1
|
Zhang W, Li K, Jian A, Zhang G, Zhang X. Prospects for potential therapy targeting immune‑associated factors in endometriosis (Review). Mol Med Rep 2025; 31:57. [PMID: 39717957 PMCID: PMC11715623 DOI: 10.3892/mmr.2024.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Endometriosis (EM) is a chronic inflammatory disease that is one of the most common causes of gynecological systemic lesions in women before menopause. The most representative histological feature of EM is that the endometrium appears outside of the uterine cavity, often in the ovary. Although it is generally accepted that the epithelial and stromal cells of the ectopic endometrium are not malignant, they still have numerous similarities to malignant tumors, including considerable changes to the immune microenvironment (immune monitoring disorder), the creation of a specific hormone environment, high levels of oxidative stress, chronic inflammation and abnormal immune cell regulation. The pathogenesis of EM is not fully understood, which makes it difficult to identify specific biomarkers and potential therapeutic targets for early disease diagnosis and effective treatment. However, considerable progress has been made in this field over the past few decades. The purpose of the present review is to summarize the confirmed and potential biomarkers for EM, and to identify potential therapeutic targets based on changes in immunological factors (including natural killer cells, macrophages, the complement system, miRNA and P‑selectin) in the ectopic endometrial tissue. It is hoped that this work can be used as the basis for identifying accurate diagnostic markers for EM and developing personalized immune‑targeted therapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Kang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aiwen Jian
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
2
|
Teworte S, Behrens MC, Widhe M, Gurzeler LA, Hedhammar M, Luciani P. A Fibronectin (FN)-Silk 3D Cell Culture Model as a Screening Tool for Repurposed Antifibrotic Drug Candidates for Endometriosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409126. [PMID: 39967482 DOI: 10.1002/smll.202409126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/17/2024] [Indexed: 02/20/2025]
Abstract
This study advances sustainable pharmaceutical research for endometriosis by developing in vitro 3D cell culture models of endometriotic pathophysiology that allow antifibrotic drug candidates to be tested. Fibrosis is a key aspect of endometriosis, yet current cell models to study it remain limited. This work aims to bridge the translational gap between in vitro fibrosis research and preclinical testing of non-hormonal drug candidates. When grown in a 3D matrix of sustainably produced silk protein functionalized with a fibronectin-derived cell adhesion motif (FN-silk), endometrial stromal and epithelial cells respond to transforming growth factor beta-1 (TGF-β1) in a physiological manner as probed at the messenger RNA (mRNA) level. For stromal cells, this response to TGF-β1 is not observed in spheroids, while epithelial cell spheroids behave similarly to epithelial cell FN-silk networks. Pirfenidone, an antifibrotic drug approved for the treatment of idiopathic pulmonary fibrosis, reverses TGF-β1-induced upregulation of mRNA transcripts involved in fibroblast-to-myofibroblast transdifferentiation of endometrial stromal cells in FN-silk networks, supporting pirfenidone's potential as a repurposed non-hormonal endometriosis therapy. Overall, endometrial stromal cells cultured in FN-silk networks-which are composed of a sustainably produced, fully defined FN-silk protein-recapitulate fibrotic cellular behavior with high fidelity and enable antifibrotic drug testing.
Collapse
Affiliation(s)
- Sarah Teworte
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Mark C Behrens
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Mona Widhe
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Lukas-Adrian Gurzeler
- RNA Biology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - My Hedhammar
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| |
Collapse
|
3
|
Unser AC, Monsivais D. Integral Roles of the TGFβ Signaling Pathway in Uterine Function and Disease. Endocrinology 2025; 166:bqaf032. [PMID: 39950970 PMCID: PMC11843549 DOI: 10.1210/endocr/bqaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Indexed: 02/22/2025]
Abstract
The uterus is a complex organ that requires precise signaling networks to mediate functions necessary for homeostasis and reproductive processes. The transforming growth factor β (TGFβ) superfamily regulates integral signaling pathways throughout many physiological processes, including cell proliferation, differentiation, and development. In this review, we summarize the current understanding of how the TGFβ signaling family controls key uterine functions, with a specific focus on the endometrium. These uterine functions include endometrial receptivity, implantation, decidualization, placentation, remodeling, and regeneration. Improving our understanding of the signaling networks that regulate these processes is integral to identifying, diagnosing, and treating uterine and reproductive diseases such as endometriosis, adenomyosis, recurrent pregnancy loss, and recurrent implantation failure.
Collapse
Affiliation(s)
- Anna Catherine Unser
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models, & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models, & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Liao Z, Monsivais D, Matzuk MM. The long road of drug development for endometriosis - Pains, gains, and hopes. J Control Release 2024; 376:429-440. [PMID: 39427778 PMCID: PMC11884332 DOI: 10.1016/j.jconrel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Endometriosis, defined by the growth of endometrial tissues outside of the uterine cavity, is a global health burden for ∼200 million women. Patients with endometriosis usually present with chronic pain and are often diagnosed with infertility. The pathogenesis of endometriosis is still an open question; however, tissue stemness and immunological and genetic factors have been extensively discussed in the establishment of endometriotic lesions. Current treatments for endometriosis can be categorized into pharmacological management of hormone levels and surgical removal of the lesions. Both approaches have limited efficacy, with recurrences often encountered; thus, there is no complete cure for the disease or its symptoms. We review the current knowledge of the etiology of endometriosis and summarize the advancement of pharmacological management of endometriosis. We also discuss our efforts in applying DNA-encoded chemistry technology (DEC-Tec) to identify bioactive molecules for the treatment of endometriosis, offering new avenues for developing non-hormonal treatment options for those patients who seek spontaneous pregnancies.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Lu J, Wang X, Shi X, Jiang J, Liu L, Liu L, Ren C, Lu C, Yu Z. PAK5-mediated PKM2 phosphorylation is critical for anaerobic glycolysis in endometriosis. Front Med 2024; 18:1054-1067. [PMID: 39331255 DOI: 10.1007/s11684-024-1069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/08/2024] [Indexed: 09/28/2024]
Abstract
P21-activated kinase 5 (PAK5) belongs to the PAK-II subfamily, which is an important regulator of cell survival, adhesion, and motility. However, the functions of PAK5 in endometriosis remain unclear. Here, PAK5 is strikingly upregulated in endometriosis. Furthermore, the knockdown of PAK5 or its inhibitor GNE 2861 blocks the development of endometriosis, which is equally demonstrated in PAK5-knockout mice. In addition, PAK5 promotes glycolysis by enhancing the protein stability of pyruvate kinase 2 (PKM2) in endometriotic cells, which is a key enzyme for glucose metabolism. Moreover, the phosphorylation of PKM2 at Ser519 by PAK5 mediates endometriosis cell proliferation and metastasis. Collectively, PAK5 plays an indispensable role in endometriosis. Our findings demonstrate that PAK5 is an important target for the treatment of endometriosis.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Xiaodan Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Junyi Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China.
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261042, China.
| |
Collapse
|
6
|
Riaz MA, Mecha EO, Omwandho COA, Zeppernick F, Meinhold-Heerlein I, Konrad L. The Different Gene Expression Profile in the Eutopic and Ectopic Endometrium Sheds New Light on the Endometrial Seed in Endometriosis. Biomedicines 2024; 12:1276. [PMID: 38927483 PMCID: PMC11201009 DOI: 10.3390/biomedicines12061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The changes in endometrial cells, both in the eutopic endometrium of patients with and without endometriosis and in lesions at ectopic sites, are frequently described and often compared to tumorigenesis. In tumorigenesis, the concept of "seed and soil" is well established. The seed refers to tumor cells with metastatic potential, and the soil is any organ or tissue that provides a suitable environment for the seed to grow. In this systematic review (PRISMA-S), we specifically compared the development of endometriosis with the "seed and soil" hypothesis. To determine changes in the endometrial seed, we re-analyzed the mRNA expression data of the eutopic and ectopic endometrium, paying special attention to the epithelial-mesenchymal transition (EMT). We found that the similarity between eutopic endometrium without and with endometriosis is extremely high (~99.1%). In contrast, the eutopic endometrium of patients with endometriosis has a similarity of only 95.3% with the ectopic endometrium. An analysis of EMT-associated genes revealed only minor differences in the mRNA expression levels of claudin family members without the loss of other cell-cell junctions that are critical for the epithelial phenotype. The array data suggest that the changes in the eutopic endometrium (=seed) are quite subtle at the beginning of the disease and that most of the differences occur after implantation into ectopic locations (=soil).
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Department of Gynecology and Obstetrics, University of Giessen, 35392 Giessen, Germany; (M.A.R.); (F.Z.); (I.M.-H.)
| | | | | | - Felix Zeppernick
- Department of Gynecology and Obstetrics, University of Giessen, 35392 Giessen, Germany; (M.A.R.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, University of Giessen, 35392 Giessen, Germany; (M.A.R.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, University of Giessen, 35392 Giessen, Germany; (M.A.R.); (F.Z.); (I.M.-H.)
| |
Collapse
|
7
|
Ochoa Bernal MA, Fazleabas AT. The Known, the Unknown and the Future of the Pathophysiology of Endometriosis. Int J Mol Sci 2024; 25:5815. [PMID: 38892003 PMCID: PMC11172035 DOI: 10.3390/ijms25115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Endometriosis is one of the most common causes of chronic pelvic pain and infertility, affecting 10% of women of reproductive age. A delay of up to 9 years is estimated between the onset of symptoms and the diagnosis of endometriosis. Endometriosis is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in research on endometriosis have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". There are several theories on the etiology of the disease, but the origin of endometriosis remains unclear. This review addresses the role of microRNAs (miRNAs), which are naturally occurring post-transcriptional regulatory molecules, in endometriotic lesion development, the inflammatory environment within the peritoneal cavity, including the role that cytokines play during the development of the disease, and how animal models have helped in our understanding of the pathology of this enigmatic disease.
Collapse
Affiliation(s)
- Maria Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
8
|
Cheng YH, Huang CW, Lien HT, Hsiao YY, Weng PL, Chang YC, Cheng JH, Lan KC. A Preliminary Investigation of the Roles of Endometrial Cells in Endometriosis Development via In Vitro and In Vivo Analyses. Int J Mol Sci 2024; 25:3873. [PMID: 38612685 PMCID: PMC11011664 DOI: 10.3390/ijms25073873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Endometriosis is a complex gynecological disease that affects more than 10% of women in their reproductive years. While surgery can provide temporary relief from women's pain, symptoms often return in as many as 75% of cases within two years. Previous literature has contributed to theories about the development of endometriosis; however, the exact pathogenesis and etiology remain elusive. We conducted a preliminary investigation into the influence of primary endometrial cells (ECs) on the development and progression of endometriosis. In vitro studies, they were involved in inducing Lipopolysaccharide (LPS) in rat-isolated primary endometrial cells, which resulted in increased nuclear factor-kappa B (NF-κB) and vascular endothelial growth factor (VEGF) mRNA gene expression (quantitative polymerase chain reaction analysis, qPCR) and protein expression (western blot analysis). Additionally, in vivo studies utilized autogenic and allogeneic transplantations (rat to rat) to investigate endometriosis-like lesion cyst size, body weight, protein levels (immunohistochemistry), and mRNA gene expression. These studies demonstrated that estrogen upregulates the gene and protein regulation of cytoskeletal (CK)-18, transforming growth factor-β (TGF-β), VEGF, and tumor necrosis factor (TNF)-α, particularly in the peritoneum. These findings may influence cell proliferation, angiogenesis, fibrosis, and inflammation markers. Consequently, this could exacerbate the occurrence and progression of endometriosis.
Collapse
Affiliation(s)
- Yin-Hua Cheng
- Department of Medical Research and Development, Jen-Ai Hospital, Taichung 412, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Ching-Wei Huang
- Division of Urology, Department of Surgery, Jen-Ai Hospital, Taichung 412, Taiwan;
| | - Hao-Ting Lien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Yu-Yang Hsiao
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Yung-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
9
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. The Expression of TGF-β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24032453. [PMID: 36768775 PMCID: PMC9917033 DOI: 10.3390/ijms24032453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
The molecular pathogenesis of endometriosis has been associated with pathological alterations of protein expression via disturbances in homeostatic genes, miRNA expression profiles, and signaling pathways that play an essential role in the epithelial-mesenchymal transition (EMT) process. TGF-β1 has been hypothesized to play a key role in the development and progression of endometriosis, but the activation of a specific mechanism via the TGF-β-SMAD-ILK axis in the formation of endometriotic lesions is poorly understood. The aim of this study was to assess the expression of EMT markers (TGF-β1, SMAD3, ILK) and miR-21 in ectopic endometrium (ECE), in its eutopic (EUE) counterpart, and in the endometrium of healthy women. The expression level of the tested genes and miRNA was also evaluated in peripheral blood mononuclear cells (PBMC) in women with and without endometriosis. Fifty-four patients (n = 54; with endometriosis, n = 29, and without endometriosis, n = 25) were enrolled in the study. The expression levels (RQ) of the studied genes and miRNA were evaluated using qPCR. Endometriosis patients manifested higher TGF-β1, SMAD3, and ILK expression levels in the eutopic endometrium and a decreased expression level in the ectopic lesions in relation to control tissue. Compared to the endometrium of healthy participants, miR-21 expression levels did not change in the eutopic endometrium of women with endometriosis, but the RQ was higher in their endometrial implants. In PBMC, negative correlations were found between the expression level of miR-21 and the studied genes, with the strongest statistically significant correlation observed between miR-21 and TGF-β1. Our results suggest the loss of the endometrial epithelial phenotype defined by the differential expression of the TGF-β1, SMAD3 and ILK genes in the eutopic and ectopic endometrium. We concluded that the TGF-β1-SMAD3-ILK signaling pathway, probably via a mechanism related to the EMT, may be important in the pathogenesis of endometriosis. We also identified miR-21 as a possible inhibitor of this TGF-β1-SMAD3-ILK axis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Sławomir Jędrzejczyk
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Institute of Medical Expertises, 91-205 Lodz, Poland
| | | |
Collapse
|
11
|
Jiang T, Chen Y, Gu X, Miao M, Hu D, Zhou H, Chen J, Teichmann AT, Yang Y. Review of the Potential Therapeutic Effects and Molecular Mechanisms of Resveratrol on Endometriosis. Int J Womens Health 2023; 15:741-763. [PMID: 37200624 PMCID: PMC10187648 DOI: 10.2147/ijwh.s404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/08/2023] [Indexed: 05/20/2023] Open
Abstract
Endometriosis is a hormone-dependent inflammatory disease characterized by the existence of endometrial tissues outside the uterine cavity. Pharmacotherapy and surgery are the current dominant management options for endometriosis. The greater incidence of recurrence and reoperation after surgical treatment as well as the adverse effects of medical approaches predispose patients to potential limitations for their long-term usage. Consequently, it is essential to explore novel supplementary and alternative drugs to ameliorate the therapeutic outcomes of endometriotic patients. Resveratrol is a phenolic compound that has attracted increasing interest from many researchers due to its pleiotropic biological activities. Here, we review the possible therapeutic efficacies and molecular mechanisms of resveratrol against endometriosis based on in vitro, animal, and clinical studies. The potential mechanisms of resveratrol include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-oxidative stress, anti-invasive and anti-adhesive effects, thereby suggesting that resveratrol is a promising candidate for endometriosis. Because most studies have investigated the effectiveness of resveratrol on endometriosis via in vitro trials and/or experimental animal models, further high-quality clinical trials should be undertaken to comprehensively estimate the clinical application feasibility of resveratrol on endometriosis.
Collapse
Affiliation(s)
- Tao Jiang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuan Chen
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Chen
- Reproductive Medicine Center, The Second People’s Hospital of Yibin, Yibin, 644000, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Correspondence: Alexander Tobias Teichmann; Youzhe Yang, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People’s Republic of China, Email ;
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
12
|
Chen Y, Ma Y, Zhai Y, Yang H, Zhang C, Lu Y, Wei W, Cai Q, Ding X, Lu S, Fang Z. Persistent dysregulation of genes in the development of endometriosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1175. [PMID: 36467354 PMCID: PMC9708481 DOI: 10.21037/atm-22-4806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND Endometriosis is a chronic condition that affects women of child-bearing age. Since the etiology and pathogenesis of endometriosis have not been fully elucidated, it is important to investigate the mechanisms that lead to the deterioration of endometriosis. METHODS In this study, the transcriptome data of patients with normal, mild, and severe endometriosis were examined using the GSE51981 dataset obtained from the Gene Expression Omnibus database. Short Time Series Expression Miner (STEM) was used to screen the genes with continuous expression disorder in the development process, and the core genes were identified by constructing a protein-protein interaction network. The molecular mechanisms of endometriosis were examined using enrichment analysis. Finally, the transcription factors that regulate the core genes were predicted and the comprehensive mechanisms involved in the development of endometriosis were examined. RESULTS A total of 3,472 differentially expressed genes were identified from the normal, mild, and severe endometriosis samples. These were allocated into 12 modules and HRAS, HSP90AA1, TGFB1, TP53, and UBC were selected as the core genes. Enrichment analysis showed that the genes in modules 6, 7, and 9 were significantly related to oxygen levels, metallic processes, and hormone levels, respectively. Transcription factor prediction analysis showed that TP53 regulates HRAS to participate in immune related signaling pathways. Drug prediction analysis identified 792 drugs that interact with the targeted core genes. CONCLUSIONS This study explored the molecular mechanisms involved in the development of endometriosis and identified potential biomarkers of endometriosis. This data may provide novel targets and research directions for the diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Yanli Chen
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yanqun Ma
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yanzhi Zhai
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Haiyan Yang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Chunlan Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yingxin Lu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Wei Wei
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qing Cai
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xuewen Ding
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shan Lu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ziyu Fang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
13
|
Penariol LBC, Thomé CH, Tozetti PA, Paier CRK, Buono FO, Peronni KC, Orellana MD, Covas DT, Moraes MEA, Silva WA, Rosa-e-Silva JC, Ferriani RA, Faça VM, Poli-Neto OB, Tiezzi DG, Meola J. What Do the Transcriptome and Proteome of Menstrual Blood-Derived Mesenchymal Stem Cells Tell Us about Endometriosis? Int J Mol Sci 2022; 23:11515. [PMID: 36232817 PMCID: PMC9570451 DOI: 10.3390/ijms231911515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Given the importance of menstrual blood in the pathogenesis of endometriosis and the multifunctional roles of menstrual mesenchymal stem cells (MenSCs) in regenerative medicine, this issue has gained prominence in the scientific community. Moreover, recent reviews highlight how robust the integrated assessment of omics data are for endometriosis. To our knowledge, no study has applied the multi-omics approaches to endometriosis MenSCs. This is a case-control study at a university-affiliated hospital. MenSCs transcriptome and proteome data were obtained by RNA-seq and UHPLC-MS/MS detection. Among the differentially expressed proteins and genes, we emphasize ATF3, ID1, ID3, FOSB, SNAI1, NR4A1, EGR1, LAMC3, and ZFP36 genes and MT2A, TYMP, COL1A1, COL6A2, and NID2 proteins that were already reported in the endometriosis. Our functional enrichment analysis reveals integrated modulating signaling pathways such as epithelial-mesenchymal transition (↑) and PI3K signaling via AKT to mTORC1 (↓ in proteome), mTORC1 signaling, TGF beta signaling, TNFA signaling via NFkB, IL6 STAT3 signaling, and response to hypoxia via HIF1A targets (↑ in transcriptome). Our findings highlight primary changes in the endometriosis MenSCs, suggesting that the chronic inflammatory endometrial microenvironment can modulate these cells, providing opportunities for endometriosis etiopathogenesis. Moreover, they identify challenges for future research leveraging knowledge for regenerative and precision medicine in endometriosis.
Collapse
Affiliation(s)
- Letícia B. C. Penariol
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Carolina H. Thomé
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, Brazil
| | - Patrícia A. Tozetti
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Carlos R. K. Paier
- Drug Research and Development Center, Federal University of Ceara, Ceará 60430-275, Brazil
| | - Fabiana O. Buono
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Kamila C. Peronni
- Department of Genetics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Maristela D. Orellana
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, Brazil
| | - Dimas T. Covas
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, Brazil
| | - Maria E. A. Moraes
- Drug Research and Development Center, Federal University of Ceara, Ceará 60430-275, Brazil
| | - Wilson A. Silva
- Department of Genetics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Júlio C. Rosa-e-Silva
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Rui A. Ferriani
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre 90035-003, Brazil
| | - Vitor M. Faça
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, Brazil
- Department Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Omero B. Poli-Neto
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Daniel G. Tiezzi
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Medical School of Ribeirão Preto, University of São Paulo, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women’s Health (Hormona), CNPq, Porto Alegre 90035-003, Brazil
| |
Collapse
|
14
|
Moghaddam MZ, Ansariniya H, Seifati SM, Zare F, Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol 2022; 87:e13537. [PMID: 35263479 DOI: 10.1111/aji.13537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory disease associated with the growth and proliferation of endometrial-like tissues outside the uterus. Although the exact etiology and mechanism of the pathogenesis of the disease have not been fully elucidated, the immune system cells and the mediators produced by them can be named as effective factors in the onset and progression of the disease. AIMS We aim to attempt to review studies on the role of the immune system in endometriosis to better understand the pathogenesis of endometriosis. CONTENT Abundant production of inflammatory mediators by neutrophils and macrophages and reduced cytotoxicity of defined cells promote endometriosis at the early stages of the disease. Following an increase in the inflammation of the environment, the body takes compensatory mechanisms to reduce inflammation and establish homeostasis. For this purpose, the body produces remodeling and anti-inflammatory factors leading to slow conversion of the inflammatory environment into a non-inflammatory environment with proliferative and immunosuppressive properties. Environmental conditions induce M2 macrophages, TH2 cells, and Tregs differentiation, promoting disease progression by producing angiogenic and immunosuppressive factors. However, the exact molecular mechanism involved in changing inflammatory to non-inflammatory conditions is not yet fully understood. IMPLICATIONS Due to the common characteristics of endometriotic cells and cancer cells, most potential treatment options for endometriosis have been suggested due to the results of these methods in the treatment of cancer. In this pathway, immune system cells and soluble mediators can be used as targets.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
TGF-β1 in Seminal Plasma Promotes Endometrial Mesenchymal Stem Cell Growth via p42/44 and Akt Pathway in Patients With or Without Endometriosis. Reprod Sci 2022; 29:723-733. [PMID: 34981457 DOI: 10.1007/s43032-021-00562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/28/2021] [Indexed: 10/19/2022]
Abstract
The cause of endometriosis, which is characterized by the existence of functional endometrial tissue outside the uterine cavity, is poorly understood. Seminal plasma (SP) is rich in multiple cytokines that may promote endometrial tissue survival. Here, we evaluated the effect of SP on growth of endometrial mesenchymal stem cells (MSCs) from women with endometriosis (E-MSCs) and women without endometriosis (NE-MSCs). Proliferation, cell foci formation, cell cycle progression, and growth marker expression of E- and NE-MSCs were promoted by SP. These effects may be mediated through activation of transforming growth factor beta 1 (TGF-β1), Akt, and p42/44 signaling, which enhances CDK2 and CDK6 expression and accelerates cell cycle progression. Xenografts exposed to SP exhibited a three-fold increase in volume and four-fold increase in weight after 14 days. Our findings demonstrate that TGF-β1 in SP may promote endometrial tissue survival which will allow us to understand the pathogenesis and develop novel approaches for prevention and therapies of endometriosis.
Collapse
|
16
|
Zhao L, Ji M, Chen Z, Yuan L, Ding Y. Comparative study on the biological characteristics of menstrual blood- and endometrium-derived endometrial cells. Exp Ther Med 2021; 22:1421. [PMID: 34707703 PMCID: PMC8543186 DOI: 10.3892/etm.2021.10856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
During a woman's reproductive period, the endometrial tissue is shed and regenerated every month to prepare for pregnancy or for the next cycle. The aim of the present study was to isolate, culture and characterize human endometrial cells (ECs) derived from menstrual blood (MB) and the endometrium (E). MB-derived ECs (MB-ECs) were isolated from women's MB. E-derived ECs (E-ECs) were isolated from women's endometrial tissues. The present study investigated the epithelial cell marker cytokeratin 18 (CK18) in MB-ECs and E-ECs. Cell proliferation analyses indicated that E-ECs (population doubling time, 20.85 h) grew faster than MB-ECs (population doubling time, 22.05 h; P<0.05). Cell migration ability was found to be significantly greater for MB-ECs than for E-ECs at 48 h (P<0.01). MB-ECs incubated with TGF-β1 (3 ng/ml) exhibited significantly decreased CK18 mRNA expression (P<0.01), and significantly increased vimentin (Vim) mRNA (P<0.05) and protein (P<0.01) expression at 6 and 12 h, respectively. E-EC incubation with TGF-β1 (3 ng/ml) significantly decreased CK18 mRNA expression (P<0.01) at 12 h and significantly increased Vim mRNA (P<0.01) and protein expression (P<0.05) at 6 h. The present results indicated that MB-ECs and E-ECs were biologically different, and that epithelial-mesenchymal transdifferentiation could be induced by TGF-β1 treatment.
Collapse
Affiliation(s)
- Lei Zhao
- Gynecology Center of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, Zhejiang 310018, P.R. China
| | - Zhifang Chen
- Gynecology Center of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lin Yuan
- Gynecology Center of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Ding
- Gynecology Center of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
17
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
18
|
Chen LJ, Hu B, Han ZQ, Liu W, Zhu JH, Chen XX, Li ZP, Zhou H. Repression of FBXW7 by HES5 contributes to inactivation of the TGF-β signaling pathway and alleviation of endometriosis. FASEB J 2021; 35:e20938. [PMID: 33496006 DOI: 10.1096/fj.202000438rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Endometriosis (EMS) is a gynecologic disorder associated with infertility and characterized by the endometrial-type mucosa outside the uterine cavity. Currently available treatment modalities are limited to undesirable effects. Thus, in the present study, we sought to study the pathogenesis mechanism of EMS. For this purpose, the ectopic and eutopic endometrial tissues were resected from 86 patients with EMS and 54 infertile patients without EMS, respectively. The regulatory mechanism among HES family bHLH transcription factor 5 (HES5), transforming growth factor-beta (TGF-β)-induced factor 1 (TGIF1), F-box, and WD repeat domain containing 7 (FBXW7) was studied by performing co-immunoprecipitation, dual-luciferase reporter gene assay, and chromatin immunoprecipitation, respectively. A mouse model of EMS was established to verify the aforementioned regulatory mechanism in vivo. Upregulation of HES5 and TGIF1, as well as downregulation of FBXW7, was observed in EMS endometrial tissues and human endometrial stromal cells (hESCs), respectively. The overexpression of HES5 was found to suppress the FBXW7 transcription and TGIF1 degradation, resulting in the inactivation of the TGF-β signaling pathway, as well as inhibition of hESC proliferation and invasion, thereby enhancing apoptosis. Results from a mouse model of EMS showed that the presence of HES5 contributed to the alleviation of EMS. Collectively, we attempted to provide a mechanistic insight into the unrecognized roles of the HES5/FBXW7 in EMS progression.
Collapse
Affiliation(s)
- Li-Juan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Hu
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Qiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Xing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Expression of Transforming Growth Factor Beta Isoforms in Canine Endometrium with Cystic Endometrial Hyperplasia-Pyometra Complex. Animals (Basel) 2021; 11:ani11061844. [PMID: 34205820 PMCID: PMC8234116 DOI: 10.3390/ani11061844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pathomorphological changes and functional disorders of the uterus have long been a significant problem in the reproduction of dogs. The most commonly identified uterine disorders leading to permanent loss of fertility in dogs include cystic endometrial hyperplasia (CEH) and pyometra. These diseases may occur jointly as a CEH–pyometra complex. Despite numerous studies, the etiology of this disease remains unclear. TGF-β is considered to be one of the key factors in pathophysiological uterine disorders. The results indicate the significant expression of TGF-β1 in endometrial tissues in bitches affected by CEH–pyometra complex. Consequently, among all TGF-β isoforms, TGF-β1 is a potential biomarker involved in the regulation of a dog’s endometrium with proliferative and degenerative changes. Abstract Cystic endometrial hyperplasia (CEH) and pyometra are the most frequently diagnosed uterine diseases affecting bitches of different ages. Transforming growth factor beta (TGF-β) has been classified in females as a potential regulator of many endometrial changes during the estrous cycle or may be involved in pathological disorders. The aim of this study was to determine the expression of TGF-β1, -β2 and -β3 in the endometrium of bitches suffering from CEH or a CEH–pyometra complex compared to clinically healthy females (control group; CG). A significantly increased level of TGF-β1 mRNA expression was observed in the endometrium with CEH–pyometra compared to CEH and CG. Protein production of TGF-β1 was identified only in the endometrium of bitches with CEH–pyometra. An increase in TGF-β3 mRNA expression was observed in all the studied groups compared to CG. The expression of TGF-β2 mRNA was significantly higher in CEH and lower in CEH–pyometra uteri. The results indicate the presence of TGF-β cytokines in canine endometrial tissues affected by proliferative and degenerative changes. However, among all TGF-β isoforms, TGF-β1 could potentially be a key factor involved in the regulation of the endometrium in bitches with CEH–pyometra complex.
Collapse
|
20
|
Santoso B, Rahmawati NY, Sa'adi A, Dwiningsih SR, Annas JY, Tunjungseto A, Widyanugraha MYA, Mufid AF, Ahsan F. Elevated peritoneal soluble endoglin and GDF-15 in infertile women with severe endometriosis and pelvic adhesion. J Reprod Immunol 2021; 146:103343. [PMID: 34116485 DOI: 10.1016/j.jri.2021.103343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Chronic inflammation and pelvic adhesion play a critical role in endometriosis-related infertility. Research studies suggest that TGF-β superfamily members, such as soluble endoglin (sEng), growth differentiation factor 15 (GDF-15) and tumor growth factor-beta (TGF-β1) contribute to the regulation of inflammation, angiogenesis and cell adhesion. The objective of this study is to investigate the association between the concentrations of these TGF-β-related members and the clinical parameters of infertile women with endometriosis. MATERIALS AND METHODS Sixty-five infertile women who underwent laparoscopy were divided into two groups in this study: those who had endometriosis (n = 33) and control subjects with benign gynecologic disorders (n = 32). The levels of TGF-β- related members in peritoneal fluid and serum were evaluated by the enzyme-linked immunosorbent assay (ELISA). Clinical and hematological parameters were documented and analyzed. RESULTS Endometriosis cases had significantly higher levels of sEng, GDF-15 and TGF-β1 in peritoneal fluid (p<0.0005) compared to control subjects, but not in serum. Moreover, serum GDF-15 level was significantly elevated in the late-stage endometriosis compared to the early-stage group. The levels of three TGF-β related molecules in peritoneal fluid showed positive correlations with rASRM score. Blood neutrophil counts have correlation with the peritoneal sEng concentration. CONCLUSION Our novel evidence on the elevated concentration of peritoneal sEng and GDF-15 in endometriosis, specifically in the late-stage, may indicate the essential role of TGF-β-dependent signaling in endometriosis. Serum GDF-15 might serve as a candidate biomarker for endometriosis severity. Further studies are warranted to investigate the role and regulation of these molecules in endometriosis.
Collapse
Affiliation(s)
- Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Nanda Yuli Rahmawati
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Ashon Sa'adi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Sri Ratna Dwiningsih
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Jimmy Yanuar Annas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Arif Tunjungseto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - M Y Ardianta Widyanugraha
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Alfin Firasy Mufid
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia
| | - Fadhil Ahsan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, 60286, Surabaya, Indonesia.
| |
Collapse
|
21
|
The Effect of Novel Medical Nonhormonal Treatments on the Angiogenesis of Endometriotic Lesions. Obstet Gynecol Surv 2021; 76:281-291. [PMID: 34032860 DOI: 10.1097/ogx.0000000000000888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Irrespective of the precise mechanisms leading to endometriosis, angiogenesis is essential for the establishment and long-term proliferation of the disease. As current surgical and medical management options for women with endometriosis have substantial drawbacks and limitations, novel agents are needed and molecules targeting the angiogenic cascade could serve as potential candidates. Objective Our aim was to review current data about the role of angiogenesis in the pathophysiology of endometriosis and summarize the novel antiangiogenic agents that could be potentially used in clinical management of patients with endometriosis. Evidence Acquisition Original research and review articles were retrieved through a computerized literature search. Results Loss of balance between angiogenic activators and suppressors triggers the nonphysiological angiogenesis observed in endometriotic lesions. Several proangiogenic mediators have been identified and most of them have demonstrated increased concentrations in the peritoneal fluid and/or serum of women with endometriosis. Among the antiangiogenic molecules, anti-vascular endothelial growth factor agents, dopamine agonists, romidepsin, and statins have shown the most promising results so far. Conclusions and Relevance Given the limitations of current treatments of endometriosis, there is a need for novel, more efficient agents. Antiangiogenic molecules could be used potentially in clinical management of women with endometriosis; however, their safety and efficiency should be carefully assessed prior to that. Further large prospective trials in humans are needed before any treatment is introduced into daily clinical practice.
Collapse
|
22
|
Ponandai-Srinivasan S, Saare M, Boggavarapu NR, Frisendahl C, Ehrström S, Riethmüller C, García-Uribe PA, Rettkowski J, Iyengar A, Salumets A, Lalitkumar PGL, Götte M, Gemzell-Danielsson K. Syndecan-1 modulates the invasive potential of endometrioma via TGF-β signalling in a subgroup of women with endometriosis. Hum Reprod 2021; 35:2280-2293. [PMID: 32897364 DOI: 10.1093/humrep/deaa164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION What is the physiological role of transforming growth factor-beta (TGF-β1) and syndecans (SDC1, SDC4) in endometriotic cells in women with endometriosis? SUMMARY ANSWER We observed an abnormal, pro-invasive phenotype in a subgroup of samples with ovarian endometriosis, which was reversed by combining gene silencing of SDC1 with the TGF-β1 treatment. WHAT IS KNOWN ALREADY Women with endometriosis express high levels of TGF-β1 and the proteoglycan co-receptors SDC1 and SDC4 within endometriotic cysts. However, how SDC1 and SDC4 expression is regulated by TGF-β1 and the physiological significance of the high expression in endometriotic cysts remains unknown as does the potential role in disease severity. STUDY DESIGN, SIZE, DURATION We utilized a pre-validated panel of stem- and cancer cell-associated markers on endometriotic tissue (n = 15) to stratify subgroups of women with endometriosis. Furthermore, CD90+CD73+CD105+ (SC+) endometriotic stromal cells from these patient subgroups were explored for their invasive behaviour in vitro by transient gene inhibition of SDC1 or SDC4, both in the presence or absence of TGF-β1 treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometriotic cyst biopsies (n = 15) were obtained from women diagnosed with ovarian endometriosis (ASRM Stage III-IV). Gene expression variability was assessed on tissue samples by applying gene clustering tools for the dataset generated from the pre-validated panel of markers. Three-dimensional (3D) spheroids from endometriotic SC+ were treated in vitro with increasing doses of TGF-β1 or the TGFBRI/II inhibitor Ly2109761 and assessed for SDC1, SDC4 expression and in vitro 3D-spheroid invasion. Transcriptomic signatures from the invaded 3D spheroids were evaluated upon combining transient gene silencing of SDC1 or SDC4, both in presence or absence of TGF-β1 treatment. Furthermore, nanoscale changes on the surface of endometriotic cells were analysed after treatment with TGF-β1 or TGFBRI/II inhibitor using atomic force microscopy. MAIN RESULTS AND THE ROLE OF CHANCE Gene clustering analysis revealed that endometriotic tissues displayed variability in their gene expression patterns; a small subgroup of samples (2/15, Endo-hi) exhibited high levels of SDC1, SDC4 and molecules involved in TGF-β signalling (TGF-β1, ESR1, CTNNB1, SNAI1, BMI1). The remaining endometriotic samples (Endo-lo) showed a uniform, low gene expression profile. Three-dimensional spheroids derived from Endo-hi SC+ but not Endo-lo SC+ samples showed an aberrant expression of SDC1 and exhibited enhanced 3D-spheroid invasion in vitro, upon rhTGF-β1 treatment. However, this abnormal, pro-invasive response of Endo-hi SC+ was reversed upon gene silencing of SDC1 with the TGF-β1 treatment. Interestingly, transcriptomic signatures of 3D spheroids silenced for SDC1 and consecutively treated with TGF-β1, showed a down-regulation of cancer-associated pathways such as WNT and GPCR signalling. LARGE SCALE DATA Transcriptomic data were deposited in NCBI's Gene Expression Omnibus (GEO) and could be retrieved using GEO series accession number: GSE135122. LIMITATIONS, REASONS FOR CAUTION It is estimated that about 2.5% of endometriosis patients have a potential risk for developing ovarian cancer later in life. It is possible that the pro-oncogenic molecular changes observed in this cohort of endometriotic samples may not correlate with clinical occurrence of ovarian cancer later in life, thus a validation will be required. WIDER IMPLICATIONS OF THE FINDINGS This study emphasizes the importance of interactions between syndecans and TGF-β1 in the pathophysiology of endometriosis. We believe that this knowledge could be important in order to better understand endometriosis-associated complications such as ovarian cancer or infertility. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Cancerfonden (CAN 2016/696), Radiumhemmets Forskningsfonder (Project no. 154143 and 184033), EU MSCA-RISE-2015 project MOMENDO (691058), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695) and Karolinska Institute. Authors do not have any conflict of interest.
Collapse
Affiliation(s)
- Sakthivignesh Ponandai-Srinivasan
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Merli Saare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Caroline Frisendahl
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Sophia Ehrström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 171 77 Stockholm, Sweden.,UltraGyn Clinic, Sophiahemmet, Stockholm, Sweden
| | - Christoph Riethmüller
- Laboratory at Nanoanalytics in the Center for Nanotechnology, Serend-ip GmbH, CenTech, 48149 Münster, Germany
| | - Pablo Angel García-Uribe
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Jasmin Rettkowski
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Aditi Iyengar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Parameswaran Grace Luther Lalitkumar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Martin Götte
- Department of Gynecology and Obstetrics, Muenster University, Medical Center, D-48149 Muenster, Germany
| | - Kristina Gemzell-Danielsson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| |
Collapse
|
23
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Arablou T, Aryaeian N, Khodaverdi S, Kolahdouz-Mohammadi R, Moradi Z, Rashidi N, Delbandi AA. The effects of resveratrol on the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells of women with endometriosis. Sci Rep 2021; 11:6054. [PMID: 33723310 PMCID: PMC7961000 DOI: 10.1038/s41598-021-85512-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
Resveratrol is a phytochemical with anti-angiogenic, anti-inflammatory, and antioxidant properties. The present study has evaluated the effect of resveratrol on the expression of vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9) as factors related to endometriosis progression. Thirteen eutopic (EuESCs) and 8 ectopic (EESCs) endometrial stromal cells from women with endometriosis and 11 control endometrial stromal cells (CESCs) were treated with resveratrol (100 µM) for 6, 24 and 48 h. The gene and protein expression levels of VEGF, TGF-β, and MMP-9 were measured using real-time PCR and ELISA methods, respectively. Results showed that the basal gene and protein expression of VEGF and MMP-9 were higher in EESCs compared to EuESCs and CESCs (P < 0.01 to < 0.001 and P < 0.05 to < 0.01 respectively). Also, resveratrol treatment decreased the gene and protein expression of VEGF and MMP-9 in EuESCs, EESCs and CESCs (P < 0.05 to < 0.01 and P < 0.05 to < 0.01 respectively) and gene and protein expression of TGF-β in EESCs and EuESCs (P < 0.05 to < 0.01). The effect of resveratrol in reduction of VEGF gene expression was statistically more noticeable in EESCs compared to EuESCs and CESCs (P < 0.05). According to the findings, resveratrol may ameliorate endometriosis progression through reducing the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells (ESCs).
Collapse
Affiliation(s)
- Tahereh Arablou
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- grid.411746.10000 0004 4911 7066Endometriosis Research Center, Iran University of Medical Science, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Immunology Research Center, Immunology and Infectious Disease Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Leow HW, Koscielniak M, Williams L, Saunders PTK, Daniels J, Doust AM, Jones MC, Ferguson GD, Bagger Y, Horne AW, Whitaker LHR. Dichloroacetate as a possible treatment for endometriosis-associated pain: a single-arm open-label exploratory clinical trial (EPiC). Pilot Feasibility Stud 2021; 7:67. [PMID: 33712086 PMCID: PMC7953373 DOI: 10.1186/s40814-021-00797-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Endometriosis (where endometrial-like tissue is found outside the uterus) affects ~ 176 million women worldwide and can lead to debilitating pelvic pain. There is an unmet need for new medical treatment options for endometriosis. Pelvic peritoneal mesothelial cells of women with endometriosis exhibit detrimental metabolic reprogramming that creates an environment favouring the formation and survival of endometriosis lesions. We have generated powerful preclinical proof-of-concept data to show that it is possible to correct this metabolic phenotype using dichloroacetate (DCA), a non-hormonal compound previously used to treat rare metabolic disorders in children. We plan a single-arm, open-label, single site exploratory clinical trial to inform the design of a future randomised controlled trial (RCT) to determine the efficacy of DCA for the treatment of endometriosis-associated pain. METHODS We will recruit 30 women with endometriosis-associated pain over a 6-month period. All participants will receive approximately 6.25 mg/kg oral DCA capsules twice daily for 6 weeks, with a dose increase to approximately 12.5 mg/kg twice daily for a further 6 weeks if their pain has not been adequately controlled on this dose regime and side-effects are acceptable. If pain is adequately controlled with minimal side-effects, the lower dose will be continued for a further 6 weeks. The primary objective is to determine whether it is possible to achieve acceptable recruitment and retention rates within the defined exclusion and inclusion criteria. Secondary objectives are to determine the acceptability of the trial to participants, including the proposed methods of recruitment, treatment, follow-up frequency and number of questionnaires. The recruitment rate will be determined by the proportion of patients recruited from the pool of eligible women. The retention rate will be determined by the proportion of participants who attended the final trial visit. DISCUSSION This is a feasibility study to explore effectiveness and acceptability of the proposed field methodology (recruitment, retention, study processes and compliance with treatment). The results will be used to inform the design of a future RCT. TRIAL REGISTRATION ClinicalTrials.gov, NCT04046081 Registered 6 August 2019.
Collapse
Affiliation(s)
- H. W. Leow
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - M. Koscielniak
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - L. Williams
- Usher Institute, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX UK
| | - P. T. K. Saunders
- Centre for Inflammation Research, Queen’s Medical Research Institue, University of Edinburgh, Edinburgh, EH16 4TJ UK
| | - J. Daniels
- Clinical Trials Unit, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - A. M. Doust
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - M-C Jones
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - G. D. Ferguson
- Reproductive Medicine and Maternal Health, Ferring Research Institute, San Diego, CA 92121 USA
| | - Y. Bagger
- Reproductive Medicine and Maternal Health, Ferring Research Institute, San Diego, CA 92121 USA
| | - A. W. Horne
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - L. H. R. Whitaker
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
26
|
Maharani M, Lajuna L, Yuniwati C, Sabrida O, Sutrisno S. Phytochemical characteristics from Phaleria macrocarpa and its inhibitory activity on the peritoneal damage of endometriosis. J Ayurveda Integr Med 2020; 12:229-233. [PMID: 33288353 PMCID: PMC8185966 DOI: 10.1016/j.jaim.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background Endometriois represents a gynecological disease that still becomes an issue in community. Phaleria macrocarpa is a plant native to Indonesia that contains an antioxidant substance, which may serve as apoptotic modulator and useful for angiogenesis. Objective This study aims to evaluate the effects of flavonoid isolates from P. macrocarpa (PM) on the development of granulomas, apoptosis, proliferation, and angiogenesis of the disease. Material and methods Total thirty mice (Mus musculus) were categorized into six groups, including the normal group (without any treatment), EMT (endometriosis) group, and EMT group treated with PM flavonoid isolates. Identification of the active compounds of P. macrocarpa was done using LC-HRMS. Measurement of granuloma scores and vascular density was done histologically. Apoptosis and proliferation analysis was performed by immunohistochemical techniques. Results There was an increase in granulomas, proliferation, and apoptosis in the peritoneal tissues of the endometriosis model. This change can be normalized by extract of P. macrocarpa. Conclusion We concluded that the flavonoid isolates from P. macrocarpa can suppress the growth of endometriosis lesions through normalization of proliferation and apoptosis. Thus, the P. macrocarpa flavonoid can be used as an alternative to inhibit the development of endometriosis.
Collapse
Affiliation(s)
- Maharani Maharani
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh Besar, Aceh, Indonesia.
| | - Lia Lajuna
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh Besar, Aceh, Indonesia
| | - Cut Yuniwati
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh Besar, Aceh, Indonesia
| | - Oktalia Sabrida
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh Besar, Aceh, Indonesia
| | - Sutrisno Sutrisno
- Division of Fertility, Endocrinology, and Reproduction, Department of Obstetrics and Gynecology, Saiful Anwar General Hospital, Universitas of Brawijaya, Malang, East Java, Indonesia
| |
Collapse
|
27
|
Wendel JRH, Wang X, Smith LJ, Hawkins SM. Three-Dimensional Biofabrication Models of Endometriosis and the Endometriotic Microenvironment. Biomedicines 2020; 8:biomedicines8110525. [PMID: 33233463 PMCID: PMC7700676 DOI: 10.3390/biomedicines8110525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis occurs when endometrial-like tissue grows outside the uterine cavity, leading to pelvic pain, infertility, and increased risk of ovarian cancer. The present study describes the optimization and characterization of cellular spheroids as building blocks for Kenzan scaffold-free method biofabrication and proof-of-concept models of endometriosis and the endometriotic microenvironment. The spheroid building blocks must be of a specific diameter (~500 μm), compact, round, and smooth to withstand Kenzan biofabrication. Under optimized spheroid conditions for biofabrication, the endometriotic epithelial-like cell line, 12Z, expressed high levels of estrogen-related genes and secreted high amounts of endometriotic inflammatory factors that were independent of TNFα stimulation. Heterotypic spheroids, composed of 12Z and T-HESC, an immortalized endometrial stromal cell line, self-assembled into a biologically relevant pattern, consisting of epithelial cells on the outside of the spheroids and stromal cells in the core. 12Z spheroids were biofabricated into large three-dimensional constructs alone, with HEYA8 spheroids, or as heterotypic spheroids with T-HESC. These three-dimensional biofabricated constructs containing multiple monotypic or heterotypic spheroids represent the first scaffold-free biofabricated in vitro models of endometriosis and the endometriotic microenvironment. These efficient and innovative models will allow us to study the complex interactions of multiple cell types within a biologically relevant microenvironment.
Collapse
Affiliation(s)
- Jillian R. H. Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-274-8225
| |
Collapse
|
28
|
Yan D, Liu X, Xu H, Guo SW. Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition. J Clin Endocrinol Metab 2020; 105:5894452. [PMID: 32813013 DOI: 10.1210/clinem/dgaa550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion. OBJECTIVE To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT. SETTING, DESIGN, PATIENTS, INTERVENTION, AND MAIN OUTCOME MEASURES Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms' tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production. RESULTS The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs. CONCLUSIONS MCs contribute to lesional progression and fibrosis through platelet-induced MMT.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Ke JY, Yang J, Li J, Xu Z, Li MQ, Zhu ZL. Baicalein inhibits FURIN-MT1-MMP-mediated invasion of ectopic endometrial stromal cells in endometriosis possibly by reducing the secretion of TGFB1. Am J Reprod Immunol 2020; 85:e13344. [PMID: 32910833 DOI: 10.1111/aji.13344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Endometriosis (EMs) is characterized by the presence of endometrial stroma and glands outside the uterus. Our previous study showed that baicalein inhibited proliferation and induced apoptosis in EMs. However, the effects of baicalein on the invasiveness of ectopic endometrial stromal cells (EcESCs) remain unclear. The aim of this study was to assess the potential anti-invasive effect of baicalein and determine the underlying mechanism. METHODS The invasive and migratory properties of EcESCs were assessed in vitro using Transwell and wound healing assays. The expression of functional markers of EcESCs, including matrix metalloproteases (MMPs), FURIN, and TGFB1, was analyzed using WB and ELISA. Additionally, a mouse model of EMs was treated with baicalein (10 mg/kg/d and 35 mg/kg/d) for 4 weeks. The weight and number of ectopic lesions were determined, and the expression of markers was assessed using immunohistochemistry. RESULTS Baicalein inhibited the invasion of EcESCs and the expression of certain invasion-related proteins, including MMP9, MMP2, and MT1-MMP. Exposure to baicalein reduced the extracellular levels of TGFB1 in EcESCs and the reduced expression of TGFB1, resulting in decreased expression of FURIN in EcESCs, which serves a pivotal role in the transformation of pro-MT1-MMP to activated MT1-MMP. In the mouse model of EMs, intraperitoneal injection of baicalein inhibited the growth of ectopic lesions and reduced MT1-MMP, FURIN, and TGFB1 expression. CONCLUSIONS Baicalein reduced the invasion of EMs, potentially by restricting the FURIN-MT1-MMP-mediated cell invasion of EcESCs maybe through reduction of the autocrine of TGFB1.
Collapse
Affiliation(s)
- Jun-Ya Ke
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhen Xu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Shanghai, China
| | - Zhi-Ling Zhu
- Department of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
30
|
Cui L, Bao H, Liu Z, Man X, Liu H, Hou Y, Luo Q, Wang S, Fu Q, Zhang H. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β 1/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats. Stem Cell Res Ther 2020; 11:386. [PMID: 32894203 PMCID: PMC7487655 DOI: 10.1186/s13287-020-01904-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Objective The basic pathological changes of primary ovarian insufficiency (POI) include ovarian tissue fibrosis and follicular development disorders. The human umbilical cord mesenchymal stem cell (hUMSC) transplantation has been shown an effective method to improve the ovarian function in POI rat model; however, the exact mechanisms are still unclear. The purpose of this study is to investigate whether the recovery of ovarian function in POI rats is related to the inhibition of tissue fibrosis following hUMSC transplantation. Furthermore, the transforming growth factor-β1 (TGF-β1) signaling pathway is explored to determine the mechanisms of ovarian function recovery through its inhibition of tissue fibrosis. Methods The primary ovarian insufficiency (POI) rat model was established by intraperitoneal injection of chemotherapy drug cisplatin (CDDP) for 7 days. The levels of serum sex hormones were measured using enzyme-linked immunosorbent assay (ELISA). The tissue fibrosis in the ovary was examined using Masson staining and Sirius red staining. The collagen fibers in the ovarian tissues were detected by Western blot analysis. To investigate the mechanisms of ovarian function recovery following hUMSC transplantation, ovarian stromal cells were isolated from the ovarian cortex of immature rats. The expression of Cytochrome P450 17A1 (Cyp17a1) and fibrosis marker of alpha smooth muscle actin (α-SMA) in ovarian stromal cells was examined using immunofluorescence analysis. Also, the protein levels of Cyp17a1 and α-SMA in ovarian stromal cells were examined by Western blot analysis. The expression of TGF-β1 and Smad3 signals was measured by Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. Results The results show that the function of the ovary in POI rats was significantly improved after hUMSC transplantation. The expression of fibrosis markers (α-SMA) and production of Collagen Type I (Collagen I) and Collagen Type III (Collagen III) in POI rats were significantly inhibited in POI rats following hUMSC transplantation. In the cultured ovarian stromal cells, the decrease of TGF-β1 and p-Smad3 protein expression was observed in hUMSC-treated POI rats. The treatment with TGF-β1 inhibitor of SB431542 further confirmed this signal pathway was involved in the process. Conclusion Our study demonstrated that the TGF-β1/Smad3 signaling pathway was involved in the inhibition of ovarian tissue fibrosis, which contributed to the restoration of ovarian function in POI rats following hUMSC transplantation.
Collapse
Affiliation(s)
- Linlu Cui
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Zhongfeng Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Hongyuan Liu
- Clinical Medical School, Binzhou Medical University, Yantai, Shandong, China
| | - Yun Hou
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qianqian Luo
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Siyuan Wang
- Clinical Medical School, Binzhou Medical University, Yantai, Shandong, China
| | - Qiang Fu
- School of pharmacy, Binzhou Medical University, Yantai, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
31
|
Chen S, Luo Y, Cui L, Yang Q. miR-96-5p regulated TGF-β/SMAD signaling pathway and suppressed endometrial cell viability and migration via targeting TGFBR1. Cell Cycle 2020; 19:1740-1753. [PMID: 32635855 PMCID: PMC7469441 DOI: 10.1080/15384101.2020.1777804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
We previously performed high throughput RNA-seq in paired eutopic and ectopic endometrial specimen of endometriosis patients, and validated the results by qRT-PCR in endometriosis endometrial tissues. MiR-96-5p was significantly downregulated in ectopic endometrial tissues compared to eutopic tissues. In order to identify the role of miR-96-5p in endometriosis and endometrial cells, and investigate the underlying mechanisms, the Ishikawa and End1/E6E7 cell lines were transfected with miR-96-5p mimics, miR-96-5p inhibitors or TGFBR1 siRNA. The expression of TGF-β/SMAD signaling pathway components and epithelial-mesenchymal transition (EMT) markers were examined by qRT-PCR and western blot, and cell viability and migration were determined by CCK-8, transwell and wound healing assays, respectively. We discovered miR-96-5p to be significantly downregulated while TGFBR1 was distinctly up-regulated in endometriosis. Overexpression of miR-96-5p inhibited endometrial cells viability and migration, while inhibition of miR-96-5p had opposite effect. Furthermore, we confirmed TGFBR1 was a direct target of miR-96-5p. Overexpression of miR-96-5p could block the TGF-β/SMAD signaling pathway via targeting TGFBR1 and reverse the TGF-β1 induced EMT in endometrial cell lines. In conclusion, we demonstrated that miR-96-5p interacted with TGF-β/SMAD signaling pathway and blocked the TGF-β1 induced EMT in endometrial cells via directly targeting TGFBR1.
Collapse
Affiliation(s)
- Silei Chen
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yajuan Luo
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangyi Cui
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Bioinformatic analysis reveals the importance of epithelial-mesenchymal transition in the development of endometriosis. Sci Rep 2020; 10:8442. [PMID: 32439908 PMCID: PMC7242372 DOI: 10.1038/s41598-020-65606-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Endometriosis is a frequently occurring disease in women, which seriously affects their quality of life. However, its etiology and pathogenesis are still unclear. Methods: To identify key genes/pathways involved in the pathogenesis of endometriosis, we recruited 3 raw microarray datasets (GSE11691, GSE7305, and GSE12768) from Gene Expression Omnibus database (GEO), which contain endometriosis tissues and normal endometrial tissues. We then performed in-depth bioinformatic analysis to determine differentially expressed genes (DEGs), followed by gene ontology (GO), Hallmark pathway enrichment and protein-protein interaction (PPI) network analysis. The findings were further validated by immunohistochemistry (IHC) staining in endometrial tissues from endometriosis or control patients. Results: We identified 186 DEGs, of which 118 were up-regulated and 68 were down-regulated. The most enriched DEGs in GO functional analysis were mainly associated with cell adhesion, inflammatory response, and extracellular exosome. We found that epithelial-mesenchymal transition (EMT) ranked first in the Hallmark pathway enrichment. EMT may potentially be induced by inflammatory cytokines such as CXCL12. IHC confirmed the down-regulation of E-cadherin (CDH1) and up-regulation of CXCL12 in endometriosis tissues. Conclusions: Utilizing bioinformatics and patient samples, we provide evidence of EMT in endometriosis. Elucidating the role of EMT will improve the understanding of the molecular mechanisms involved in the development of endometriosis.
Collapse
|
33
|
Mishra A, Galvankar M, Singh N, Modi D. Spatial and temporal changes in the expression of steroid hormone receptors in mouse model of endometriosis. J Assist Reprod Genet 2020; 37:1069-1081. [PMID: 32152908 DOI: 10.1007/s10815-020-01725-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Endometriosis is recognized as a steroid hormone-dependent disorder. However, controversies exist regarding the status of the steroid hormone receptor expression in endometriotic tissues. The purpose of this study was to determine the ontogeny of cellular changes in the expression of estrogen receptors (ERα, ERβ), G protein-coupled estrogen receptor 1 (GPER1), and progesterone receptors (PRs) in endometriosis using a mouse model. METHODS We used the autologous uterine tissue transfer mouse model and studied the mRNA and protein expression of ERα, ERβ, GPER1, and PR in ectopic lesions at 2, 4, and 8 weeks of induction of endometriosis. RESULT As compared to endometrium of controls, in the ectopic endometrium, ERα is reduced while ERβ was elevated in stromal cells; however, Gper1 and PR levels are reduced in both stromal and epithelial cells in a time-specific manner. There is a high inter-animal variation in the levels of these receptors in ectopic endometrium as compared to controls; the levels also varied by almost 100-fold within the same lesion resulting in "micro-heterogeneity." The expression of all these receptors also deferred between two lesions from the same animal. CONCLUSION In the endometriotic tissue, there is extensive inter-animal and intra-lesion heterogeneity in the expression of ERα, ERβ, GPER1, and PR. These changes are not due to the influence of the peritoneal environment but appear to be tissue intrinsic. We propose that the variable outcomes in hormonal therapy for endometriosis could be possibly due to heterogeneity in the expression of steroid hormone receptors in the ectopic endometrium.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Mosami Galvankar
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
34
|
Mei J, Zhou WJ, Li SY, Li MQ, Sun HX. Interleukin-22 secreted by ectopic endometrial stromal cells and natural killer cells promotes the recruitment of macrophages through promoting CCL2 secretion. Am J Reprod Immunol 2019; 82:e13166. [PMID: 31295376 DOI: 10.1111/aji.13166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM During endometriosis, there is an increase in the number of dysfunctional macrophages; however, the mechanisms underlying macrophage recruitment are not well understood. The aim of the present study was to determine the role of natural killer (NK) cell-mediated secretion of chemokine (C-C motif) ligand 2 (CCL2) from endometrial stromal cells (ESCs) in the recruitment of macrophages. METHOD OF STUDY Normal ESCs (nESC) and ectopic ESCs (eESCs) were separately co-cultured with NK cells for a macrophage chemotaxis assay, and the number of chemotactic macrophages was counted. The expression of interleukin-22 (IL-22) and IL-22 receptors was detected by ELISA and flow cytometry, respectively. eESCs were treated with 0.01, 0.1, and 1 ng/mL recombinant human IL-22 (rhIL-22) to determine the most effective concentration for stimulating CCL2 production. Following treatment with 1 ng/mL rhIL-22, secretion of CCL2 was detected from both the eESC monoculture and the eESC/NK co-culture. RESULTS Compared with the eESC monoculture, the eESC/NK co-culture recruited a significantly higher number of chemotactic macrophages. There was also an increase in the levels of IL-22 and CCL2 secreted when eESCs were co-cultured compared with the monoculture. Treatment with rhIL-22 resulted in an increase in the levels of CCL2 secreted by eESCs, and the IL-22-induced CCL2 secretion was reversed by the IL-22 antagonist, αIL-22. Increased expression of IL-22 resulted in an increase in the number of chemotactic macrophages, but was reversed by αIL-22 and CCL2 antagonist (αCCL2). CONCLUSION Interleukin-22 and CCL2 secretion by eESCs stimulated by NK cells contributes to the induction of macrophage recruitment and is thus implicated in the development of endometriosis.
Collapse
Affiliation(s)
- Jie Mei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Jie Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics & Gynecology, Fudan University, Shanghai, China
| | - Shi-Yuan Li
- Nanjing University Medical School, Nanjing, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics & Gynecology, Fudan University, Shanghai, China
| | - Hai-Xiang Sun
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
35
|
Endometriotic Peritoneal Fluid Promotes Myofibroblast Differentiation of Endometrial Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:6183796. [PMID: 31281378 PMCID: PMC6589313 DOI: 10.1155/2019/6183796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
During the development of endometriosis, the presence of fibrotic tissues in and surrounding endometriotic lesions may lead to subsequent adhesion, anatomic distortion, and chronic pain. Therefore, studies aimed at clarifying the underlying mechanisms of fibrogenesis in endometriosis could potentially provide a novel strategy for effective treatment. Mesenchymal stem cells (MSCs) play a key role in fibrotic diseases by differentiating into myofibroblasts in appropriate microenvironment. In this study, we collected endometrial and endometriotic tissues from patients with endometriosis (n = 32) and control patients without endometriosis (n = 20) to compare the expression of fibrotic proteins and investigate the effect of endometriotic peritoneal fluid (PF) on myofibroblast differentiation of endometrial MSCs. We found that the expression of fibrotic proteins, including alpha-smooth muscle actin (α-SMA), type I collagen (collagen I), connective tissue growth factor (CTGF), and fibronectin, and the extent of fibrosis extremely enhanced in ectopic endometria compared with eutopic endometria from the same patients with endometriosis and normal endometria from patients without endometriosis. We next isolated and identified endometrial MSCs and found that treatment with endometriotic PF strongly induced endometrial MSCs to differentiate into myofibroblasts concomitant with the activation of Smad2/3. Moreover, ectopic endometrial MSCs expressed elevated collagen I, α-SMA, fibronectin, and CTGF. Sushi domain containing-2 (SUSD2), a marker of endometrial MSCs, and α-SMA, a well-recognized marker for myofibroblasts, colocalized extensively in ectopic endometria while seldom in normal and eutopic endometria. These findings suggest that ectopic endometrial MSCs are probably more susceptible to myofibroblast differentiation because of the long-term influence of endometriotic PF. All together, we report for the first time that endometriotic PF promotes myofibroblast differentiation of endometrial MSCs. This understanding will greatly improve our understanding of the pathophysiology of endometriosis and help design better therapeutics.
Collapse
|
36
|
Association between FOXP3+ regulatory T-cells and occurrence of peritoneal lesions in women with ovarian endometrioma and dermoid cysts. Reprod Biomed Online 2019; 38:857-869. [DOI: 10.1016/j.rbmo.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 01/26/2023]
|
37
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
38
|
Ponandai-Srinivasan S, Andersson KL, Nister M, Saare M, Hassan HA, Varghese SJ, Peters M, Salumets A, Gemzell-Danielsson K, Lalitkumar PGL. Aberrant expression of genes associated with stemness and cancer in endometria and endometrioma in a subset of women with endometriosis. Hum Reprod 2019; 33:1924-1938. [PMID: 30020448 DOI: 10.1093/humrep/dey241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is there molecular evidence for a link between endometriosis and endometriosis-associated ovarian cancers (EAOC)? STUDY ANSWER We identified aberrant gene expression signatures associated with malignant transformation in a small subgroup of women with ovarian endometriosis. WHAT IS KNOWN ALREADY Epidemiological studies have shown an increased risk of EAOC in women with ovarian endometriosis. However, the cellular and molecular changes leading to EAOC are largely unexplored. STUDY DESIGN, SIZE, DURATION CD73+CD90+CD105+ multipotent stem cells/progenitors (SC cohort) were isolated from endometrium (n = 18) and endometrioma (n = 11) of endometriosis patients as well as from the endometrium of healthy women (n = 14). Extensive phenotypic and functional analyses were performed in vitro on expanded multipotent stem cells/progenitors to confirm their altered characteristics. Aberrant gene signatures were also validated in paired-endometrium and -endometrioma tissue samples from another cohort (Tissue cohort, n = 19) of endometriosis patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Paired-endometrial and -endometriotic biopsies were obtained from women with endometriosis (ASRM stage III-IV) undergoing laparoscopic surgery. Control endometria were obtained from healthy volunteers. Isolated CD73+CD90+CD105+ SC were evaluated for the presence of known endometrial surface markers, colony forming efficiency, multi-lineage differentiation, cell cycle distribution and 3D-spheroid formation capacity. Targeted RT-PCR arrays, along with hierarchical and multivariate clustering tools, were used to determine both intergroup and intragroup gene expression variability for stem cell and cancer-associated markers, in both SC+ and tissue cohorts. MAIN RESULTS AND THE ROLE OF CHANCE Isolated and expanded SC+ from both control and patient groups showed significantly higher surface expression of W5C5+, clonal expansion and 3D-spheroid formation capacity (P < 0.05) compared with SC-. The SC+ cells also undergo mesenchymal lineage differentiation, unlike SC-. Gene expression from paired-endometriosis samples showed significant downregulation of PTEN, ARID1A and TNFα (P < 0.05) in endometrioma compared with paired-endometrium SC+ samples. Hierarchical and multivariate clustering from both SC+ and tissue cohorts together identified 4 out of 30 endometrioma samples with aberrant expression of stem cell and cancer-associated genes, such as KIT, HIF2α and E-cadherin, altered expression ratio of ER-β/ER-α and downregulation of tumour suppressor genes (PTEN and ARID1A). Thus, we speculate that above changes may be potentially relevant to the development of EAOC. LARGE-SCALE DATA N/A. LIMITATIONS, REASON FOR CAUTION As the reported frequency of EAOC is very low, we did not have access to those samples in our study. Moreover, by adopting a targeted gene array approach, we might have missed several other potentially-relevant genes associated with EAOC pathogenesis. The above panel of markers should be further validated in archived tissue samples from women with endometriosis who later in life developed EAOC. WIDER IMPLICATIONS OF THE FINDINGS Knowledge gained from this study, with further confirmation on EAOC cases, may help in developing screening methods to identify women with increased risk of EAOC. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by the Swedish Research Council (2012-2844), a joint grant from Stockholm County and Karolinska Institutet (ALF), RGD network at Karolinska Institutet, Karolinska Institutet for doctoral education (KID), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695), Horizon 2020 innovation program (WIDENLIFE, 692065), European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and MSCA-RISE-2015 project MOMENDO (691058). All authors have no competing interest.
Collapse
Affiliation(s)
- Sakthivignesh Ponandai-Srinivasan
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Karin L Andersson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Department of Territorial Health, Central Tuscany Healthcare, Piero Palagi Hospital, Florence, Italy
| | - Monica Nister
- Department of Oncology-Pathology, Karolinska Institutet, and Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia
| | - Halima A Hassan
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Suby J Varghese
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu, Estonia.,Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, Finland
| | - Kristina Gemzell-Danielsson
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Parameswaran Grace Luther Lalitkumar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Johan MZ, Ingman WV, Robertson SA, Hull ML. Macrophages infiltrating endometriosis-like lesions exhibit progressive phenotype changes in a heterologous mouse model. J Reprod Immunol 2019; 132:1-8. [DOI: 10.1016/j.jri.2019.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/18/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
|
40
|
Joseph S, Mahale SD. Endometriosis Knowledgebase: a gene-based resource on endometriosis. Database (Oxford) 2019; 2019:baz062. [PMID: 31169291 PMCID: PMC6551373 DOI: 10.1093/database/baz062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a complex, benign, estrogen-dependent gynecological disorder with an incidence of ~10% women in reproductive age. The implantation and growth of endometrial cells outside the uterus leads to the development of endometriosis. Endometriosis is also associated with comorbid conditions like cardiovascular and autoimmune diseases. The absence of non-invasive diagnostic markers, delayed diagnosis, high risk of recurrence of the disease on surgical removal of the tissue and absence of a definitive cure for endometriosis makes it imperative to gain insights into the complex etiology of endometriosis. A plethora of genes identified from blood and endometrial biopsies, involved in different pathways like steroid metabolism, angiogenesis, inflammation, etc. have been associated with endometriosis. However, the exact mechanism and genetic etiology of endometriosis still remain unclear. The polygenic nature of the disease, incongruent phenotypic manifestations in different ethnic populations and information scattered in literature makes it difficult to delineate the sub-network of genes that will aid in disease diagnosis and effective treatment. Endometriosis Knowledgebase is a manually curated database with information on genes associated with endometriosis. It holds information on 831 genes, their associated polymorphisms, gene ontologys, pathways and diseases. Genes in the database are enriched in pathways important for cell signaling, immune regulation and reproduction. A genetic overlap is seen between endometriosis and cancers, endocrine/reproductive, nervous system, immune and metabolic diseases. Network analysis of genes in the Endometriosis Knowledgebase helped predict 13 new candidate genes for endometriosis. These genes were found to be enriched in biological processes associated with endometriosis. The Endometriosis Knowledgebase and incorporated tools for gene and sequence-based analysis will benefit both researchers and clinicians working in the realm of reproductive biology.
Collapse
Affiliation(s)
- Shaini Joseph
- ICMR-Biomedical Informatics Center, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, India
| | - Smita D Mahale
- ICMR-Biomedical Informatics Center, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, India
- Division of Structural Biology, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, India
| |
Collapse
|
41
|
Choi HJ, Chung TW, Choi HJ, Han JH, Choi JH, Kim CH, Ha KT. Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis. Exp Mol Med 2018; 50:1-12. [PMID: 30542051 PMCID: PMC6290765 DOI: 10.1038/s12276-018-0167-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-β1 (TGF-β1) increased adhesion of endometrial cells to the mesothelium through induction of α2-6 sialylation. The expression levels of β-galactoside α2-6 sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of TGF-βRI/SMAD2/3 signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a NeuAcα2-6Galβ1-4GlcNAc injection diminished TGF-β1-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by TGF-β1 promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks. A growth factor involved in cell differentiation and proliferation contributes to the development of endometriosis by stimulating a protein modification mechanism that increases the adhesiveness of cells lining the uterus. Endometriosis results when these cells, known as endometrial cells, start growing outside the uterus causing pelvic pain, heavy periods and, in some cases, infertility. Ki-Tae Ha at Pusan National University, Yangsan, South Korea, and colleagues found that transforming growth factor-β1 signaling promoted the addition of sialic acid sugar units onto endometrial cell surface proteins. This modification enhanced the adhesion of endometrial cells to mesothelial cells, which line other internal organs, and the formation of endometriosis lesions in mice. Preventing sialic acid binding to its mesothelial cell receptor reduced lesion formation. The findings reveal a new molecular mechanism underlying endometriosis and a potential treatment strategy.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Tae-Wook Chung
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hee-Jung Choi
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, 16419, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea. .,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea. .,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
42
|
Ibrahim MG, Sillem M, Plendl J, Taube ET, Schüring A, Götte M, Chiantera V, Sehouli J, Mechsner S. Arrangement of myofibroblastic and smooth muscle-like cells in superficial peritoneal endometriosis and a possible role of transforming growth factor beta 1 (TGFβ1) in myofibroblastic metaplasia. Arch Gynecol Obstet 2018; 299:489-499. [PMID: 30523440 DOI: 10.1007/s00404-018-4995-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Superficial peritoneal endometriotic (pEM) lesions are composed of endometrial glands and stroma, in addition to a third component-myofibroblasts and smooth muscles (SM)-like cells. The latter develops secondary to a metaplasia. In this study, we characterised the third component cells in pEM according to differentiation markers in different micro-compartments. Furthermore, a possible effect of TGFβ1 on myofibroblastic metaplasia in endometriotic epithelial cells was studied. METHODS Seventy-six premenopausal patients were included. Peritoneal biopsies were excised from EM patients (n = 23), unaffected peritoneum (peritoneum from EM patients but without EM components, n = 5/23) and non-EM patients (n = 10). All peritoneal biopsies were immunolabeled for ASMA, calponin, collagen I, desmin, TGFß receptor 1 (R1), R2 and R3 in addition to ultrastructure examination by transmission electron microscopy (TEM) (n = 1). TGFß1 level was measured in peritoneal fluid (PF) (EM, n = 19 and non-EM, n = 13) collected during laparoscopy. Furthermore, TGFß1 effect on myofibroblastic metaplasia was studied in vitro. RESULTS At the centre of pEM lesions, calponin immunolabeling outweighs the collagen I while in the periphery the reverse occurs. SM-like cells expressing desmin predominate at the periphery, while ASMA immunolabeling was detectable in all micro-compartments. Both indicate an abundance of myofibroblasts at the centre of pEM lesions and SM-like cells in the periphery. Although activated TGFß1 in PF did not differ between EM and non-EM, it inhibited the cell proliferation of the endometriotic epithelial cells and induced an upregulation in ASMA and collagen IA2 expression as well. CONCLUSION The abundance of the myofibroblasts and SM-like cells points to a myofibroblastic metaplasia in pEM. Both cells are differentially arranged in the different micro-compartments of pEM lesions, with increasing cell maturity towards the periphery of the lesion. Furthermore, TGFß1 may play a role in the myofibroblastic metaplasia of the endometriotic epithelial cells. These findings provide a better insight in the micro-milieu in EM lesions, where most of the disease dynamics occur.
Collapse
Affiliation(s)
- Mohamed Gamal Ibrahim
- Clinic for Gynaecology, Charité University of Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Gynecology and Obstetrics, UKM Fertility Center, University Hospital of Muenster, Domagkstr. 11, 48149, Münster, Germany
| | - Martin Sillem
- Universitäts-Frauenklinik Homburg/Saar und Praxisklinik am Rosengarten, Augustaanlage 7-11, 68165, Mannheim, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Free University of Berlin, Berlin, Germany
| | - Eliane T Taube
- Institute for Pathology, Charité University of Medicine, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Schüring
- Department of Gynecology and Obstetrics, UKM Fertility Center, University Hospital of Muenster, Domagkstr. 11, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, UKM Fertility Center, University Hospital of Muenster, Domagkstr. 11, 48149, Münster, Germany
| | - Vito Chiantera
- Clinic for Gynaecology, Charité University of Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jalid Sehouli
- Clinic for Gynaecology, Charité University of Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sylvia Mechsner
- Clinic for Gynaecology, Charité University of Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
43
|
Seminal plasma (SP) induces a rapid transforming growth factor beta 1 (TGFβ1)—independent up-regulation of epithelial–mesenchymal transdifferentiation (EMT) and myofibroblastic metaplasia-markers in endometriotic (EM) and endometrial cells. Arch Gynecol Obstet 2018; 299:173-183. [DOI: 10.1007/s00404-018-4965-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
44
|
Soni UK, Chadchan SB, Kumar V, Ubba V, Khan MTA, Vinod BSV, Konwar R, Bora HK, Rath SK, Sharma S, Jha RK. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness†. Biol Reprod 2018; 100:917-938. [DOI: 10.1093/biolre/ioy242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Upendra Kumar Soni
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Vijay Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vaibhave Ubba
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangsu Kousik Bora
- Animal Laboratory Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
45
|
The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol Lett 2018; 201:31-37. [PMID: 30367890 DOI: 10.1016/j.imlet.2018.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Transforming growth factor β (TGF-β) is one of the major immune and inflammation factors responsible for regulating cell proliferation, differentiation, angiogenesis, and immune responses. Deregulated TGF-β activity, especially its influence in peritoneal cytokine cross-talk, has been implicated in pathologies of endometriosis. The aim of this study was to determine whether TGF-β could be involved in the pathogenesis of endometriosis. For this purpose, we evaluated concentrations of TGFβ1, TGF-β2, TGF-β3 and interleukin (IL)-1β, IL-6, IL-10, IL-17, IL-21 and IL-22 in peritoneal fluid (PF) and serum of women with endometriosis. METHODS A total of 66 women of reproductive age were involved in the study, 51 endometriosis patients, and 15 women from the control group. PF and serum levels of all cytokines were measured with ELISA in women with or without endometriosis. RESULTS Higher PF and serum levels of TGF-β1, TGF-β2, TGF-β3, presented also as a total TGF-β in women with endometriosis compared to control were observed. The biggest increase was measured in the case of TGF-β1. The higher levels of IL-1β, IL-6, IL-10, and IL-17 in PF and serum of endometriosis women than control was observed. Higher PF levels of studied parameters in comparison with serum levels were found. CONCLUSIONS In endometriosis, TGF-β could affect differentiation of T helper (Th) cells, hence produce more IL-17 and IL-10 to PF and might have an indirect influence on inflammation, which is associated with higher IL-1β and IL-6 levels. In consequent, TGF-β in peritoneal fluid may promote an environment favorable to ectopic lesion formation.
Collapse
|
46
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
47
|
Wendel JRH, Wang X, Hawkins SM. The Endometriotic Tumor Microenvironment in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080261. [PMID: 30087267 PMCID: PMC6115869 DOI: 10.3390/cancers10080261] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Collapse
Affiliation(s)
- Jillian R Hufgard Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
McKinnon B, Mueller M, Montgomery G. Progesterone Resistance in Endometriosis: an Acquired Property? Trends Endocrinol Metab 2018; 29:535-548. [PMID: 29934050 DOI: 10.1016/j.tem.2018.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Endometriosis is the growth of endometrial tissue outside the uterus and is characterized by progesterone resistance and changes in global and progesterone target gene expression. However, the mechanism behind this and whether it is innate, acquired, or present in both the eutopic and ectopic tissue in not always clear. We find large-scale gene expression studies in eutopic tissue, indicative of progesterone resistance, are often contradictory, potentially due to the dynamic nature of this tissue, whereas suppressed progesterone receptor expression is supported in ectopic but not eutopic tissue. This suggests more studies are required in eutopic tissue particularly, and that potentially the suppressed progesterone receptor (PR) expression is a consequence of the pathogenic process and exposure to the peritoneal environment.
Collapse
Affiliation(s)
- Brett McKinnon
- Department of Gynecology and Obstetrics, Frauenklinik, Inselspital Bern, Switzerland.
| | - Michael Mueller
- Department of Gynecology and Obstetrics, Frauenklinik, Inselspital Bern, Switzerland
| | - Grant Montgomery
- Genomics of Reproductive Disorders, Institute for Molecular Bioscience, University of Queensland, Australia
| |
Collapse
|
49
|
Pathogenomics of Endometriosis Development. Int J Mol Sci 2018; 19:ijms19071852. [PMID: 29937493 PMCID: PMC6073754 DOI: 10.3390/ijms19071852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/10/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
For over 100 years, endometriosis, as a chronic, estrogen-dependent, inflammatory, heritable disease affecting approximately 5–10% of women in reproductive age has been the focus of clinicians and scientists. In spite of numerous environmental, genetic, epigenetic, endocrine, and immunological studies, our knowledge of endometriosis is still fragmentary, and its precise pathophysiology and pathogenomics remain a mystery. The implementation of new technologies has provided tremendous progress in understanding the many intrinsic molecular mechanisms in the development of endometriosis, with progenitor and stem cells (SCs) of the eutopic endometrium as the starting players and endometriotic lesions as the final pathomorphological trait. Novel data on the molecular, genetic, and epigenetic mechanisms of the disease are briefly outlined. We hypothesize the existence of an endometriosis development genetic program (EMDP) that governs the origin of endometrium stem cells programmed for endometriosis (1), their transition (metaplasia) into mesenchymal SCs (2), and their invasion of the peritoneum and progression to endometriotic lesions (3). The pros and cons of the recent unifying theory of endometriosis are also discussed. Complex genomic and epigenetic interactions at different stages of the endometriosis process result in different forms of the disease, with specific features and clinical manifestations. The significance of the EMDP in elaborating a new strategy for endometriosis prediction, prevention, and treatment is discussed.
Collapse
|
50
|
Choi HJ, Park MJ, Kim BS, Choi HJ, Joo B, Lee KS, Choi JH, Chung TW, Ha KT. Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep 2018; 50:429-434. [PMID: 28760197 PMCID: PMC5595173 DOI: 10.5483/bmbrep.2017.50.8.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endometriosis is the abnormal growth of endometrial cells outside the uterus, causing pelvic pain and infertility. Furthermore, adhesion of endometrial tissue fragments to pelvic mesothelium is required for the initial step of endometriosis formation outside uterus. TGF-β1 and adhesion molecules importantly function for adhesion of endometrial tissue fragments to mesothelium outside uterus. However, the function of TGF-β1 on the regulation of adhesion molecule expression for adhesion of endometrial tissue fragments to mesothelium has not been fully elucidated. Interestingly, transforming growth factor β1 (TGF-β1) expression was higher in endome-triotic epithelial cells than in normal endometrial cells. The adhesion efficiency of endometriotic epithelial cells to meso-thelial cells was also higher than that of normal endometrial cells. Moreover, TGF-β1 directly induced the adhesion of endometrial cells to mesothelial cells through the regulation of integrin of αV, α6, β1, and β4 via the activation of the TGF-β1/TGF-βRI/Smad2 signaling pathway. Conversely, the adhesion of TGF-β1-stimulated endometrial cells to mesothelial cells was clearly reduced following treatment with neutralizing antibodies against specific TGF-β1-mediated integrins αV, β1, and β4 on the endometrial cell membrane. Taken together, these results suggest that TGF-β1 may act to promote the initiation of endometriosis by enhancing integrin-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea
| | - Mi-Ju Park
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Healthy Aging Korean Medical Research Center and Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan 50612, Korea
| | - Hee-Jin Choi
- Department of Korean Medical Science, School of Korean Medicine, Healthy Aging Korean Medical Research Center and Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan 50612, Korea
| | - Bosun Joo
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea
| | - Kyu Sup Lee
- Department of Obstetrics & Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Tae-Wook Chung
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan 50612, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Healthy Aging Korean Medical Research Center and Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|