1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Roseira JPS, Pereira OG, DA Silveira TC, Pinho RMA, Cascardo RS, DE Paula RA, Zerbini PA, Mantovani HC, Alves WS, Ribeiro KG. Isolation of lactic acid bacteria and quantification of Lentilactobacillus buchneri using qPCR in sorghum silage inoculated with native strains in tropical conditions. AN ACAD BRAS CIENC 2025; 97:e20240783. [PMID: 40172357 DOI: 10.1590/0001-3765202520240783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 04/04/2025] Open
Abstract
The objective of this study was to isolate lactic bacteria, quantify the population of Lentilactobacillus buchneri by qPCR, and evaluate the effects of the inoculation of native strains of L. buchneri in sorghum silage. The treatments were arranged in a 4 × 5 factorial scheme, with four inoculants (I) and five fermentation periods (P) (7, 14, 28, 45, and 90), in a completely randomized design, with three replicates. Forty-seven LAB strains were isolated from control silage, and L. buchneri was the predominant species at 45 and 90 days of fermentation. The qPCR data showed that L. buchneri predominated during all fermentation periods in the inoculated silages. There was an effect (P<0.05) of I × P interaction on all studied variables of the fermentative profile and microbial population. There was an effect (P<0.05) of I × P interaction on the dry matter (DM), neutral detergent fiber (NDF), in vitro DM digestibility, and in vitro NDF digestibility. Inoculation with L. buchneri resulted in silages with better fermentative quality and digestibility and a lower yeast population. The native LB.1 and LB.4 strains have potential to be used as inoculants in sorghum silage production, with effects on fermentation quality at 45 days of storage.
Collapse
Affiliation(s)
- João Paulo S Roseira
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Odilon G Pereira
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Tâmara C DA Silveira
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Ricardo M A Pinho
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Departamento de Ensino, Rodovia CE 292, 63115-500 Crato, CE, Brazil
| | - Renan S Cascardo
- Universidade Federal de Viçosa, Departamento de Microbiologia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Rosinea A DE Paula
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Poliane A Zerbini
- Universidade Federal de Viçosa, Departamento de Microbiologia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Hilário C Mantovani
- University of Wisconsin, Department of Animal & Dairy Science, Observatory Dr, 1675, 53706-1205 Madison, WI, USA
| | - Wagner S Alves
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| | - Karina G Ribeiro
- Universidade Federal de Viçosa, Departamento de Zootecnia, Av. PH Rolfs, s/n, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
3
|
Pham VD, Gänzle MG. Fructilactobacillus frigidiflavus sp. nov., a pigmented species, and Levilactobacillus lettrarii sp. nov., a propionate-producing species isolated from sourdough. Int J Syst Evol Microbiol 2025; 75:006726. [PMID: 40111394 PMCID: PMC11925284 DOI: 10.1099/ijsem.0.006726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The sourdough isolates FUA3702, FUA3912 and FUA3913T, as well as FUA3695T and FUA3914, could not be identified to known species of the Lactobacillaceae. The 16S rRNA gene sequences of FUA3702 and FUA3913, FUA3695 and FUA3914 were>99% identical to Fructilactobacillus sanfranciscensis and Levilactobacillus lanxiensis, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strain FUA3913T when compared to Fl. sanfranciscensis were 83.67 and 26.60%, respectively. In addition, strains FUA3702, FUA3912 and FUA3913T produce different levels of a yellow C30 carotenoid, but pigmentation has not been described in Fl. sanfranciscensis. The ANI and dDDH values of FUA3695T and FUA3914 when compared to Lv. langxiensis were 95.22 and 61.20%, respectively. In addition, FUA3695 and FUA3914 convert lactate to 1,2-propanediol and further to propionate. The conversion of lactate to propionate by a single strain has not been documented for any of the species in the Lactobacillaceae. Based on the genomic and physiological characteristics, we proposed the novel species Fructilactobacillus frigidiflavus sp. nov. FUA3913T (=DSM 118650T=LMG 33758T) and Levilactobacillus lettrarii sp. nov. FUA3695T (=DSM 118651T=LMG 33759T).
Collapse
Affiliation(s)
- Vi D. Pham
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Ashagrie H, Baye K, Guibert B, Rochette I, Tisseyre P, Humblot C. The use of propionic and lactic acid bacteria to produce cobalamin and folate in injera, an Ethiopian cereal-based fermented food. Int J Food Microbiol 2025; 426:110909. [PMID: 39288569 DOI: 10.1016/j.ijfoodmicro.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Like in many developing countries, the traditional Ethiopian diet relies mainly on starchy staple foods and often lacks sufficient animal-sourced foods which are crucial for cobalamin intake. Furthermore, the concentration of folate in traditionally prepared injera, an Ethiopian cereal-based fermented staple food, is highly variable and injera contains biologically inactive corrinoids. This study aimed to improve the cobalamin and folate content of injera by using cobalamin-producing Propionibacterium freudenreichii and folate-producing Lactiplantibacillus plantarum strains, both individually and combined. Since injera is fermented using backslopping, we also assessed the ability of these strains to produce cobalamin and folate consistently across successive fermentation batches. Changes in the microbial ecosystem were monitored using real-time PCR. The theoretical contribution of the injera prepared using the selected strains to the cobalamin and folate intake of children and women of reproductive age was also calculated. Results showed that using the selected bacterial strains individually increased cobalamin (up to 19.2 μg/100 g of dry matter) and folate (up to 180.2 μg/100 g of dry matter) levels in the injera dough over several backslopping fermentation batches. Regular consumption of the injera with enhanced vitamin content produced using each strain alone would be capable of fulfilling the entire recommended nutrient intake for cobalamin and up to 29 % of the recommended intake for folate for children and women of reproductive age. However, when the strains were used together, the production of both vitamins was reduced. The presence of certain common endogenous bacterial species and genera exhibited significant variability, highlighting the complex response of the native microbiota to the different inoculation strategies employed. Future experiments should consider selecting a microbial consortium comprising non-competing microorganisms to ensure the simultaneous production of cobalamin and folate in fermented foods.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Pierre Tisseyre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
5
|
Călinoiu LF, Odochean R, Martău GA, Mitrea L, Nemes SA, Ștefănescu BE, Vodnar DC. In situ fortification of cereal by-products with vitamin B12: An eco-sustainable approach for food fortification. Food Chem 2024; 460:140766. [PMID: 39126946 DOI: 10.1016/j.foodchem.2024.140766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Vitamin B12 deficiency poses significant health risks, especially among populations with limited access to animal-based foods. This study explores the utilisation of cereal bran by-products, wheat (WB) and oat bran (OB), as substrates for in situ vitamin B12 fortification through solid-state fermentation (SSF) using Propionibacterium freudenreichii. The impact of various precursors addition, including riboflavin, cobalt, nicotinamide and DMBI on vitamin B12 production, along with changes in microbial growth, chemical profiles, and vitamin B12 yields during fermentation was evaluated. Results showed that WB and OB possess favourable constituents for microbial growth and vitamin B12 synthesis. The substrates supplemented with riboflavin, cobalt, and DMBI demonstrated enhanced B12 production. In addition, pH levels are essential in microbial viability and cobalamin biosynthesis. Monosaccharides and organic acids play a crucial role, with maltose showing a strong positive association with B12 production in OB, while in WB, citric acid exhibits significant correlations with various factors.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Răzvan Odochean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Bianca-Eugenia Ștefănescu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Tran TNA, Nahar J, Park JK, Murugesan M, Ko JH, Ahn JC, Yang DC, Mathiyalagan R, Yang DU. Cloning, characterization of β-glucosidase from Furfurilactobacillus rossiae in bioconversion and its efficacy. Arch Microbiol 2024; 206:423. [PMID: 39361043 DOI: 10.1007/s00203-024-04148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Minor ginsenosides produced by β-glucosidase are interesting biologically and pharmacologically. In this study, new ginsenoside-hydrolyzing glycosidase from Furfurilactobacillus rossiae DCYL3 was cloned and expressed in Escherichia coli strain BL21. The enzyme converted Rb1 and Gyp XVII into Rd and compound K following the pathways: Rb1→Rd and Gyp XVII→F2→CK, respectively at optimal condition: 40 °C, 15 min, and pH 6.0. Furthermore, we examined the cytotoxicity, NO production, ROS generation, and gene expression of Gynostemma extract (GE) and bioconverted Gynostemma extract (BGE) in vitro against A549 cell lines for human lung cancer and macrophage RAW 264.7 cells for antiinflammation, respectively. As a result, BGE demonstrated significantly greater toxicity than GE against lung cancer at a dose of 500 µg/mL but in normal cells showed lower toxicity. Then, we indicated an enhanced generation of ROS, which may be boosting cancer cell toxicity. By blocking the intrinsic way, BGE increased p53, Bax, Caspase 3, 9, and while Bcl2 is decreased. At 500 µg/mL, the BGE sample was less toxic in normal cells and decreased the LPS-treated NO and ROS level to reduce inflammation. In addition, BGE inhibited the expression of pro-inflammatory genes COX-2, iNOS, IL-6, and IL-8 in RAW 264.7 cells than the sample of GE. In conclusion, FrBGL3 has considerable downstream applications for high-yield, low-cost, effective manufacture of minor ginsenosides. Moreover, the study's findings imply that BGE would be potential materials for anti-cancer and anti-inflammatory agent after consideration of future studies.
Collapse
Affiliation(s)
- Thi Ngoc Anh Tran
- Department of Biology, Faculty of Science, Nong Lam University, Ho Chi Minh City, 71300, Vietnam.
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jin-Kyu Park
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Hanbangbio Inc, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Dong Uk Yang
- Hanbangbio Inc, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
7
|
Li Q, Ruscheweyh HJ, Østergaard LH, Libertella M, Simonsen KS, Sunagawa S, Scoma A, Schwab C. Trait-based study predicts glycerol/diol dehydratases as a key function of the gut microbiota of hindgut-fermenting carnivores. MICROBIOME 2024; 12:178. [PMID: 39300575 DOI: 10.1186/s40168-024-01863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity. RESULTS Fecal levels of the glycerol transformation product 1,3-propanediol (1,3-PD) were higher in hindgut than foregut fermenters. Gene-based analyses indicated that pduC harboring taxa are common feature of captive wild animal fecal microbiota that occur more frequently and at higher abundance in hindgut fermenters. Phylogenetic analysis of genomes reconstructed from metagenomic sequences identified captive wild animal fecal microbiota as taxonomically rich with a total of 4150 species and > 1800 novel species but pointed at only 56 species that at least partially harbored pdu and cbi-cob-hem. While taxonomic diversity was highest in fecal samples of foregut-fermenting herbivores, higher pduC abundance and higher diversity of pdu/cbi-cob-hem related to higher potential for glycerol and 1,2-PD utilization of the less diverse microbiota of hindgut-fermenting carnivores in vitro. CONCLUSION Our approach combining metabolite and gene biomarker analysis with metagenomics and phenotypic characterization identified Pdu as a common function of fecal microbiota of captive wild animals shared by few taxa and stratified the potential of fecal microbiota for glycerol/1,2-PD utilization and cobalamin synthesis depending on diet and physiology of the host. This trait-based study suggests that the ability to utilize glycerol/1,2-PD is a key function of hindgut-fermenting carnivores, which does not relate to overall community diversity but links to the potential for cobalamin formation. Video Abstract.
Collapse
Affiliation(s)
- Qing Li
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
- Present address: National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Lærke Hartmann Østergaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Micael Libertella
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Alberto Scoma
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark
| | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Arhus, Denmark.
| |
Collapse
|
8
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
9
|
Abdi A, Oroojzadeh P, Valivand N, Sambrani R, Lotfi H. Immunological aspects of probiotics for improving skin diseases: Influence on the Gut-Brain-Skin Axis. Biochem Biophys Res Commun 2024; 702:149632. [PMID: 38340656 DOI: 10.1016/j.bbrc.2024.149632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The interplay between gut microbiota and human health, both mental and physical, is well-documented. This connection extends to the gut-brain-skin axis, linking gut microbiota to skin health. Recent studies have underscored the potential of probiotics and prebiotics to modulate gut microbiota, supported by in vivo and clinical investigations. In this comprehensive review, we explore the immunological implications of probiotics in influencing the gut-skin axis for the treatment and prevention of skin conditions, including psoriasis, acne, diabetic ulcers, atopic dermatitis, and skin cancer. Our analysis reveals that probiotics exert their effects by modulating cytokine production, whether administered orally or topically. Probiotics bolster skin defenses through the production of antimicrobial peptides and the induction of keratinocyte differentiation and regeneration. Yet, many questions surrounding probiotics remain unanswered, necessitating further exploration of their mechanisms of action in the context of skin diseases.
Collapse
Affiliation(s)
- Ali Abdi
- Medical Immunology, Aziz Sancar Institute of Experimental Medicine, İstanbul University, Istanbul, Turkey
| | - Parvin Oroojzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Roshanak Sambrani
- Clinical Research Development Unit of Razi Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
10
|
Mishra N, Garg A, Ashique S, Bhatt S. Potential of postbiotics for the treatment of metabolic disorders. Drug Discov Today 2024; 29:103921. [PMID: 38382867 DOI: 10.1016/j.drudis.2024.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Postbiotics, the next generation of probiotics, are extracts that are free of living and nonviable bacteria and show strong modulatory effects on the gut flora. Examples include vitamin B12, vitamin K, folate, lipopolysaccharides, enzymes, and short-chain fatty acids (SCFAs), representing a subset of essential nutrients commonly found in the human diet. Postbiotics have been observed to demonstrate antiobesity and antidiabetic effects through a variety of mechanisms. These pathways primarily involve an elevation in energy expenditure, a decrease in the formation and differentiation of adipocytes and food intake, modification of lipid and carbohydrate absorption and metabolism, and regulation of gut dysbiosis. Based on these above effects and mechanisms, the use of postbiotics can be considered as potential strategy for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru RamdasKhalsa Institute of Science and Technology (Pharmacy), Jabalpur 483001, Madhya Pradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Shvetank Bhatt
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| |
Collapse
|
11
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Gänzle MG, Qiao N, Bechtner J. The quest for the perfect loaf of sourdough bread continues: Novel developments for selection of sourdough starter cultures. Int J Food Microbiol 2023; 407:110421. [PMID: 37806010 DOI: 10.1016/j.ijfoodmicro.2023.110421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Sourdough fermentation, one of the oldest unit operations in food production, is currently experiencing a revival in bread production at the household, artisanal, and the industrial level. The expanding use of sourdough fermentation in bread production and the adaptation of fermentation to large scale industrial bread production also necessitate the development of novel starter cultures. Developments in the last years also have expanded the tools that are used to assess the metabolic potential of specific strains, species or genera of the Lactobacillaceae and have identified multiple ecological and metabolic traits as clade-specific. This review aims to provide an overview on the clade-specific metabolic potential of members of the Lactobacillaceae for use in sourdough baking, and the impact of these clade-specific traits on bread quality. Emphasis is placed on carbohydrate metabolism, including the conversion of sucrose and starch to soluble polysaccharides, conversion of amino acids, and the metabolism of organic acids. The current state of knowledge to compose multi-strain starter cultures (synthetic microbial communities) that are suitable for back-slopping will also be discussed. Taken together, the communication outlines the current tools for selection of microbes for use in sourdough baking.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| | - Nanzhen Qiao
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Julia Bechtner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| |
Collapse
|
13
|
Gumustop I, Ortakci F. Comparative genomics of Loigolactobacillus coryniformis with an emphasis on L. coryniformis strain FOL-19 isolated from cheese. Comput Struct Biotechnol J 2023; 21:5111-5124. [PMID: 37920811 PMCID: PMC10618118 DOI: 10.1016/j.csbj.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Loigolactobacillus coryniformis is a member of lactic acid bacteria isolated from various ecological niches. We isolated a novel L. coryniformis strain FOL-19 from artisanal Tulum cheese and performed the whole-genome sequencing for FOL-19. Then, genomic characterization of FOL-19 against ten available whole genome sequences of the same species isolated from kimchi, silage, fermented meat, air of cowshed, dairy, and pheasant chyme was performed to uncover the genetic diversity and biotechnological potential of overall species. The average genome size of 2.93 ± 0.1 Mb, GC content of 42.96% ± 0.002, number of CDS of 2905 ± 165, number of tRNA of 56 ± 10, and number of CRISPR elements of 6.55 ± 1.83 was found. Both Type I and II Cas clusters were observed in L. coryniformis. No bacteriocin biosynthesis gene clusters were found. All strains harbored at least one plasmid except KCTC 3167. All strains were predicted to carry multiple IS elements. The most common origin of the IS elements was belong to Lactiplantibacillus plantarum. Comparative genomic analysis of L. coryniformis revealed hypervariability at the strain level and the presence of CRISPR/Cas suggests that L. coryniformis holds a promising potential for being a reservoir for new CRISPR-based tools. All L. coryniformis strains except PH-1 were predicted to harbor pdu and cbi-cob-hem gene clusters encoding industrially relevant traits of reuterin and cobalamin biosynthesis, respectively. These findings put a step forward for the genomic characterization of L. coryniformis strains for biotechnological applications via genome-guided strain selection to identify industrially relevant traits.
Collapse
Affiliation(s)
- Ismail Gumustop
- BioEngineering Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Fatih Ortakci
- Food Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
14
|
Ribeiro M, Maciel C, Cruz P, Darmancier H, Nogueira T, Costa M, Laranjeira J, Morais RMSC, Teixeira P. Exploiting Potential Probiotic Lactic Acid Bacteria Isolated from Chlorella vulgaris Photobioreactors as Promising Vitamin B12 Producers. Foods 2023; 12:3277. [PMID: 37685210 PMCID: PMC10486965 DOI: 10.3390/foods12173277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Lactic acid bacteria (LAB) have been documented as potential vitamin B12 producers and may constitute an exogenous source of cobalamin for the microalga Chlorella vulgaris, which has been described as being able to perform vitamin uptake. Hence, there is an interest in discovering novel B12-producing probiotic LAB. Therefore, the purpose of the current work was to perform a phenotype-genotype analysis of the vitamin B12 biosynthesis capacity of LAB isolated from C. vulgaris bioreactors, and investigate their probiotic potential. Among the selected strains, Lactococcus lactis E32, Levilactobacillus brevis G31, and Pediococcus pentosaceus L51 demonstrated vitamin B12 biosynthesis capacity, with the latter producing the highest (28.19 ± 2.27 pg mL-1). The genomic analysis confirmed the presence of pivotal genes involved in different steps of the biosynthetic pathway (hemL, cbiT, cobC, and cobD). Notably, P. pentosaceus L51 was the only strain harboring cobA, pduU, and pduV genes, which may provide evidence for the presence of the cobalamin operon. All strains demonstrated the capability to withstand harsh gastrointestinal conditions, although P. pentosaceus L51 was more resilient. The potential for de novo cobalamin biosynthesis and remarkable probiotic features highlighted that P. pentosaceus L51 may be considered the most promising candidate strain for developing high-content vitamin B12 formulations.
Collapse
Affiliation(s)
- Mónica Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Cláudia Maciel
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Pedro Cruz
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Helena Darmancier
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-159 Oeiras, Portugal
| | - Teresa Nogueira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-159 Oeiras, Portugal
- cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, 1749-016 Lisbon, Portugal
| | - Margarida Costa
- ALLMICROALGAE Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal
| | - Joana Laranjeira
- ALLMICROALGAE Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Paula Teixeira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| |
Collapse
|
15
|
Musazadeh V, Faghfouri AH, Zarezadeh M, Pakmehr A, Moghaddam PT, Hamedi-Kalajahi F, Jahandideh A, Ghoreishi Z. Remarkable impacts of probiotics supplementation in enhancing of the antioxidant status: results of an umbrella meta-analysis. Front Nutr 2023; 10:1117387. [PMID: 37637950 PMCID: PMC10451070 DOI: 10.3389/fnut.2023.1117387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Numerous meta-analyses have demonstrated the beneficial effects of probiotics on oxidative stress biomarkers, although some studies have contradictory results. Therefore, the current research was conducted to obtain a precise and definite understanding on the impact of probiotics on oxidative stress biomarkers in adults. Methods We conducted a comprehensive systematic search of results on Scopus, PubMed, Embase, Web of Science, and Google Scholar dating up to March 2022. Fifteen meta-analyses were included in this umbrella meta-analysis. The random-effects model was employed to obtain the overall effect size. Subgroup analyses were carried out based on supplementation dosage and duration, mean age, and study population. Results Our results indicated that probiotics supplementation meaningfully decreased serum malondialdehyde (MDA) (ESWMD = -0.56, 95% CI: -0.72, -0.39; p < 0.001, and ESSMD = -0.50, 95% CI: -0.66, -0.34; p < 0.001). Moreover, the findings showed that probiotics resulted in a significant increase in total antioxidant capacity (TAC) (ESWMD = 29.18, 95% CI: 16.31, 42.04; p < 0.001, and ESSMD = 0.25, 95% CI: 0.02, 0.47; p = 0.032), total glutathione (GSH) (ESWMD: 30.65; 95% CI: 16.94, 44.35, p < 0.001), and nitric oxide (NO) (ESWMD: 1.48; 95% CI: 0.31, 2.65, p = 0.013; I2 = 51.7%, p = 0.043). Discussion Probiotics could be considered a strong agent in the reinforcement of antioxidant status and preventing the incidence of chronic diseases.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Taghavi Moghaddam
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fateme Hamedi-Kalajahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Jahandideh
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Ghoreishi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Padonou SW, Houngbédji M, Hounhouigan MH, Chadare FJ, Hounhouigan DJ. B-vitamins and heat processed fermented starchy and vegetable foods in sub-Saharan Africa: A review. J Food Sci 2023; 88:3155-3188. [PMID: 37458298 DOI: 10.1111/1750-3841.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Micronutrient deficiency still occurs in sub-Saharan Africa (SSA) despite the availability of several food resources, particularly fermented foods and vegetables, with high nutritional potential. Fermentation enhances the quality of food in several aspects. Organoleptically, certain taste, aroma, and textures are developed. Health and safety are improved by inhibiting the growth of several foodborne pathogens and removing harmful toxic compounds. Furthermore, nutrition is enhanced by improving micronutrient contents and bioavailability from the food, especially vitamin B content. However, during processing and before final consumption, many fermented foods are heat treated (drying, pasteurization, cooking, etc.) to make the food digestible and safe for consumption. Heat treatment improves the bioavailability of B-vitamins in some foods. In other foods, heating decreases the nutritional value because some B-vitamins are degraded. In SSA, cooked starchy foods are often associated with vegetables in household meals. This paper reviews studies that have focused fermented starchy foods and vegetable foods in SSA with the potential to provide B-vitamins to consumers. The review also describes the process of the preparation of these foods for final consumption, and techniques that can prevent or lessen B-vitamin loss, or enrich B-vitamins prior to consumption.
Collapse
Affiliation(s)
- Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Marcel Houngbédji
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Mênouwesso Harold Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Flora Josiane Chadare
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Djidjoho Joseph Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| |
Collapse
|
17
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
19
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
20
|
Intraamniotic Administration (Gallus gallus) of Genistein Alters Mineral Transport, Intestinal Morphology, and Gut Microbiota. Nutrients 2022; 14:nu14173473. [PMID: 36079731 PMCID: PMC9458084 DOI: 10.3390/nu14173473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 12/28/2022] Open
Abstract
Genistein is an isoflavone naturally present in numerous staple food crops, such as soybeans and chickpeas. This study utilized the Gallus gallus intraamniotic administration procedure to assess genistein administration effects on trace mineral status, brush border membrane (BBM) functionality, intestinal morphology, and intestinal microbiome in vivo. Eggs were divided into five groups with 1 mL injection of the following treatments: no-injection, DI H2O, 5% inulin, and 1.25% and 2.5% genistein (n = 8 per group). Upon hatch, blood, cecum, small intestine, and liver were collected for assessment of hemoglobin, intestinal microflora alterations, intestinal morphometric assessment, and mRNA gene expression of relevant iron and zinc transporter proteins, respectively. This study demonstrated that intraamniotic administration of 2.5% genistein increased villus surface area, number of acidic goblet cells, and hemoglobin. Additionally, genistein exposure downregulated duodenal cytochrome B (DcytB) and upregulated hepcidin expression. Further, genistein exposure positively altered the composition and function of the intestinal microbiota. Our results suggest a physiological role for genistein administration in improving mineral status, favorably altering BBM functionality and development, positively modulating the intestinal microbiome, as well as improving physiological status.
Collapse
|
21
|
Korcari D, Ricci G, Fanton A, Emide D, Barbiroli A, Fortina MG. Exploration of Lactiplantibacillus fabifermentans and Furfurilactobacillus rossiae as potential cocoa fermentation starters. J Appl Microbiol 2022; 133:1769-1780. [PMID: 35751485 PMCID: PMC9540988 DOI: 10.1111/jam.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the characteristics of two minority autochthonous LAB species, with particular regard to those properties that could be exploited in an improved cocoa fermentation process from a quality and safety point of view. METHODS AND RESULTS Bacterial, yeast and mould strains characteristic of spontaneously fermented Dominican cocoa beans were isolated and identified by 16S or 26S rRNA gene sequencing. The potential of two autochthonous strains of LAB belonging to the species Lactiplantibacillus fabifermentans and Furfurilactibacillus rossiae were investigated. The two selected LAB strains were able to utilize glucose and fructose, produced mainly D-L lactic acid and had a good ability to resist to cocoa-related stress conditions such as low pH, high temperature and high osmotic pressure, as well as to grow in sterile cocoa pulp. The strains did not inhibit the growth of yeasts and acetic acid bacteria, that are essential to the cocoa fermentation process, and possessed a complex pool of peptidases especially active on hydrophobic amino acids. The strains also showed antifungal activity against mould species that can be found at the final stages of cocoa fermentation, as Aspergillus tamarii, A. nidulans, Lichtheimia ornata and Rhizomucor pusillus, CONCLUSIONS: The tested strains are good candidates for the design of starter cultures for a controlled cocoa fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY This research showcases the potential of two alternative LAB species to the dominating Lactiplantibacillus plantarum and Limosilactibacillus fermentum as cocoa fermentation starters, with an interesting activity in improving the safety and quality of the process.
Collapse
Affiliation(s)
- Dea Korcari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Ricci
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Alberto Fanton
- Rizek Cocoa S.A.S., San Francisco de Macorìs, Dominican Republic
| | - Davide Emide
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Fortina
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
23
|
Simpson DJ, Zhang JS, D'Amico V, Llamas-Arriba MG, Gänzle MG. Furfurilactobacillus milii sp. nov., isolated from fermented cereal foods. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic characterization of
Furfurilactobacillus rossiae
revealed that strains which were previously identified as
F. rossiae
are genetically heterogeneous. The 16S rRNA gene sequences of strains FUA3430, FUA3583, C5, FUA3115 and FUA3119, were 99.6 % identical to
F. rossiae
but the core genome analysis revealed that these strains share less than 93 % average nucleotide identity (ANI) with the
F. rossiae
type strain DSM 15814T. Because the ANI value is below the threshold for delineation of bacterial species, we propose the novel species Furfurilactobacillus milii sp. nov. with the type strain FUA3430T (=DSM 113338T=LMG 32478T). Strains of F. milii have smaller genomes than
F. rossiae
, lack the pdu-cbi-cob-hem cluster which is responsible for 1,2-propanediol utilization in
F. rossiae
, and lack genes involved in ethanolamine utilization. Two strains of the novel species (FUA3430T and FUA3583) were compared to
F. rossiae
FUA3214. Analysis of the cellular fatty acid composition and metabolite analysis did not reveal significant differences between F. milii sp. nov. and
F. rossiae
FUA3124. Although the growth requirements with respect to temperature and pH were very similar, only the strain of
F. rossiae
utilized melibiose and d-xylose. Morphological differences were also seen in the colony and cell size of the novel compared to
F. rossiae
.
Collapse
Affiliation(s)
- David J. Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Justina S. Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Vera D'Amico
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, Vienna, 1190, Austria
| | - M. Goretti Llamas-Arriba
- Departamento de Química Aplicada, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
24
|
Garcia-Gonzalez N, Bottacini F, van Sinderen D, Gahan CGM, Corsetti A. Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Front Microbiol 2022; 13:854266. [PMID: 35663852 PMCID: PMC9159523 DOI: 10.3389/fmicb.2022.854266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lactiplantibacillus (Lpb.) plantarum is a versatile species commonly found in a wide variety of ecological niches including dairy products and vegetables, while it may also occur as a natural inhabitant of the human gastrointestinal tract. Although Lpb. plantarum strains have been suggested to exert beneficial properties on their host, the precise mechanisms underlying these microbe-host interactions are still obscure. In this context, the genome-scale in silico analysis of putative probiotic bacteria represents a bottom-up approach to identify probiotic biomarkers, predict desirable functional properties, and identify potentially detrimental antibiotic resistance genes. In this study, we characterized the bacterial genomes of three Lpb. plantarum strains isolated from three distinct environments [strain IMC513 (from the human GIT), C904 (from table olives), and LT52 (from raw-milk cheese)]. A whole-genome sequencing was performed combining Illumina short reads with Oxford Nanopore long reads. The phylogenomic analyses suggested the highest relatedness between IMC513 and C904 strains which were both clade 4 strains, with LT52 positioned within clade 5 within the Lpb. plantarum species. The comparative genome analysis performed across several Lpb. plantarum representatives highlighted the genes involved in the key metabolic pathways as well as those encoding potential probiotic features in these new isolates. In particular, our strains varied significantly in genes encoding exopolysaccharide biosynthesis and in contrast to strains IMC513 and C904, the LT52 strain does not encode a Mannose-binding adhesion protein. The LT52 strain is also deficient in genes encoding complete pentose phosphate and the Embden-Meyerhof pathways. Finally, analyses using the CARD and ResFinder databases revealed that none of the strains encode known antibiotic resistance loci. Ultimately, the results provide better insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- School of Microbiology, University College Cork, Cork, Ireland
- Synbiotec S.r.l., Spin-off of University of Camerino, Camerino, Italy
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Cormac G. M. Gahan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
25
|
Yin X, Zhao J, Wang S, Dong Z, Li J, Shao T. Separating the chemical and microbial factors of oat harvested at two growth stages to determine the main factor on silage fermentation. J Appl Microbiol 2022; 132:4266-4276. [PMID: 35384180 DOI: 10.1111/jam.15566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
AIMS This work evaluated the effects of epiphytic microbiota and chemical components on fermentation quality and microbial community of ensiled oat. METHOD AND RESULTS Oat harvested at the heading stage (HS) and the milk stage (MS) was sterilized by gamma-ray irradiation and inoculated as the following: (1) HS epiphytic microbiota + sterilized HS (H-H); (2) HS epiphytic microbiota + sterilized MS (H-M); (3) MS epiphytic microbiota + sterilized MS (M-M); (4) MS epiphytic microbiota + sterilized HS (M-H). After 60-d fermentation, silages inoculated with the epiphytic microbiota of HS had higher acetic acid content than those inoculated with MS. While, silage made from sterilized MS had lower pH, ammonia nitrogen and butyric acid contents and higher dry matter, water soluble-carbohydrates and lactic acid contents than that made from sterilized HS. The microbial communities of oat silages were similar, and they were mainly lactobacillus. CONCLUSIONS The chemical component rather than the epiphytic microbiota at harvest exerted more effects on oat silages. SIGNIFICANCE AND IMPACT OF THE STUDY This work reveals the different effects of chemical and microbial factors on the fermentation of silage, which is instructive for us to produce quality silage.
Collapse
Affiliation(s)
- Xuejing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
González-González F, Delgado S, Ruiz L, Margolles A, Ruas-Madiedo P. Functional bacterial cultures for dairy applications: towards improving safety, quality, nutritional and health benefit aspects. J Appl Microbiol 2022; 133:212-229. [PMID: 35238463 PMCID: PMC9539899 DOI: 10.1111/jam.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high‐quality foods with improved nutritional and health‐promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.
Collapse
Affiliation(s)
- F González-González
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - S Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - L Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - A Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
27
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
28
|
Jang J, Forbes VE, Sadowsky MJ. Probable role of Cutibacterium acnes in the gut of the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151127. [PMID: 34688749 DOI: 10.1016/j.scitotenv.2021.151127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Capitella teleta, a marine polychaete that feeds on a refractory diet consisting of sediment, was shown to contain unique gut microbiota comprised of microbial functional groups involved in fermentation. Results of our previous studies showed that C. teleta's core gut microbiota were dominated by propionibacteria, and that these bacteria were more abundant in worms than in sediment and feces. In order to test the hypothesis that the worm nutritionally benefits from its gut microbiota, we identified, and genetically and biochemically characterized Cutibacterium acnes strains (formerly Propionibacterium acnes) that were isolated from the gut of C. teleta. Here we show that 13 worm-isolated Cutibacterium acnes strains primarily belonged to phylotype group IB, likely as a clonal population. We also provide evidence that all tested strains produced propionate and vitamin B12, which are essential host-requiring microbial metabolites. The presence of C. acnes in C. teleta was not unique to our worm culture and was also found in those obtained from geographically distant laboratories located in the U.S. and Europe. Moreover, populations of worm gut-associated C. acnes increased following antibiotic treatment. Collectively, results of this study demonstrated that C. acnes is a member of the worm's core functional microbiota and is likely selectively favored by the physiology and chemistry of the host gut environment. To our knowledge, this is the first report of the presence of C. acnes in the C. teleta gut. Our data strongly suggest that C. acnes, a bacterium previously studied as an opportunistic pathogen, can likely act as a symbiont in C. teleta providing the host essential nutrients for survival, growth, and reproduction.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
29
|
Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine, Tej. Food Res Int 2022; 152:110765. [DOI: 10.1016/j.foodres.2021.110765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
|
30
|
Abstract
Global demand for renewable and sustainable energy is increasing, and one of the most common biofuels is ethanol. Most ethanol is produced by Saccharomyces cerevisiae (yeast) fermentation of either crops rich in sucrose (e.g., sugar cane and sugar beet) or starch-rich crops (e.g., corn and starchy grains). Ethanol produced from these sources is termed a first-generation biofuel. Yeast fermentation can yield a range of additional valuable co-products that accumulate during primary fermentation (e.g., protein concentrates, water soluble metabolites, fusel alcohols, and industrial enzymes). Distillers’ solubles is a liquid co-product that can be used in animal feed or as a resource for recovery of valuable materials. In some processes it is preferred that this fraction is modified by a second fermentation with another fermentation organism (e.g., lactic acid bacteria). Such two stage fermentations can produce valuable compounds, such as 1,3-propanediol, organic acids, and bacteriocins. The use of lactic acid bacteria can also lead to the aggregation of stillage proteins and enable protein aggregation into concentrates. Once concentrated, the protein has utility as a high-protein feed ingredient. After separation of protein concentrates the remaining solution is a potential source of several known small molecules. The purpose of this review is to provide policy makers, bioethanol producers, and researchers insight into additional added-value products that can be recovered from ethanol beers. Novel products may be isolated during or after distillation. The ability to isolate and purify these compounds can provide substantial additional revenue for biofuel manufacturers through the development of marketable co-products.
Collapse
|
31
|
Kumari M, Bhushan B, Kokkiligadda A, Kumar V, Behare P, Tomar SK. Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin. Curr Res Food Sci 2021; 4:646-654. [PMID: 34585144 PMCID: PMC8455482 DOI: 10.1016/j.crfs.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
The present study was designed to bio-fortify the soymilk (per se a B12-free plant food matrix). The PCR-based screening characterized the human fecal samples (4 out of 15 tested) and correspondingly identified novel lactobacilli isolates (n = 4) for their B12 production potential and rest (n = 62) as negative for this attribute. Further, 3 out of the 4 selected strains showed ability for extracellular vitamin production. The most prolific strain, Lactobacillus reuteri F2, secreted B12 (132.2 ± 1.9 μg/L) in cobalamin-free-medium with the highest ratio ever reported (0.97:1.00; extra-: intra-cellular). In next stage, the soymilk was biofortified in situ with B12 during un-optimized (2.8 ± 0.3 μg/L) and optimized (156.2 ± 3.6 μg/L) fermentations with a ∼54-fold increase at Artificial Neuro Fuzzy Inference System based R value of >0.99. The added-nutrients, temperature and initial-pH were observed to be the most important fermentation variables for maximal B12 biofortification. We report Lactobacillus rhamnosus F5 as the first B12 producing (101.7 ± 3.4 μg/L) strain from this species. The cyanocobalamin was extracted, purified and separated on UFLC as nutritionally-relevant B12. Besides, the vitamin was bioavailable in an auxotrophic-mutant. The lactobacilli fermentation is suggested, therefore, as an effective approach for B12 biofortification of soymilk. PCR-based real-time screening of human fecal samples for the presence of B12-related cbiK gene. Novel report of B12 production in Lactobacillus rhamnosus species (strain F5). A rare B12-producing phenotype of Lactobacillus reuteri F2 with highest ever ratio of extracellular vs total B12 (0.95:1.0). Sequential optimization (OFAT .→ GSD → ANFIS) enhanced post-fermentation soymilk B12 levels by 54-folds. One serving size (100 mL) of L. reuteri F2-biofortified fermented soymilk offered 6.5-fold higher B12 than human RDA. The produced B12 form is nutritionally-relevant and biologically active for humans.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana, 131028, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Kumar
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana, 131028, India
| | - Pradip Behare
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S K Tomar
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
32
|
Zheng L, Sun R, Zhu Y, Li Z, She X, Jian X, Yu F, Deng X, Sai B, Wang L, Zhou W, Wu M, Li G, Tang J, Jia W, Xiang J. Lung microbiome alterations in NSCLC patients. Sci Rep 2021; 11:11736. [PMID: 34083661 PMCID: PMC8175694 DOI: 10.1038/s41598-021-91195-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
Lung is colonized by a diverse array of microbes and the lung microbiota is profoundly involved in the development of respiratory diseases. There is little knowledge about the role of lung microbiota dysbiosis in lung cancer. In this study, we performed metagenomic sequencing on bronchoalveolar lavage (BAL) from two different sampling methods in non-small cell lung cancer (NSCLC) patients and non-cancer controls. We found the obvious variation between bronchoscopy samples and lobectomy samples. Oral taxa can be found in both bronchoscopy and lobectomy samples and higher abundance of oral taxa can be found in bronchoscopy samples. Although the NSCLC patients had similar microbial communities with non-cancer controls, rare species such as Lactobacillus rossiae, Bacteroides pyogenes, Paenibacillus odorifer, Pseudomonas entomophila, Magnetospirillum gryphiswaldense, fungus Chaetomium globosum et al. showed obvious difference between NSCLC patients and non-cancer controls. Age-, gender-, and smoking-specific species and EGFR expression-related species in NSCLC patients were detected. There results implicated that different lung segments have differential lung microbiome composition. The oral taxa are found in the lobectomy samples suggesting that oral microbiota are the true members of lung microbiota, rather than contamination during bronchoscopy. Lung cancer does not obviously alter the global microbial composition, while rare species are altered more than common species. Certain microbes may be associated with lung cancer progression.
Collapse
Affiliation(s)
- Leliang Zheng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Ruizheng Sun
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Yinghong Zhu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Zheng Li
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xingxing Jian
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xueyu Deng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Buqing Sai
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Lujuan Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Wen Zhou
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Wei Jia
- Hong Kong Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
33
|
Vincenti A, Bertuzzo L, Limitone A, D’Antona G, Cena H. Perspective: Practical Approach to Preventing Subclinical B12 Deficiency in Elderly Population. Nutrients 2021; 13:1913. [PMID: 34199569 PMCID: PMC8226782 DOI: 10.3390/nu13061913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin B12 (also known as cobalamin) is an essential water-soluble vitamin that plays a pivotal role for several physiologic functions during one's lifespan. Only certain microorganisms are able to synthetize B12, thus humans obtain cobalamin exclusively from their diet, specifically from animal-derived foods. Specific sub-group populations are at risk of vitamin B12 subclinical deficiency due to different factors including poor intake of animal source foods and age-dependent decrease in the capacity of intestinal B12 uptake. Consumption of animal products produces some negative health issues and negatively impacts sustainability while a plant-based diet increases the risk of B12 deficiency. Taking a cue from the aforementioned considerations, this narrative review aims to summarize facts about B12 deficiency and the burden of inadequate dietary intake in elderly population, as well as to discuss sustainable approaches to vitamin B12 deficiency in aging population.
Collapse
Affiliation(s)
- Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Laura Bertuzzo
- Glaxosmithkline (GSK) Consumer Healthcare, via Zambeletti s.n.c., 20021 Baranzate, Italy; (L.B.); (A.L.)
| | - Antonio Limitone
- Glaxosmithkline (GSK) Consumer Healthcare, via Zambeletti s.n.c., 20021 Baranzate, Italy; (L.B.); (A.L.)
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, 27058 Voghera, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
34
|
Cholesterol Reduction and Vitamin B12 Production Study on Enterococcus faecium and Lactobacillus pentosus Isolated from Yoghurt. SUSTAINABILITY 2021. [DOI: 10.3390/su13115853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was aimed to test cholesterol reduction and vitamin B12 production abilities of the isolated lactic acid bacteria (LAB). Three LAB isolates, namely, Enterococcus faecium (EF), Enterococcus faecium (Chole1), and Lactobacillus pentosus (7MP), having probiotic potential, were isolated from yoghurt. These isolates were screened for bile salt hydrolase (BSH) activity, cholesterol reduction property in MRS broth, and the production of vitamin B12. The present study revealed that the isolate 7MP possesses the highest potential of (48%) cholesterol reduction compared to the other isolates. The isolates EF and Chole1 produced a good amount of (1 ng/mL) vitamin B12. These isolates were identified by 16S rRNA gene sequencing and confirmed by MALD_TOF analysis. Thus, the use of these LAB isolates for yoghurt-making can offer the value addition of lowering cholesterol and vitamin B12 fortification in fermented food.
Collapse
|
35
|
Sobczyńska-Malefora A, Delvin E, McCaddon A, Ahmadi KR, Harrington DJ. Vitamin B 12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls. Crit Rev Clin Lab Sci 2021; 58:399-429. [PMID: 33881359 DOI: 10.1080/10408363.2021.1885339] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vitamin B12 (cobalamin) is an essential cofactor for two metabolic pathways. It is obtained principally from food of animal origin. Cobalamin becomes bioavailable through a series of steps pertaining to its release from dietary protein, intrinsic factor-mediated absorption, haptocorrin or transcobalamin-mediated transport, cellular uptake, and two enzymatic conversions (via methionine synthase and methylmalonyl-CoA-mutase) into cofactor forms: methylcobalamin and adenosylcobalamin. Vitamin B12 deficiency can masquerade as a multitude of illnesses, presenting different perspectives from the point of view of the hematologist, neurologist, gastroenterologist, general physician, or dietician. Increased physician vigilance and heightened patient awareness often account for its early presentation, and testing sometimes occurs during a phase of vitamin B12 insufficiency before the main onset of the disease. The chosen test often depends on its availability rather than on the diagnostic performance and sensitivity to irrelevant factors interfering with vitamin B12 markers. Although serum B12 is still the most commonly used and widely available test, diagnostics by holotranscobalamin, serum methylmalonic acid, and plasma homocysteine measurements have grown in the last several years in routine practice. The lack of a robust absorption test, coupled with compromised sensitivity and specificity of other tests (intrinsic factor and gastric parietal cell antibodies), hinders determination of the cause for depleted B12 status. This can lead to incorrect supplementation regimes and uncertainty regarding later treatment. This review discusses currently available knowledge on vitamin B12, informs the reader about the pitfalls of tests for assessing its deficiency, reviews B12 status in various populations at different disease stages, and provides recommendations for interpretation, treatment, and associated risks. Future directions for diagnostics of B12 status and health interventions are also discussed.
Collapse
Affiliation(s)
- Agata Sobczyńska-Malefora
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Edgard Delvin
- Sainte-Justine UHC Research Centre, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | | | - Kourosh R Ahmadi
- Department of Nutrition & Metabolism, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Dominic J Harrington
- The Nutristasis Unit, Viapath, St. Thomas' Hospital, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
36
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
37
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
38
|
Zhang YY, Hughes J, Grafenauer S. Got Mylk? The Emerging Role of Australian Plant-Based Milk Alternatives as A Cow's Milk Substitute. Nutrients 2020; 12:E1254. [PMID: 32354190 PMCID: PMC7281999 DOI: 10.3390/nu12051254] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Growing ethical, environmental and health concerns have encouraged demand for novel plant-based milk alternatives, yet it remains nebulous whether these products are nutritionally adequate as cow's milk replacements. The aim of this study was to conduct a cross-sectional survey of plant-based milk alternatives available in major Australian supermarkets and selected niche food retailers from November 2019 to January 2020 and assess two dietary scenarios (adolescents and older women) where dairy serves were substituted for plant-based alternatives against Australian Estimated Average Requirements (EAR). We collected compositional data from nutrition panels in juxtaposition with derivatives from the Australian Food Composition database, with a total of 115 products, including tree nuts and seeds (n = 48), legumes (n = 27), coconut (n = 10), grains (n = 19) and mixed sources (n = 10). Just over 50% of products were fortified, but only 1/3 contained similar calcium content to cow's milk. Indiscriminate substitutions might reduce intakes of protein and micronutrients, particularly vitamin A, B2, B12, iodine and zinc, and lead to reductions >50% of the EARs for protein, zinc and calcium in the chosen dietary scenarios. To avoid unintended dietary outcomes, it is vital that consumers make pragmatic decisions regarding dietary replacements for cow's milk.
Collapse
Affiliation(s)
- Yianna Y. Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Jaimee Hughes
- Grains & Legumes Nutrition Council, Mount Street, North Sydney, NSW 2060, Australia
| | - Sara Grafenauer
- Grains & Legumes Nutrition Council, Mount Street, North Sydney, NSW 2060, Australia
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
39
|
Tse TJ, Shen J, Shim YY, Reaney MJT. Changes in Bacterial Populations and Their Metabolism over 90 Sequential Cultures on Wheat-Based Thin Stillage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4717-4729. [PMID: 32138511 DOI: 10.1021/acs.jafc.9b07414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat-based thin stillage (W-TS) is a liquid co-product of wheat fermentation for ethanol production, which typically contains substantial amounts of glycerol. Two-stage fermentation, via endemic microorganisms, can be used in processes to convert this compound to more valuable products and simplify the enrichment process through the clarification of the medium and concentration of particles as a protein-rich concentrate. We recultured bacteria 90 times (72 h at 37 °C) on fresh W-TS to determine the stability of the culture and metabolic processes. Next-generation sequencing of W-TS revealed the presence of a predominant Lactobacillus community that rapidly displaced competing microorganisms (e.g., Pediococcus) in subsequent fermentations. These organisms produced bacteriocins (e.g., helveticin J, interpreted through the presence of bacteriocin genes) and acidified the fermentation broth (through the production of succinic acid: 1.7 g/L, lactic acid: 1.8 g/L, and acetic acid: 4.1 g/L). Furthermore, the microbial community produced cobalamin (inferred through sequencing) and converted glycerol (10 g/L reduced to 3.5 g/L after 72 h) to 1,3-propanediol (6.1 g/L after 72 h). Altogether, Lactobacilli were identified as the predominant endemic microorganisms in W-TS after the first 10 cultures. The community was stable and provided a novel approach to increase the value of organic solutes in W-TS.
Collapse
Affiliation(s)
- Timothy J Tse
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Jianheng Shen
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- Prairie Tide Diversified Inc., 102 Melville Street, Saskatoon Saskatchewan S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- Prairie Tide Diversified Inc., 102 Melville Street, Saskatoon Saskatchewan S7J 0R1, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| |
Collapse
|
40
|
Abstract
Maize and its derived fermented products, as with other cereals, are fundamental for human nutrition in many countries of the world. Mixed cultures, principally constituted by lactic acid bacteria (LAB) and yeasts, are responsible for maize fermentation, thus increasing its nutritional value and extending the products’ shelf-life. Other microorganisms involved, such as molds, acetic acid bacteria, and Bacillus spp. can contribute to the final product characteristics. This review gives an overview of the impact of the activities of this complex microbiota on maize product development and attributes. In particular, starting from amylolytic activity, which is able to increase sugar availability and influence the microbial succession and production of exopolysaccharides, vitamins, and antimicrobial compounds, which improve the nutritional value. Further activities are also considered with positive effects on the safety profile, such as phytates detoxification and mycotoxins reduction.
Collapse
|
41
|
Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
42
|
Zhang J, Empl MT, Schneider M, Schröder B, Stadnicka-Michalak J, Breves G, Steinberg P, Sturla SJ. Gut microbial transformation of the dietary mutagen MeIQx may reduce exposure levels without altering intestinal transport. Toxicol In Vitro 2019; 59:238-245. [PMID: 30954653 DOI: 10.1016/j.tiv.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
The mutagen and probable human carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolized in the colon to 9-hydroxyl-2,7-dimethyl-7,9,10,11-tetrahydropyrimido[2',1':2,3]imidazo[4,5-f]quinoxaline (MeIQx-M1) by conjugation with microbially generated acrolein. However, whether this microbiota-controlled process alters systemic exposure and hepatotoxicity of MeIQx remains unclear. The physiological relevance of this microbial transformation on the systemic exposure of MeIQx was investigated using an in vitro-in vivo extrapolation approach. To address whether microbial transformation influences intestinal transport of MeIQx, the intestinal uptake of MeIQx and its metabolite MeIQx-M1 was quantified using Ussing chambers mounted with different intestinal segments from male Fischer 344 rats. Up to 0.4% of both MeIQx and MeIQx-M1 were transported from the mucosal side to the serosal side of intestinal tissue within 90 min, suggesting that the intestinal uptake of both compounds is similar. With the uptake rates of both compounds, physiologically based pharmacokinetic (PBPK) modeling of the fate of MeIQx in the human body including microbial transformation of MeIQx was performed. Results indicate for the first time that high levels of microbe-derived acrolein would be required to significantly reduce systemic exposure of MeIQx in humans. Finally, neither MeIQx nor MeIQx-M1 were cytotoxic towards human liver HepaRG cells at dietary or higher concentrations of MeIQx. In summary, these findings suggest that gut microbial transformation of heterocyclic amines has the potential to influence systemic human exposure to some extent, but may require significant gut microbial production of acrolein and that further investigations are needed to understand physiological levels of acrolein and competing biotransformation pathways.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mirjam Schneider
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bernd Schröder
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julita Stadnicka-Michalak
- Eawag, Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Switzerland
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
43
|
Yu Y, Wang L, Qian H, Zhang H, Li Y, Wu G, Qi X, Xu M, Rao Z. Effect of selected strains on physical and organoleptic properties of breads. Food Chem 2019; 276:547-553. [PMID: 30409631 DOI: 10.1016/j.foodchem.2018.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/04/2023]
Abstract
The use of selected Saccharomyces cerevisiae PS7314, Lactobacillus rossiae NOS7307, Lactobacillus brevis NOS7311, and Lactobacillus plantarum NOS7315 as mono-culture or co-culture for production of sourdoughs, their breads showed different physical and organoleptic properties. The pH of breads fermented with sourdoughs incubated with mono-culture or co-culture all decreased. An opposite trend was found for TTA. The use of single lactobacillus for the dough fermentation decreased the specific volume of bread, which was 4.15-19.10% lower than that of control bread (CB). However, the synergetic fermentation helped the improvement of bread quality. Compared to CB, the mixed culture 4 sourdough remarkably decreased the hardness by 52.08%, increased the specific volume by 5.29%, improved porosity of final product by 24.90%, and gave a preferable sensory characteristic to bread. Thus, the MC4 could be recommended for replacing spontaneous sourdough for improving the quality of bread.
Collapse
Affiliation(s)
- Yafang Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meijuan Xu
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhiming Rao
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
44
|
Schneiderbanger J, Jacob F, Hutzler M. Genotypic and phenotypic diversity of Lactobacillus rossiae isolated from beer. J Appl Microbiol 2019; 126:1187-1198. [PMID: 30637885 DOI: 10.1111/jam.14202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 11/27/2022]
Abstract
AIMS Over the past few years, the lactic acid bacteria (LAB) species Lactobacillus rossiae has appeared on occasion as a beer spoiler, in addition to its role as an inhabitant of sourdough and other foods. Many authors have described the L. rossiae sourdough isolates as phenotypically and genotypically extremely versatile. This characterization was confirmed in a comprehensive genotypic and phenotypic study based on 11 beer-related L. rossiae isolates. MATERIALS AND METHODS The beer-related isolates and the L. rossiae type strain were classified in a polyphasic approach applying 16S rRNA, rpoA and pheS housekeeping gene sequence comparisons, DNA-DNA hybridization and rep-PCR technique. Additionally, carbohydrate fermentation and amino-acid metabolism were examined. In terms of the beer-spoilage ability, the growth in two different beer types was examined and the presence of three prominent hop resistance genes (horA, horC and hitA) and of one gene presumably responsible for the production of exopolysaccharides (gtf) was checked. CONCLUSION The carbohydrate fermentation pattern (GTG)5 rep-PCR and the pheS gene sequence comparison showed deviations between sourdough and beer-related isolates. DNA-DNA hybridization values and the pheS gene sequence comparison between beer-related isolates point towards the need for expansion of the limits for species description. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus rossiae shows great phenotypic and genotypic variability stretching the limits of species description. The correlation between pheS gene sequence and the presence of the horC gene is important for brewing microbiologists and the search for beer-spoilage prediction methods.
Collapse
Affiliation(s)
- J Schneiderbanger
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Freising, Germany
| | - F Jacob
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Freising, Germany
| | - M Hutzler
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Freising, Germany
| |
Collapse
|
45
|
De Angelis M, Garruti G, Minervini F, Bonfrate L, Portincasa P, Gobbetti M. The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Curr Med Chem 2019; 26:3567-3583. [PMID: 28462705 DOI: 10.2174/0929867324666170428103848] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Section of Endocrinology, Andrology and Metabolic Diseases, University of Bari Medical School, Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonilde Bonfrate
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bolzano, Italy
| |
Collapse
|
46
|
Torres AC, Vannini V, Font G, Saavedra L, Taranto MP. Novel Pathway for Corrinoid Compounds Production in Lactobacillus. Front Microbiol 2018; 9:2256. [PMID: 30319575 PMCID: PMC6167548 DOI: 10.3389/fmicb.2018.02256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022] Open
Abstract
Vitamin B12 or cobalamin is an essential metabolite for humans, which makes it an interesting compound for many research groups that focus in different producer-strains synthesis pathways. In this work, we report the influence of key intermediaries for cobalamin synthesis added to the culture medium in two Lactobacillus (L.) strains, L. reuteri CRL 1098 and L. coryniformis CRL 1001. Here, we report that addition of Co2+ and 5,6-dimethylbenzimidazole increased the corrinoid compounds production in both strains while addition of L-threonine increased only the corrinoid compounds production by CRL 1001 strain. Then, we purified and characterized by LC-MS the corrinoid compounds obtained. Physiological studies besides in silico analysis revealed that L. reuteri CRL 1098 and L. coryniformis CRL 1001 follow different pathways for the last steps of the corrinoid compounds synthesis.
Collapse
Affiliation(s)
- Andrea Carolina Torres
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Verónica Vannini
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Graciela Font
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - María Pía Taranto
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| |
Collapse
|
47
|
Zhang J, Empl MT, Schwab C, Fekry MI, Engels C, Schneider M, Lacroix C, Steinberg P, Sturla SJ. Gut Microbial Transformation of the Dietary Imidazoquinoxaline Mutagen MelQx Reduces Its Cytotoxic and Mutagenic Potency. Toxicol Sci 2018; 159:266-276. [PMID: 28666384 PMCID: PMC5837702 DOI: 10.1093/toxsci/kfx132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The diverse community of microbes present in the human gut has emerged as an important
factor for cancer risk, potentially by altering exposure to chemical carcinogens. In the
present study, human gut bacteria were tested for their capacity to transform the
carcinogenic heterocyclic amine
2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx).
Eubacterium hallii, Lactobacillus reuteri, and Lactobacillus
rossiae were able to convert MelQx to a new microbial metabolite characterized
on the basis of high-resolution mass spectrometry and NMR as
9-hydroxyl-2,7-dimethyl-7,9,10,11-tetrahydropyrimido[2′,1′:2,3]imidazo[4,5-f]quinoxaline
(MelQx-M1), resulting from conjugation with activated glycerol. Acrolein derived from the
decomposition of 3-hydroxypropionaldehyde, which is the product of bacterial glycerol/diol
dehydratase activity, was identified as the active compound responsible for the formation
of MelQx-M1. A complex human gut microbial community obtained from
invitro continuous intestinal fermentation was found to also transform
MelQx to MelQx-M1. MelQx-M1 had slightly reduced cytotoxic potency toward human colon
epithelial cells invitro, and diminished mutagenic potential toward
bacteria after metabolic activation. As bacterially derived acrolein also transformed 2
other HCAs, namely 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and
2-amino-3-methylimidazo[4,5-f]quinoline, these results generalize the
capacity of gut microbiota to detoxify HCAs in the gut, potentially modulating cancer
risk.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Mostafa I Fekry
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zürich, Switzerland.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Christina Engels
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Mirjam Schneider
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
48
|
Contribution of spontaneously-fermented sourdoughs with pear and navel orange for the bread-making. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
50
|
Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chem 2017; 234:494-501. [DOI: 10.1016/j.foodchem.2017.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023]
|