1
|
Blackburn GS, Keeling CI, Prunier J, Keena MA, Béliveau C, Hamelin R, Havill NP, Hebert FO, Levesque RC, Cusson M, Porth I. Genetics of flight in spongy moths (Lymantria dispar ssp.): functionally integrated profiling of a complex invasive trait. BMC Genomics 2024; 25:541. [PMID: 38822259 PMCID: PMC11140922 DOI: 10.1186/s12864-023-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/22/2023] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.
Collapse
Affiliation(s)
- Gwylim S Blackburn
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada.
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada.
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Christopher I Keeling
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Melody A Keena
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | - Catherine Béliveau
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
| | - Richard Hamelin
- Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, 3032V6T 1Z4, Canada
| | - Nathan P Havill
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | | | - Roger C Levesque
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Michel Cusson
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
2
|
Zhang Q, Zhang C, Zhong H, He Q, Xia ZY, Hu Y, Liao YX, Yi L, Lu ZJ, Yu HZ. A Combinatorial Single-Molecule Real-Time and Illumina Sequencing Analysis of Postembryonic Gene Expression in the Asian Citrus Psyllid Diaphorina citri. INSECTS 2024; 15:391. [PMID: 38921106 PMCID: PMC11203772 DOI: 10.3390/insects15060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Huanglongbing (HLB) is a systemic plant disease caused by 'Candidatus Liberibacter asiaticus (CLas)' and transmitted by Diaphorina citri. D. citri acquires the CLas bacteria in the nymph stage and transmits it in the adult stage, indicating that molting from the nymph to adult stages is crucial for HLB transmission. However, the available D. citri reference genomes are incomplete, and gene function studies have been limited to date. In the current research, PacBio single-molecule real-time (SMRT) and Illumina sequencing were performed to investigate the transcriptome of D. citri nymphs and adults. In total, 10,641 full-length, non-redundant transcripts (FLNRTs), 594 alternative splicing (AS) events, 4522 simple sequence repeats (SSRs), 1086 long-coding RNAs (lncRNAs), 281 transcription factors (TFs), and 4459 APA sites were identified. Furthermore, 3746 differentially expressed genes (DEGs) between nymphs and adults were identified, among which 30 DEGs involved in the Hippo signaling pathway were found. Reverse transcription-quantitative PCR (RT-qPCR) further validated the expression levels of 12 DEGs and showed a positive correlation with transcriptome data. Finally, the spatiotemporal expression pattern of genes involved in the Hippo signaling pathway exhibited high expression in the D. citri testis, ovary, and egg. Silencing of the D. citri transcriptional co-activator (DcYki) gene significantly increased D. citri mortality and decreased the cumulative molting. Our results provide useful information and a reliable data resource for gene function research of D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Zhao-Ying Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu Hu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu-Xin Liao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
3
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
4
|
Zhao X, Shao T, Su Y, Zhang J, Gou X, Liu W, Zhang J. Cuticle Protein LmACP19 Is Required for the Stability of Epidermal Cells in Wing Development and Morphogenesis of Locusta migratoria. Int J Mol Sci 2022; 23:ijms23063106. [PMID: 35328528 PMCID: PMC8950940 DOI: 10.3390/ijms23063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during this process remain unclear. In our previous work, a wing cuticle protein gene LmACP19 was identified in Locusta migratoria based on transcriptomic data. Here, we report on its roles in wing development and morphogenesis. LmACP19 encodes a chitin-binding protein belonging to RR-2 subfamily of CPR family, which is highly homologous to CP19-like proteins in other insect species. RT-qPCR analysis revealed that LmACP19 is highly expressed in wing pads of fifth-instar nymphs, and its encoded protein is located in two layers of epidermal cells but not in the cuticle. Suppression of LmACP19 by RNA interference led to abnormal wing pad and wing morphogenesis with curved, unclosed, and wrinkled phenotypes during nymph-to-nymph and nymph-to-adult transition, respectively. Furthermore, deficiency of LmACP19 affected arrangement of epidermal cells, resulting in apoptosis. Our results indicate that LmACP19 is indispensable for wing development and normal morphological structure by maintaining the stability of epidermal cells during L. migratoria molting.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| | - Ti Shao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yazhi Su
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xin Gou
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| |
Collapse
|
5
|
The transcription factor of the Hippo signaling pathway, LmSd, regulates wing development in Locusta migratoria. Int J Biol Macromol 2021; 179:136-143. [PMID: 33667555 DOI: 10.1016/j.ijbiomac.2021.02.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Scalloped (Sd) is transcription factor that regulates cell proliferation and organ growth in the Hippo pathway. In the present research, LmSd was identified and characterized, and found to encode an N-terminal TEA domain and a C-terminal YBD domain. qRT-PCR showed that the LmSd transcription level was highest in the fifth-instar nymphs and very little was expressed in embryos. Tissue-specific analyses showed that LmSd was highly expressed in the wing. Immunohistochemistry indicated that LmSd was highly abundant in the head, prothorax, and legs during embryonic development. LmSd dsRNA injection resulted in significantly down-regulated transcription and protein expression levels compared with dsGFP injection. Gene silencing of LmSd resulted in deformed wings that were curved, wrinkled, and failed to fully expand. Approximately 40% of the nymphs had wing pads that were not able to close normally during molting from fifth-instar nymphs into adults. After silencing of LmSd, the transcription levels of cell division genes were suppressed and the expression levels of apoptosis genes were significantly up-regulated. Our results reveal that LmSd plays an important role in wing formation and development by controlling cell proliferation and inhibiting apoptosis.
Collapse
|
6
|
Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis. J Ginseng Res 2020; 44:123-134. [PMID: 32148395 PMCID: PMC7033338 DOI: 10.1016/j.jgr.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
7
|
Zhou C, Jin J, Peng C, Wen Q, Wang G, Wei W, Jiang X, Price M, Cui K, Meng Y, Song Z, Li J, Zhang X, Fan Z, Yue B. Comparative genomics sheds light on the predatory lifestyle of accipitrids and owls. Sci Rep 2019; 9:2249. [PMID: 30783131 PMCID: PMC6381159 DOI: 10.1038/s41598-019-38680-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Raptors are carnivorous birds including accipitrids (Accipitridae, Accipitriformes) and owls (Strigiformes), which are diurnal and nocturnal, respectively. To examine the evolutionary basis of adaptations to different light cycles and hunting behavior between accipitrids and owls, we de novo assembled besra (Accipiter virgatus, Accipitridae, Accipitriformes) and oriental scops owl (Otus sunia, Strigidae, Strigiformes) draft genomes. Comparative genomics demonstrated four PSGs (positively selected genes) (XRCC5, PRIMPOL, MDM2, and SIRT1) related to the response to ultraviolet (UV) radiation in accipitrids, and one PSG (ALCAM) associated with retina development in owls, which was consistent with their respective diurnal/nocturnal predatory lifestyles. We identified five accipitrid-specific and two owl-specific missense mutations and most of which were predicted to affect the protein function by PolyPhen-2. Genome comparison showed the diversification of raptor olfactory receptor repertoires, which may reflect an important role of olfaction in their predatory lifestyle. Comparison of TAS2R gene (i.e. linked to tasting bitterness) number in birds with different dietary lifestyles suggested that dietary toxins were a major selective force shaping the diversity of TAS2R repertoires. Fewer TAS2R genes in raptors reflected their carnivorous diet, since animal tissues are less likely to contain toxins than plant material. Our data and findings provide valuable genomic resources for studying the genetic mechanisms of raptors' environmental adaptation, particularly olfaction, nocturnality and response to UV radiation.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiazheng Jin
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Weideng Wei
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Kai Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
8
|
Li R, Jiang GF, Dong SY. A head transcriptome provides insights into odorant binding proteins of the bamboo grasshopper. Genes Genomics 2018; 40:991-1000. [PMID: 30155713 DOI: 10.1007/s13258-018-0706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022]
Abstract
The bamboo grasshopper Ceracris kiangsu is a famous bamboo pest in China. The identification of genes involved in olfactory behavior of C. kiangsu is necessary for better understanding the molecular basis and expression profiles of behavior ecology. However, necessary genomic and transcriptomic data are lacking in the species, limiting control efficiency. The primary objective of this study was to find and describe odorant binding proteins in the head of the bamboo grasshopper. We performed the paired-end sequencing on an Illumina Hiseq2000 following the vendor's recommended protocol. Functional annotation was performed by comparison with public databases. OBP genes were first identified using BLASTN and BLASTX results from our C. kiangsu datebase, which was established from the date of transcriptome sequencing. The gene-specific primers were used to conduct RT-PCR to detect the tissue distribution of OBPs using a SYBR Premix ExTaq kit following the manufacturer's instructions with a real-time thermal cycler. We obtained more than 133 million clean reads derived from the C. Kiangsu heads using the next-generation sequencing, which were assembled into 260,822 unique sequences (average 814 bp). We have detected eight putative odorant binding protein genes (OBPs) of C. kiangsu for the first time, and analyzed the expression profiles of the OBPs in different tissues (head, antenna, mouthpart, body and leg). Our results reveal that the eight OBPs display a clear divergence, strongly indicating that they possessed diverse functions, and thus provides comprehensive sequence analysis for elucidating the molecular basis of OBPs in C. kiangsu. In addition, we find that the relative expression levels of OBP1, OBP2 and OBP8 are significantly higher in the antennae as compared to the other OBP genes, suggesting that these three OBP genes play crucial roles in the locust's odorant discrimination. In general, this is the first study to characterize the complete head transcriptome of C. kiangsu using high-throughput sequencing. The study opens a window for functional characterization of the OBPs of C. kiangsu, with potential for new or refined applications of semiochemicals for control of this notorious pest.
Collapse
Affiliation(s)
- Ran Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Guo-Fang Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, People's Republic of China.
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Si-Yu Dong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
9
|
Zhao L, Zhang X, Qiu Z, Huang Y. De Novo Assembly and Characterization of the Xenocatantops brachycerus Transcriptome. Int J Mol Sci 2018; 19:E520. [PMID: 29419810 PMCID: PMC5855742 DOI: 10.3390/ijms19020520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Grasshoppers are common pests but also have high nutritional and commercial potential. Xenocatantops brachycerus Willemse (Orthoptera: Acrididae) is an economically important grasshopper species that is reared in China. Using the IlluminaHiSeqTM 4000 platform, three transcriptomes of the adult male, adult female, and nymph of X. brachycerus were sequenced. A total of 133,194,848 clean reads were obtained and de novo assembled into 43,187 unigenes with an average length of 964 bp (N50 of 1799 bp); of these, 24,717 (57.23%) unigenes matched known proteins. Based on these annotations, many putative transcripts related to X. brachycerus growth, development, environmental adaptability, and metabolism of nutritional components and bioactive components were identified. In addition, the expression profiles of all three transcriptome datasets were analyzed, and many differentially expressed genes were detected using RSEM and PossionDis. Unigenes. Unigenes with functions associated with growth and development exhibited higher transcript levels at the nymph stage, and unigenes associated with environmental adaptability showed increased transcription in the adults. These comprehensive X. brachycerus transcriptomic data will provide a useful molecular resource for gene prediction, molecular marker development, and studies on signaling pathways in this species and will serve as a reference for the efficient use of other grasshoppers.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China.
| | - Xinmei Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Zhongying Qiu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, Shaanxi, China.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
10
|
Feindt W, Oppenheim SJ, DeSalle R, Goldstein PZ, Hadrys H. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS One 2018; 13:e0189898. [PMID: 29329292 PMCID: PMC5766104 DOI: 10.1371/journal.pone.0189898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
The evolution, development and coloration of insect wings remains a puzzling subject in evolutionary research. In basal flying insects such as Odonata, genomic research regarding bauplan evolution is still rare. Here we focus on the world's largest odonate species-the "forest giant" Megaloprepus caerulatus, to explore its potential for looking deeper into the development and evolution of wings. A recently discovered cryptic species complex in this genus previously considered monotypic is characterized by morphological differences in wing shape and color patterns. As a first step toward understanding wing pattern divergence and pathways involved in adaptation and speciation at the genomic level, we present a transcriptome profiling of M. caerulatus using RNA-Seq and compare these data with two other odonate species. The de novo transcriptome assembly consists of 61,560 high quality transcripts and is approximately 93% complete. For almost 75% of the identified transcripts a possible function could be assigned: 48,104 transcripts had a hit to an InterPro protein family or domain, and 28,653 were mapped to a Gene Ontology term. In particular, we focused on genes related to wing development and coloration. The comparison with two other species revealed larva-specific genes and a conserved 'core' set of over 8,000 genes forming orthologous clusters with Ischnura elegans and Ladona fulva. This transcriptome may provide a first point of reference for future research in odonates addressing questions surrounding the evolution of wing development, wing coloration and their role in speciation.
Collapse
Affiliation(s)
- Wiebke Feindt
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- Leibniz University Hannover, Hannover, Germany
| | - Sara J. Oppenheim
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Robert DeSalle
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Paul Z. Goldstein
- Systematic Entomology Laboratory (USDA-ARS), National Museum of Natural History, Washington, DC, United States of America
| | - Heike Hadrys
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
- Yale University, Department of Ecology & Evolutionary Biology, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
Abbasi R, Marcus JM. A new A-P compartment boundary and organizer in holometabolous insect wings. Sci Rep 2017; 7:16337. [PMID: 29180689 PMCID: PMC5704014 DOI: 10.1038/s41598-017-16553-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Decades of research on the highly modified wings of Drosophila melanogaster has suggested that insect wings are divided into two Anterior-Posterior (A-P) compartments separated by an axis of symmetry. This axis of symmetry is created by a developmental organizer that establishes symmetrical patterns of gene expression that in turn pattern the A-P axis of the wing. Butterflies possess more typical insect wings and butterfly wing colour patterns provide many landmarks for studies of wing structure and development. Using eyespot colour pattern variation in Vanessa butterflies, here we show an additional A-P axis of symmetry running between wing sectors 3 and 4. Boundaries of Drosophila mitotic clones suggest the existence of a previously undetected Far-Posterior (F-P) compartment boundary that coincides with this additional A-P axis. A similar compartment boundary is evident in butterfly mosaic gynandromorphs. We suggest that this additional compartment boundary and its associated developmental organizer create an axis of wing colour pattern symmetry and a gene expression-based combinatorial code, permitting each insect wing compartment to acquire a unique identity and allowing for the individuation of butterfly eyespots.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
spalt is functionally conserved in Locusta and Drosophila to promote wing growth. Sci Rep 2017; 7:44393. [PMID: 28300136 PMCID: PMC5353606 DOI: 10.1038/srep44393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
Locusta has strong fly wings to ensure its long distance migration, but the molecular mechanism that regulates the Locusta wing development is poorly understood. To address the developmental mechanism of the Locusta flying wing, we cloned the Dpp target gene spalt (sal) and analyzed its function in wing growth in the Locusta. The Locusta wing size is apparently reduced with vein defects when sal is interfered by injection of dsRNA, indicating that sal is required for locust wing growth and vein formation. This function is conserved during the Drosophila wing development. To better understand sal’s function in wing growth, we then used Drosophila wing disc as a model for further study. We found that sal promotes cell proliferation in the whole wing disc via positive regulation of a microRNA bantam. Our results firstly unravel sal’s function in the Locusta wing growth and confirm a highly conserved function of sal in Locusta and Drosophila.
Collapse
|
13
|
Zhang T, He K, Wang Z. Transcriptome Comparison Analysis of Ostrinia furnacalis in Four Developmental Stages. Sci Rep 2016; 6:35008. [PMID: 27713521 PMCID: PMC5054526 DOI: 10.1038/srep35008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
The Asian corn borer, Ostrinia furnacalis, is one of the most destructive pests of maize and causes huge losses in maize yield each year. In order to characterize the different developmental stages, a high-throughput sequencing platform was employed to perform de novo transcriptome assembly and gene expression analysis for the egg, larva, pupa and adult stages. Approximately 185 million reads were obtained, trimmed, and assembled into 42,638 unigenes with an average length of 801.94 bp and an N50 length of 1,152 bp. These unigene sequences were annotated and classified by performing Gene Ontology (GO), Cluster of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classifications. Comparison of the gene expression profiles of the two transitional stages revealed dramatic differences. Some differentially expressed genes are associated with digestion, cuticularization olfactory recognition and wing formation as well as growth and development. In total, 12 putative insect development-related genes were identified. Real-time quantitative PCR (RT-qPCR) results and sequencing based on relative expression levels of randomly selected genes confirmed these expression patterns. These data represent the most comprehensive transcriptomic resource currently available for O. furnacalis and will facilitate the study of developmental pathways, cuticularization, wing formation and olfactory recognition.
Collapse
Affiliation(s)
- Tiantao Zhang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
14
|
Qi X, Zhang L, Han Y, Ren X, Huang J, Chen H. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes. BMC Genomics 2015; 16:1086. [PMID: 26689283 PMCID: PMC4687109 DOI: 10.1186/s12864-015-2309-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/15/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The most common ladybird beetle, Coccinella septempunctata L., is an excellent predator of crop pests such as aphids and white flies, and it shows a wide range of adaptability, a large appetite and a high reproductive ability. Diapause research plays an important role in the artificial propagation and shelf-life extension of insect products. Although this lady beetle's regulatory, physiological and biochemical characteristics in the diapause period are well understood, the molecular mechanism of diapause remains unknown. Therefore, we collected female adults in three different states, i.e., non-diapause, diapause and diapause termination, for transcriptome sequencing. RESULTS After transcriptome sequencing using the Illumina HiSeq 2500 platform with pretreatment, a total of 417.6 million clean reads from nine samples were filtered using the program FASTX (version 0.0). Additionally, 106,262 contigs were assembled into 82,820 unigenes with an average length of 921 bp and an N50 of 1,241 bp. All of the unigenes were annotated through BLASTX alignment against the Nr or UniProt database, and 37,872 unigenes were matched. We performed further analysis of these unigenes using the Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Through pairwise comparisons of the non-diapause (ND), diapause (D), and diapause-terminated (DT) groups, 3,501 and 1,427 differentially expressed genes (DEGs) were identified between D and ND and between DT and D, respectively. Moreover, 443 of the DEGs were specifically expressed during the diapause period (i.e., DEGs that were expressed at the highest or lowest levels during diapause compared with the other stages). GO function and KEGG pathway enrichment were performed on all DEGs and showed that RNA-directed DNA polymerase activity and fatty acid metabolism were significantly affected. Furthermore, eight specific expressed genes were selected for validation using qRT-PCR. Among these eight genes, seven genes were up-regulated, and one gene was down-regulated; the change trends of the eight genes were the same between the qRT-PCR and RNA-seq analysis results. CONCLUSIONS In this study, a new method for collecting and identifying diapause insects was described. We generated a vast quantity of transcriptome data from C. septempunctata L., providing a resource for gene function research. The diapause-associated genes that we identified establish a foundation for future studies on the molecular mechanisms of diapause.
Collapse
Affiliation(s)
- Xiaoyang Qi
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS, Beijing, 100081, China. .,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lisheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS, Beijing, 100081, China.
| | - Yanhua Han
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS, Beijing, 100081, China.
| | - Xiaoyun Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS, Beijing, 100081, China.
| | - Jian Huang
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hongyin Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS, Beijing, 100081, China.
| |
Collapse
|
15
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
16
|
Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, Ongyerth M, Bitarello BD, Schiöth HB, Hofreiter M, Stadler PF, Prüfer K, Lambert D, Kelso J, Schöneberg T. Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol 2015; 16:147. [PMID: 26201466 PMCID: PMC4511969 DOI: 10.1186/s13059-015-0711-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. RESULTS We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. CONCLUSIONS The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Arunkumar Krishnan
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Markus Sällman Almén
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Leon Huynen
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Sonja J Prohaska
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Matthias Ongyerth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| | - Helgi B Schiöth
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics, Institute for Biochemistry and Biology, University Potsdam, Potsdam, 14469, Germany.
| | - Peter F Stadler
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - David Lambert
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|