this study, we explored new insertion sites for the expression of exogenous genes in BEV, and developed a recombinant infectious cDNA clone for BEV BJ101 strain expressing BVDV E0 protein. Methods A recognition site for the viral proteinase 3Cpro was inserted in the GpBSK-BEV plasmid at the 2C/3A junction by overlapping PCR. Subsequently, the optimized full-length BVDV E0 gene was inserted to obtain the recombinant infectious plasmid GpBSK-BEV-E0. The rescued recombinant virus was obtained by transfection with linearized plasmid. Expression of BVDV E0 in the recombinant virus was confirmed by PCR, western blotting, and immunofluorescence analysis, and the genetic stability was tested in MDBK cells over 10 passages. We further tested the ability of the recombinant virus to induce an antibody response in mice infected with BVDV and immunized them with the recombinant virus and parental strain. Results The rescued recombinant virus rBEV-E0 was identified and confirmed by western blot and indirect immunofluorescence. The sequencing results showed that the recombinant virus remained stable for 10 passages without genetic changes. There was also no significant difference in growth dynamics and plaque morphology between the recombinant virus and parental virus. Mice infected with both recombinant and parental viruses produced antibodies against BEV VP1, while the recombinant virus also induced antibodies against BVDV E0. Conclusion A new insertion site in the BEV vector can be used for the prevention and control of both BEV and BVDV, providing a useful tool for future research on the development of viral vector vaccines.
Collapse
Affiliation(s)
- Xiao Ren
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Shan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| | - Shaohua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| |
Collapse
|
11
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
12
|
Fu SZ, Yang WP, Ru Y, Zhang KS, Wang Y, Liu XT, Li D, Zheng HX. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3. Cell Signal 2019; 64:109393. [PMID: 31445188 DOI: 10.1016/j.cellsig.2019.109393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
Abstract
The components of foot-and-mouth disease virus (FMDV) interact with host cellular proteins to promote self-replication and evade the host immune response. Previous studies have shown that FMDV 3A, 2C and 2B proteins interact with host cellular proteins involved in FMDV replication. However, whether the other host proteins have an impact on FMDV replication is less understood. In this study, we identified DDX56 as a positive regulator of FMDV replication. DDX56 overexpression increased FMDV replication, whereas DDX56 knockdown had the opposite effect. DDX56 interacted and cooperated with FMDV 3A to inhibit the type I interferon by reducing the phosphorylation of IRF3. Moreover, the D166 site of DDX56 played a role in increasing FMDV replication and cooperating with FMDV 3A to inhibit the phosphorylation of IRF3. Additionally, knockdown of DDX56 or FMDV 3A results also showed that DDX56 cooperated with FMDV 3A to inhibit the phosphorylation of IRF3. These results suggest that the interaction between FMDV 3A protein and the host protein DDX56 is critical for FMDV replication.
Collapse
Affiliation(s)
- Shao-Zu Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen-Ping Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke-Shan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiang-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
13
|
Identification of a conserved linear epitope using monoclonal antibody against non-structural protein 3A of foot-and-mouth disease virus with potential for differentiation between infected and vaccinated animals. Res Vet Sci 2019; 124:178-185. [PMID: 30904721 DOI: 10.1016/j.rvsc.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of cloven-hoofed animals. Vaccination is a key element in the control of FMD among countries where the disease is enzootic. Differentiating infected from vaccinated animals in herds after immunization is an important component of effective eradication strategies. Non-structural protein (NSP) 3A of FMDV is as part of a larger detected antigen that is used for this differential diagnosis. Here, we generated a specific monoclonal antibody (MAb) against FMDV non-structural protein called 3A10, and further defined the linear epitopes recognized by the MAb 3A10 using a series of peptides that expressed GST-fused protein. Using Western blot, it was showed that the 5-aa peptide 126ERTLP130 of 3A was the minimal epitope reactive to MAb 3A10. Alanine-scanning mutagenesis analysis revealed that Arg127 and Leu129 were crucial for MAb 3A10 binding to 126ERTLP130. Furthermore, sequence alignment analysis, indicated that the epitope 126ERTLP130 recognized by 3A10 was shown to be conserved among seven serotypes of FMDV strains. The synthetic peptide Elisa demonstrated that this epitope peptide could be recognized by sera from FMDV-infected pigs and cattle, but negative reactivity to unvaccinated and vaccinated healthy animal sera. Thus, the MAb reagents and the linear epitopes defined herein provide theoretical and technical support for the development of diagnostic tools for infection differentiating FMDV infected from vaccinated animals.
Collapse
|
14
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
15
|
Diez M, Trotta M, Alfonso V, Taboga O, López MG. Recombinant occlusion bodies of baculovirus as carriers of a non-structural protein of foot-and-mouth disease virus. 3 Biotech 2018; 8:457. [PMID: 30370198 DOI: 10.1007/s13205-018-1482-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022] Open
Abstract
Here, we developed a diagnostic ELISA for foot-and-mouth disease using recombinant occlusion bodies (rOBs) of baculovirus. We fused Δ3AB1-3, a polypeptide derived from non-structural proteins of foot-and-mouth disease virus, to polyhedrin (POLH), the major constituent of OBs, under polh promoter. To further assess the most convenient strategy to improve yields, we designed two recombinant baculoviruses, vPOLH and vPOLHE44G. These carried the sequence of the fusion protein POLH-Δ3AB1-3 with an additional copy in cis of polh or polh E44G , respectively, under p10 promoter. Our results show that both viruses expressed POLH-Δ3AB1-3, which was detected by western blot in purified rOBs with anti-POLH and anti-3AB1 antibodies. We also found that vPOLHE44G produced larger polyhedra and a significant increase of antigen yield (p < 0.01). Furthermore, the chimeric protein POLH-Δ3AB1-3 was recognized by sera from experimentally infected animals, showing that translational fusion to POLH does not alter the antigenicity of Δ3AB1-3. Finally, the rOBs were successfully used in an ELISA test to differentiate infected from vaccinated animals. Taken together, these results demonstrate the great potential of rOBs to develop diagnostic schemes adaptable to animal infectious diseases.
Collapse
Affiliation(s)
- Michay Diez
- 1Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, (1686), Hurlingham, Argentina
| | - Myrian Trotta
- 2Instituto de Virología, INTA, De los Reseros y N. Repetto s/n, (1686), Hurlingham, Argentina
| | - Victoria Alfonso
- 1Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, (1686), Hurlingham, Argentina.,3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Oscar Taboga
- 1Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, (1686), Hurlingham, Argentina.,3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Gabriela López
- 1Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, (1686), Hurlingham, Argentina.,3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host Cell Lipid Metabolism. Antimicrob Agents Chemother 2018; 62:AAC.00360-18. [PMID: 29712653 DOI: 10.1128/aac.00360-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mosquito-borne flaviviruses are a group of RNA viruses that constitute global threats for human and animal health. Replication of these pathogens is strictly dependent on cellular lipid metabolism. We have evaluated the effect of the pharmacological activation of AMP-activated protein kinase (AMPK), a master regulator of lipid metabolism, on the infection of three medically relevant flaviviruses, namely, West Nile virus (WNV), Zika virus (ZIKV), and dengue virus (DENV). WNV is responsible for recurrent outbreaks of meningitis and encephalitis, affecting humans and horses worldwide. ZIKV has caused a recent pandemic associated with birth defects (microcephaly), reproductive disorders, and severe neurological complications (Guillain-Barré syndrome). DENV is the etiological agent of the most prevalent mosquito-borne viral disease, which can induce a potentially lethal complication called severe dengue. Our results showed, for the first time, that activation of AMPK using the specific small molecule activator PF-06409577 reduced WNV, ZIKV, and DENV infection. This antiviral effect was associated with an impairment of viral replication due to the modulation of host cell lipid metabolism exerted by the compound. These results support that the pharmacological activation of AMPK, which currently constitutes an important pharmacological target for human diseases, could also provide a feasible approach for broad-spectrum host-directed antiviral discovery.
Collapse
|
17
|
Lotufo CM, Wilda M, Giraldez AN, Grigera PR, Mattion NM. Relevance of the N-terminal and major hydrophobic domains of non-structural protein 3A in the replicative process of a DNA-launched foot-and-mouth disease virus replicon. Arch Virol 2018. [PMID: 29536193 DOI: 10.1007/s00705-018-3795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.
Collapse
Affiliation(s)
- Cecilia M Lotufo
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Maximiliano Wilda
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| | - Adrian N Giraldez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Pablo R Grigera
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Nora M Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
18
|
Herod MR, Gold S, Lasecka-Dykes L, Wright C, Ward JC, McLean TC, Forrest S, Jackson T, Tuthill TJ, Rowlands DJ, Stonehouse NJ. Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways. PLoS Pathog 2017; 13:e1006666. [PMID: 28968463 PMCID: PMC5638621 DOI: 10.1371/journal.ppat.1006666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol. Uniquely, foot-and-mouth disease virus (FMDV) encodes three similar copies of 3B (3B1-3), thus providing a convenient natural system to explore the role(s) of 3B in the processing cascade. Using a replicon system, we confirmed by genetic deletion or functional inactivation that each copy of 3B appears to function independently to prime FMDV RNA replication. However, we also show that deletion of 3B3 prevents replication and that this could be reversed by introducing mutations at the C-terminus of 3B2 that restored the natural sequence at the 3B3-3C cleavage site. In vitro translation studies showed that precursors with 3B3 deleted were rapidly cleaved to produce 3CD but that no polymerase, 3Dpol, was detected. Complementation assays, using distinguishable replicons bearing different inactivating mutations, showed that replicons with mutations within 3Dpol could be recovered by 3Dpol derived from "helper" replicons (incorporating inactivation mutations in all three copies of 3B). However, complementation was not observed when the natural 3B-3C cleavage site was altered in the "helper" replicon, again suggesting that a processing abnormality at this position prevented the production of 3Dpol. When mutations affecting polyprotein processing were introduced into an infectious clone, viable viruses were recovered but these had acquired compensatory mutations in the 3B-3C cleavage site. These mutations were shown to restore the wild-type processing characteristics when analysed in an in vitro processing assay. Overall, this study demonstrates a dual functional role of the small primer peptide 3B3, further highlighting how picornaviruses increase genetic economy.
Collapse
Affiliation(s)
- Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Joseph C. Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Thomas C. McLean
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie Forrest
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
Yuan T, Wang H, Li C, Yang D, Zhou G, Yu L. T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication. Virus Genes 2017. [PMID: 28634750 DOI: 10.1007/s11262-017-1480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays an important role in viral replication, virulence, and host range. It has been shown that deletions of 10 or 19-20 amino acids in the C-terminal half of 3A attenuate serotype O and C FMDVs, which replicate poorly in bovine cells but normally in porcine-derived cells, and the C-terminal half of 3A is not essential for serotype Asia1 FMDV replication in BHK-21 cells. In this study, we constructed a 3A deletion FMDV mutant based on a serotype O FMDV, the wild-type virus O/YS/CHA/05, with a 60-amino acid deletion in the 3A protein sequence, between residues 84 and 143. The rescued virus O/YS/CHA/05-Δ3A exhibited slower growth kinetics and formed smaller plaques compared to O/YS/CHA/05 in both BHK-21 and IBRS-2 cells, indicating that the 60-amino acid deletion in the 3A protein impaired FMDV replication. After 14 passages in BHK-21 cells, the replication capacity of the passaged virus O/YS/CHA/05-Δ3A-P14 returned to a level similar to the wild-type virus, suggesting that amino acid substitutions responsible for the enhanced replication capacity occurred in the genome of O/YS/CHA/05-Δ3A-P14. By sequence analysis, two amino acid substitutions, P153L in VP1 and T135I in 2C, were found in the O/YS/CHA/05-Δ3A-P14 genome compared to the O/YS/CHA/05-Δ3A genome. Subsequently, the amino acid substitutions VP1 P153L and 2C T135I were separately introduced into O/YS/CHA/05-Δ3A to rescue mutant viruses for examining their growth kinetics. Results showed that the 2C T135I instead of the VP1 P153L enhanced the virus replication capacity. The 2C T135I substitution also improved the replication of the wild-type virus, indicating that the effect of 2C T135I substitution on FMDV replication is not associated with the 3A deletion. Furthermore, our results showed that the T135I substitution in the nonstructural protein 2C enhanced O/YS/CHA/05 replication through promoting viral RNA synthesis.
Collapse
Affiliation(s)
- Tiangang Yuan
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China.
| | - Chen Li
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, People's Republic of China.
| |
Collapse
|
20
|
Rodríguez Pulido M, Sáiz M. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response. Front Cell Infect Microbiol 2017; 7:252. [PMID: 28660175 PMCID: PMC5468379 DOI: 10.3389/fcimb.2017.00252] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.
Collapse
Affiliation(s)
- Miguel Rodríguez Pulido
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| |
Collapse
|
21
|
Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. J Virol 2016; 90:6864-6883. [PMID: 27194768 PMCID: PMC4944275 DOI: 10.1128/jvi.00469-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.
Collapse
|
22
|
Herod MR, Loundras EA, Ward JC, Tulloch F, Rowlands DJ, Stonehouse NJ. Employing transposon mutagenesis to investigate foot-and-mouth disease virus replication. J Gen Virol 2016; 96:3507-3518. [PMID: 26432090 DOI: 10.1099/jgv.0.000306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Probing the molecular interactions within the foot-and-mouth disease virus (FMDV) RNA replication complex has been restricted in part by the lack of suitable reagents. Random insertional mutagenesis has proven an excellent method to reveal domains of proteins essential for virus replication as well as locations that can tolerate small genetic insertions. Such insertion sites can subsequently be adapted by the incorporation of commonly used epitope tags, facilitating their detection with commercially available reagents. In this study, we used random transposon-mediated mutagenesis to produce a library of 15 nt insertions in the FMDV nonstructural polyprotein. Using a replicon-based assay, we isolated multiple replication-competent as well as replication-defective insertions. We adapted the replication-competent insertion sites for the successful incorporation of epitope tags within FMDV non-structural proteins for use in a variety of downstream assays. Additionally, we showed that replication of some of the replication-defective insertion mutants could be rescued by co-transfection of a ‘helper’ replicon, demonstrating a novel use of random mutagenesis to identify intergenomic trans-complementation. Both the epitope tags and replication-defective insertions identified here will be valuable tools for probing interactions within picornavirus replication complexes.
Collapse
Affiliation(s)
- Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fiona Tulloch
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
Biswal JK, Ranjan R, Pattnaik B. Diagnostic application of recombinant non-structural protein 3A to detect antibodies induced by foot-and-mouth disease virus infection. Biologicals 2016; 44:157-62. [DOI: 10.1016/j.biologicals.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022] Open
|
24
|
The carboxy-terminal half of nonstructural protein 3A is not essential for foot-and-mouth disease virus replication in cultured cell lines. Arch Virol 2016; 161:1295-305. [PMID: 26935917 DOI: 10.1007/s00705-016-2805-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/20/2016] [Indexed: 01/26/2023]
Abstract
In foot-and-mouth disease (FMD)-endemic parts of the globe, control is mainly implemented by preventive vaccination with an inactivated purified vaccine. ELISAs detecting antibodies to the viral nonstructural proteins (NSP) distinguish FMD virus (FMDV)-infected animals in the vaccinated population (DIVA). However, residual NSPs present in the vaccines are suspected to be a cause of occasional false positive results, and therefore, an epitope-deleted negative marker vaccine strategy is considered a more logical option. In this study, employing a serotype Asia 1 FMDV infectious cDNA clone, it is demonstrated that while large deletions differing in size and location in the carboxy-terminal half of 3A downstream of the putative hydrophobic membrane-binding domain (deletion of residues 86-110, 101-149, 81-149 and 81-153) are tolerated by the virus without affecting its infectivity in cultured cell lines, deletions in the amino-terminal half (residues 5-54, 21-50, 21-80, 55-80 and 5-149) containing the dimerization and the transmembrane domains are deleterious to its multiplication. Most importantly, the virus could dispense with the entire carboxy-terminal half of 3A (residues 81-153) including the residues involved in the formation of the 3A-3B1 cleavage junction. The rescue of a replication-competent FMDV variant carrying the largest deletion ever in 3A (residues 81-153) and the fact that the deleted region contains a series of linear B-cell epitopes inspired us to devise an indirect ELISA based on a recombinant 3A carboxy-terminal fragment and to evaluate its potential to serve as a companion diagnostic assay for differential serosurveillance if the 3A-truncated virus is used as a marker vaccine.
Collapse
|
25
|
Li D, Lei C, Xu Z, Yang F, Liu H, Zhu Z, Li S, Liu X, Shu H, Zheng H. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway. Sci Rep 2016; 6:21888. [PMID: 26883855 PMCID: PMC4756384 DOI: 10.1038/srep21888] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Caoqi Lei
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhisheng Xu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shu Li
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hongbing Shu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
26
|
González-Magaldi M, Vázquez-Calvo Á, de la Torre BG, Valle J, Andreu D, Sobrino F. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication. PLoS One 2015; 10:e0141415. [PMID: 26505190 PMCID: PMC4624780 DOI: 10.1371/journal.pone.0141415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.
Collapse
Affiliation(s)
| | - Ángela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Beatriz G. de la Torre
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Valle
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Rai DK, Lawrence P, Pauszek SJ, Piccone ME, Knowles NJ, Rieder E. Bioinformatics and Molecular Analysis of the Evolutionary Relationship between Bovine Rhinitis A Viruses and Foot-And-Mouth Disease Virus. Bioinform Biol Insights 2015; 9:43-58. [PMID: 27081310 PMCID: PMC4822724 DOI: 10.4137/bbi.s37223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/25/2022] Open
Abstract
Bovine rhinitis viruses (BRVs) cause mild respiratory disease of cattle. In this study, a near full-length genome sequence of a virus named RS3X (formerly classified as bovine rhinovirus type 1), isolated from infected cattle from the UK in the 1960s, was obtained and analyzed. Compared to other closely related Aphthoviruses, major differences were detected in the leader protease (Lpro), P1, 2B, and 3A proteins. Phylogenetic analysis revealed that RS3X was a member of the species bovine rhinitis A virus (BRAV). Using different codon-based and branch-site selection models for Aphthoviruses, including BRAV RS3X and foot-and-mouth disease virus, we observed no clear evidence for genomic regions undergoing positive selection. However, within each of the BRV species, multiple sites under positive selection were detected. The results also suggest that the probability (determined by Recombination Detection Program) for recombination events between BRVs and other Aphthoviruses, including foot-and-mouth disease virus was not significant. In contrast, within BRVs, the probability of recombination increases. The data reported here provide genetic information to assist in the identification of diagnostic signatures and research tools for BRAV.
Collapse
Affiliation(s)
- Devendra K Rai
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, USA.; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Paul Lawrence
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, USA
| | - Steve J Pauszek
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, USA
| | - Maria E Piccone
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, USA
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, UK
| | - Elizabeth Rieder
- Agricultural Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, USA
| |
Collapse
|