1
|
Thakore P, Karki S, Hrdlicka HC, Garcia-Munoz J, Pereira RC, Delany AM. Decreasing miR-433-3p Activity in the Osteoblast Lineage Blunts Glucocorticoid-mediated Bone Loss. Endocrinology 2025; 166:bqaf008. [PMID: 39820728 PMCID: PMC11791524 DOI: 10.1210/endocr/bqaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a microRNA (miRNA) that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A, and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls. In whole femurs, Rankl was significantly higher in prednisolone-treated controls compared with miR-433-3p tough decoy mice. Surprisingly, negative regulators of Wnt signaling Sost and Dkk1 were higher in miR-433-3p tough decoy mice and were unaffected by prednisolone. Luciferase- 3'-untranslated region reporter assays demonstrated that Sost is a novel miR-433-3p target, whereas Dkk1 is a previously validated miR-433-3p target. miR-433-3p levels are lower in matrix-synthesizing osteoblasts than in more osteocytic cells; thus the impact of miR-433-3p on the osteoblast lineage may be dependent on cell context: it is a negative regulator in matrix-depositing osteoblasts by targeting RNAs important for differentiation and function but a positive regulator in osteocytes, due to its ability to target prominently expressed negative regulators of Wnt signaling, Sost and Dkk1. The mechanisms by which miR-433-3p indirectly regulates glucocorticoid-mediated osteoclastogenesis remain unknown. However, we speculate that this regulation may be mediated by miR-433-3p activity in osteocytes, which play an important role in controlling osteoclastogenesis.
Collapse
Affiliation(s)
- Prachi Thakore
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - John Garcia-Munoz
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Li J, Sakisaka Y, Nemoto E, Maruyama K, Suzuki S, Xiong K, Tada H, Tenkumo T, Yamada S. Cementocyte-derived extracellular vesicles regulate osteoclastogenesis and osteoblastogenesis. J Dent Sci 2024; 19:2236-2246. [PMID: 39347082 PMCID: PMC11437308 DOI: 10.1016/j.jds.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Cementum shares many properties with bone; however, in contrast to bone, it is not innervated or vascularized and has a limited capacity for remodeling. Osteocytes located in the lacunae-canalicular system of bone tissue play a central role in bone remodeling by communicating with osteoblasts and osteoclasts. Although cementocytes are present in cellular cementum and are morphologically similar to osteocytes, it remains unclear whether they are involved in the dynamic functional regulation of metabolism in cementum. The present study focused on the extracellular vesicles (EVs) secreted by cementocytes and examined their effects on osteoclasts and osteoblasts. Materials and methods EVs were extracted from the mouse cementocyte cell line, IDG-CM6. The effects of EVs on recombinant RANKL-induced osteoclastogenesis and recombinant Bone morphogenetic protein (BMP)-2-mediated osteoblastogenesis were investigated using the mouse osteoclast progenitor cell line, RAW264.7 and mouse pre-osteoblast cell line, MC3T3-E1, respectively. Results EVs enhanced the formation of tartrate-resistant acid phosphatase activity-positive cells. Real-time PCR revealed that EVs up-regulated the expression of osteoclast-related genes. On the other hand, the cell culture supernatant of cementocytes significantly inhibited the differentiation of osteoclasts. Regarding osteoblastogenesis, EVs suppressed the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin induced by recombinant BMP-2 at the gene and protein levels. Conclusion A network of cementocytes, osteoblasts, and osteoclasts may exist in cellular cementum, which suggests the involvement of cementocytes in dynamic metabolism of cementum through EVs.
Collapse
Affiliation(s)
- Jiajun Li
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukihiko Sakisaka
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaixin Xiong
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
3
|
Shin B, Hrdlicka HC, Karki S, Fraser B, Lee SK, Delany AM. The miR-29-3p family suppresses inflammatory osteolysis. J Cell Physiol 2024; 239:e31299. [PMID: 38764231 PMCID: PMC11324400 DOI: 10.1002/jcp.31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Brianna Fraser
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
5
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
6
|
Yan B, Li Z, Su H, Xue H, Qiu D, Xu Z, Tan G. Regulatory mechanisms of autophagy-related ncRNAs in bone metabolic diseases. Front Pharmacol 2023; 14:1178310. [PMID: 38146458 PMCID: PMC10749346 DOI: 10.3389/fphar.2023.1178310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Bone metabolic diseases have been tormented and are plaguing people worldwide due to the lack of effective and thorough medical interventions and the poor understanding of their pathogenesis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that cannot encode the proteins but can affect the expressions of other genes. Autophagy is a fundamental mechanism for keeping cell viability, recycling cellular contents through the lysosomal pathway, and maintaining the homeostasis of the intracellular environment. There is growing evidence that ncRNAs, autophagy, and crosstalk between ncRNAs and autophagy play complex roles in progression of metabolic bone disease. This review investigated the complex mechanisms by which ncRNAs, mainly micro RNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate autophagic pathway to assist in treating bone metabolism disorders. It aimed at identifying the autophagy role in bone metabolism disorders and understanding the role, potential, and challenges of crosstalk between ncRNAs and autophagy for bone metabolism disorders treatment.
Collapse
Affiliation(s)
- Binghan Yan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Su
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Prajzlerová K, Šenolt L, Filková M. Is there a potential of circulating miRNAs as biomarkers in rheumatic diseases? Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Sato R, Maruyama K, Nemoto E, Sakisaka Y, Suzuki S, Li J, Numazaki K, Tada H, Yamada S. Extracellular Vesicles Derived From Murine Cementoblasts Possess the Potential to Increase Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis. Front Physiol 2022; 13:825596. [PMID: 35237179 PMCID: PMC8882962 DOI: 10.3389/fphys.2022.825596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cementum resorption, unlike bone resorption, is clinically known to occur only with limited pathological stimuli, such as trauma, orthodontic forces, and large apical periodontitis; however, the molecular mechanisms that control osteoclast formation on the cementum surface remain unclear. In this study, we focused on extracellular vesicles (EVs) secreted by cementoblasts and analyzed their effects on osteoclast differentiation. EVs were extracted from the conditioned medium (CM) of the mouse cementoblast cell line OCCM-30. Transmission electron microscopy (TEM) analysis confirmed the presence of EVs with a diameter of approximately 50–200 nm. The effect of the EVs on osteoclast differentiation was examined using the mouse osteoclast progenitor cell line RAW 264.7 with recombinant receptor activator of nuclear factor (NF)-κB ligand (rRANKL) stimulation. EVs enhanced the formation of tartrate-resistant acid phosphatase (TRAP) activity-positive cells upon rRANKL stimulation. EVs also enhanced the induction of osteoclast-associated gene and protein expression in this condition, as determined by real-time PCR and Western blotting, respectively. On the other hand, no enhancing effect of EVs was observed without rRANKL stimulation. A Western blot analysis revealed no expression of receptor activator of NF-κB ligand (RANKL) in EVs themselves. The effect on rRANKL-induced osteoclast differentiation was examined using the CM of cementoblasts in terms of TRAP activity-positive cell formation and osteoclast-associated gene expression. The conditioned medium partly inhibited rRANKL-induced osteoclast differentiation and almost completely suppressed its enhancing effect by EVs. These results indicate that cementoblasts secreted EVs, which enhanced RANKL-induced osteoclast differentiation, and simultaneously produced soluble factors that neutralized this enhancing effect of EVs, implicating this balance in the regulation of cementum absorption. A more detailed understanding of this crosstalk between cementoblasts and osteoclasts will contribute to the development of new therapies for pathological root resorption.
Collapse
Affiliation(s)
- Rei Sato
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
- *Correspondence: Eiji Nemoto,
| | - Yukihiko Sakisaka
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jiajun Li
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kento Numazaki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
MiRNAs Expression Profiling in Raw264.7 Macrophages after Nfatc1-Knockdown Elucidates Potential Pathways Involved in Osteoclasts Differentiation. BIOLOGY 2021; 10:biology10111080. [PMID: 34827073 PMCID: PMC8614811 DOI: 10.3390/biology10111080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Differentiation of macrophages toward osteoclasts is crucial for bone homeostasis but can be detrimental in disease states, including osteoporosis and cancer. Therefore, understanding the osteoclast differentiation process and the underlying regulatory mechanisms may facilitate the identification of new therapeutic targets. Hereby, we tried to reveal new miRNAs potentially involved in the regulation of early steps of osteoclastogenesis, with a particular focus on those possibly correlated with NFATc1 expression, by studying miRNAs profiling. During the first 24 h of osteoclastogenesis, 38 miRNAs were differentially expressed between undifferentiated and RANKL-stimulated RAW264.7 cells, while 10 miRNAs were differentially expressed between RANKL-stimulated cells transfected with negative control or NFATc1-siRNAs. Among others, the expression levels of miR-411, miR-144 and members of miR-29, miR-30, and miR-23 families changed after RANKL stimulation. Moreover, the potential role of miR-124 during osteoclastogenesis was explored by transient cell transfection with anti-miR-124 or miR-124-mimic. Two relatively unknown miRNAs, miR-880-3p and miR-295-3p, were differentially expressed between RANKL-stimulated/wild-type and RANKL-stimulated/NFATc1-silenced cells, suggesting their possible correlation with NFATc1. KEGG enrichment analyses showed that kinase and phosphatase enzymes were among the predicted targets for many of the studied miRNAs. In conclusion, our study provides new data on the potential role and possible targets of new miRNAs during osteoclastogenesis.
Collapse
|
11
|
Dole NS, Yoon J, Monteiro DA, Yang J, Mazur CM, Kaya S, Belair CD, Alliston T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J 2021; 35:e21883. [PMID: 34569659 PMCID: PMC9153140 DOI: 10.1096/fj.202100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well‐defined. Here we report a new microRNA‐dependent mechanism that mediates mechanosensitive crosstalk between TGFβ and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small‐RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFβ and Wnt signaling in osteocytes, only TGFβ represses miR‐100 expression. miR‐100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR‐100 inhibition blunts FSS‐ and TGFβ‐inducible Wnt signaling. Therefore, our results identify FSS‐responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David A Monteiro
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jason Yang
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cassandra D Belair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA.,Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
13
|
Dolati S, Shakouri SK, Dolatkhah N, Yousefi M, Jadidi-Niaragh F, Sanaie S. The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 2021; 47:292-310. [PMID: 33621363 DOI: 10.1002/biof.1715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Aging is a biological process caused by the accumulation of senescent cells with a permanent proliferative arrest. To the influence of aging on human life expectancy, there is essential for new biomarkers which possibly will assistance in recognizing age-associated pathologies. Exosomes, which are cell-secreted nanovesicles, make available a new biomarker detection and therapeutic approach for the transfer of different molecules with high capacity. Recently, non-coding RNAs (ncRNA) which are contained in exosomes have developed as important molecules regulating the complexity of aging and relevant human diseases. The discovery of ncRNA provided perceptions into an innovative regulatory platform that could interfere with cellular senescence. The non-coding transcriptome includes a different of RNA species, spanning from short ncRNAs (<200 nucleotides) to long ncRNAs, that are >200 bp long. Upgraded evidence displays that targeting ncRNAs possibly will influence senescence pathways. In this article, we will address ncRNAs that participated in age-related and cellular senescence diseases. Growing conception of ncRNAs in the aging process possibly will be responsible for new understandings into the improvement of age-related diseases and elongated life span.
Collapse
Affiliation(s)
- Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Hrdlicka HC, Pereira RC, Shin B, Yee SP, Deymier AC, Lee SK, Delany AM. Inhibition of miR-29-3p isoforms via tough decoy suppresses osteoblast function in homeostasis but promotes intermittent parathyroid hormone-induced bone anabolism. Bone 2021; 143:115779. [PMID: 33253931 PMCID: PMC7770763 DOI: 10.1016/j.bone.2020.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
miRNAs play a vital role in post-transcriptional regulation of gene expression in osteoblasts and osteoclasts, and the miR-29 family is expressed in both lineages. Using mice globally expressing a miR-29-3p tough decoy, we demonstrated a modest 30-60% decrease all three miR-29-3p isoforms: miR-29a, miR-29b, and miR-29c. While the miR-29-3p decoy did not impact osteoclast number or function, the tough decoy decreased bone formation in growing mice, which led to decreased trabecular bone volume in mature animals. These data support previous in vitro studies suggesting that miR-29-3p is a positive regulator of osteoblast differentiation. In contrast, when mice were treated with intermittent parathyroid hormone (PTH1-34), inhibition of miR-29-3p augmented the effect of PTH on cortical bone anabolism, increased bone formation rate and osteoblast surface, and increased levels of Ctnnb1/βcatenin mRNA, which is a miR-29 target. These findings highlight differences in the mechanisms controlling basal level bone formation and bone formation induced by intermittent PTH. Overall, the global miR-29-3p tough decoy model represents a modest loss-of-function, which could be a relevant tool for assessing the possible impact of systemically administered miR-29-3p inhibitors. Our studies provide a potential rationale for co-administration of PTH1-34 and miR-29-3p inhibitors, to boost bone formation in severely affected osteoporosis patients, particularly in the cortical compartment.
Collapse
Affiliation(s)
- Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at University of California, Los Angeles, United States of America
| | - Bongjin Shin
- Center on Aging, UConn Health Center, Farmington, CT, United States of America
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, UConn Health Center, Farmington, CT, United States of America
| | - Alix C Deymier
- Institute of Material Sciences, UConn Health Center, Farmington, CT, United States of America
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health Center, Farmington, CT, United States of America.
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America.
| |
Collapse
|
15
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
16
|
Moura SR, Bras JP, Freitas J, Osório H, Barbosa MA, Santos SG, Almeida MI. miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone 2020; 134:115303. [PMID: 32126314 DOI: 10.1016/j.bone.2020.115303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The tight coupling between osteoblasts and osteoclasts is essential to maintain bone homeostasis. Deregulation of this process leads to loss and deterioration of the bone tissue causing diseases, such as osteoporosis. MicroRNAs are able to control bone-related mechanisms and have been explored as therapeutic tools. In this study, we investigated the potential of miR-99a-5p to modulate osteogenic differentiation, osteoclastogenesis, and the osteoblasts-osteoclasts crosstalk. METHODS To achieve this goal, human primary Mesenchymal Stem/Stromal Cells (MSC) were differentiated into osteoblasts and adipocytes, and miR-99a-5p expression was evaluated by RT-qPCR. Knockdown and overexpression experiments were conducted to modulate miR-99a-5p expression in MC3T3 cells. Cell proliferation and cell death/apoptosis were evaluated by resazurin assay and flow cytometry, respectively. Proteomic analysis was used to identify the miR-99a-5p regulatory network, and ELISA to evaluate OPG levels in the cell culture supernatant. Conditioned media from MC3T3-transfected cells was used to culture RAW 264.7 cells and the effect on osteoclast differentiation was assessed. Human primary monocytes were isolated to induce osteoclastogenesis and evaluate miR-99a-5p expression. Finally, levels of miR-99a-5p were modulated in RAW 264.7 cells to understand the impact on osteoclastogenesis. RESULTS The results show that miR-99a-5p is significantly downregulated during the early stages of human primary MSCs osteogenic differentiation and during MC3T3 osteogenic differentiation. On the other hand, miR-99a-5p levels are increased during the initial stages of adipogenic differentiation. Inhibition of miR-99a-5p in MC3T3 pre-osteoblastic cells promoted osteogenic differentiation, whereas its overexpression suppressed the levels of osteogenic specific genes (Runx2 and Alpl), as well as mineralization, with no effect on proliferation or apoptosis. Proteomic analysis of miR-99a-5p-transfected cells showed that numerous proteins known to be involved in cell differentiation were altered, including osteogenic differentiation markers and extracellular matrix proteins. While inhibition of miR-99a-5p increased the Tnfrsf11b (OPG encoding gene)/Tnfsf11 (RANKL encoding gene) mRNA expression ratio, in addition to increasing OPG secretion, miR-99a-5p overexpression resulted in the opposite effect. The cell culture supernatant of miR-99a-5p-inhibited MC3T3 cells impaired the osteoclastogenic potential of RAW 264.7 cells by decreasing the number of multinucleated cells and reducing the expression of osteoclastogenic markers. Interestingly, miR-99a-5p expression is increased during osteoclasts differentiation, both in human primary monocytes and RAW 264.7. These results show that miR-99a-5p per se is a positive regulator of osteoclastogenic differentiation. CONCLUSIONS Globally, our findings show that miR-99a-5p inhibition promotes the commitment into osteogenic differentiation, impairs osteoclastogenic differentiation, and control bone cells communication. Ultimately, it supports miR-99a-5p as a target candidate for future miRNA-based therapies for bone diseases associated with bone remodeling deregulation.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joao Paulo Bras
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jaime Freitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Mario Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana Gomes Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Ines Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Wu L, Su Y, Lin F, Zhu S, Wang J, Hou Y, Du J, Liu Y, Guo L. MicroRNA‐21 promotes orthodontic tooth movement by modulating the RANKL/OPG balance in T cells. Oral Dis 2019; 26:370-380. [DOI: 10.1111/odi.13239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yingying Su
- Department of Stomatology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Feiran Lin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Siying Zhu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Jingyi Wang
- School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| | - Yanan Hou
- Department of Orthodontics School of Stomatology the Third Dental Center Peking University Beijing China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology Capital Medical University Beijing China
| |
Collapse
|
18
|
Yan S, Miao L, Lu Y, Wang L. MicroRNA-506 upregulation contributes to sirtuin 1 inhibition of osteoclastogenesis in bone marrow stromal cells induced by TNF-α treatment. Cell Biochem Funct 2019; 37:598-607. [PMID: 31515847 DOI: 10.1002/cbf.3436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 11/07/2022]
Abstract
As a deacetylase relying on NAD, sirtuin 1 (SIRT1) has been proven to inhibit osteoclastogenesis directly by repressing reactive oxygen species (ROS) production and TRPV1 channel stimulation modulated by TNF-α. MicroRNAs do not have coding functions, but they influence the expression of particular genes after transcription. Nevertheless, the current understanding of the impact of SIRT1 on osteoclastogenesis is insufficient. Our research explored whether and how miRNAs contributed to osteoclast differentiation modulated by SIRT1 in vitro. In osteoclastogenesis induced by RANKL in bone marrow-derived macrophages (BMMs), repression of SIRT1 expression and enhancement of miR-506 expression were discovered. Transfection with an miR-506 inhibitor repressed miR-506 concentration in BMMs treated with RANKL. Additional research revealed that BMMs with repressed miR-506 treated with RANKL displayed phenotypes with suppressed osteoclastogenesis, as demonstrated by TRAP staining, reduced function, decreased expression of osteoclast markers and correlated genes, and reduced multinuclear cell quantity. Bioinformatics prediction outcomes and the dual-luciferase reporter test suggested that miR-506 targeted the SIRT1 3'-UTR for silencing. Decreased miR-506 in BMMs induced by RANKL caused SIRT1 upregulation. Additionally, treatment with EX-527 (SIRT1 repressor) or SIRT1 silencing attenuated repression caused by miR-506 depletion in BMMs treated with RANKL. Furthermore, TNF-α was repressed via miR-506 inhibition but was enhanced following EX-527 incubation as well as SIRT1 depletion. TRPV1 channel stimulation and ROS generation, which was related to osteoclastogenesis, were reduced via miR-506 depletion. miR-506 modulated osteoclastogenesis by targeting SIRT1 expression in part through modulation of the TRPV1 channel, ROS production, and TNF-α.
Collapse
Affiliation(s)
- Shu Yan
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Lujie Miao
- Department of Gastroenterology, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Yahua Lu
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| | - Liangzhi Wang
- General Medical Wards, the Third Hospital Affiliated from Soochow University, Changzhou, China
| |
Collapse
|
19
|
Guo L, Zhu Y, Li L, Zhou S, Yin G, Yu G, Cui H. Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med 2019; 8:5687-5701. [PMID: 31385464 PMCID: PMC6745844 DOI: 10.1002/cam4.2454] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/22/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Bone metastasis of breast cancer makes patients suffer from pain, fractures, spinal cord compression, and hypercalcemia, and is almost incurable. Although the mechanisms of bone metastasis in breast cancers have been studied intensively, novel specific target will be helpful to the development of new therapeutic strategy of breast cancer. Herein, we focused on the microRNA of tumor cell-derived exosomes to investigate the communication between the bone microenvironment and tumor cells. The expression of miR-20a-5p in the primary murine bone marrow macrophages (BMMs), MCF-10A, MCF-7, and MDA-MB-231 cell lines, as well as the cell-derived exosomes were assessed by qRT-PCR. Transwell assays were used to evaluate the effects of miR-20a-5p on tumor cell migration and invasion. The expression of exosomes marker including CD63and TSG101 was detected by Western Blot. Cell cycle distribution of BMMs was analyzed by flow cytometry. 3-UTR luciferase reporter assays were used to validate the putative binding between miR-20a-5p and SRCIN1. MiR-20a-5p was highly expressed in breast tumor tissues and the exosomes of MDA-MB-231 cells. MiR-20a-5p promoted migration and invasion in MDA-MB-231 cells, and the proliferation and differentiation of osteoclasts. MDA-MB-231 cell-derived exosomes transferred miR-20a-5p to BMMs and facilitated the osteoclastogenesis via targeting SRCIN1. The present work provides evidence that miR-20a-5p transferred from breast cancer cell-derived exosomes promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1, providing scientific foundations for the development of exosome or miR-20a-5p targeted therapeutic intervention in breast cancer progression.
Collapse
Affiliation(s)
- Ling Guo
- Department of Pathology, The Affiliated Second Hospital Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ye Zhu
- Department of Obstetrics, Gynecology Peking University People's Hospital, Beijing, China
| | - Liandi Li
- Department of Anesthesiology, The Affiliated Second Hospital Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Shufen Zhou
- Department of Gerontology, The Affiliated Second Hospital Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Guohua Yin
- Department of Nursing, The Affiliated Second Hospital Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Guanghao Yu
- Department of Medical Imaging, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hujun Cui
- Department of Oncology, The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
20
|
Yue J, Lau TCK, Griffith JF, Xu J, Xiao F, Shi L, Wang D, Wong PCH, Li EK, Tam LP, Li M, Li TK, Mak WY, Hung V, Qin L, Tam L. Circulating miR‐99b‐5p as a novel predictor of erosion progression on high‐resolution peripheral quantitative computed tomography in early rheumatoid arthritis: A prospective cohort study. Int J Rheum Dis 2019; 22:1724-1733. [PMID: 31273939 DOI: 10.1111/1756-185x.13644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jiang Yue
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Terrence C. K. Lau
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - James F. Griffith
- Department of Imaging and Interventional Radiology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Jiankun Xu
- Department of Orthopedics & Traumatology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Fan Xiao
- Department of Imaging and Interventional Radiology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Lin Shi
- Department of Imaging and Interventional Radiology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Priscilla C. H. Wong
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Edmund K. Li
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Lydia P. Tam
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Martin Li
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Tena K. Li
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Wah Yan Mak
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Vivian Hung
- Department of Orthopedics & Traumatology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Ling Qin
- Department of Orthopedics & Traumatology The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| | - Lai‐Shan Tam
- Department of Medicine & Therapeutics The Prince of Wales Hospital, The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
21
|
Guo K, Zhang D, Wu H, Zhu Q, Yang C, Zhu J. MiRNA-199a-5p positively regulated RANKL-induced osteoclast differentiation by target Mafb protein. J Cell Biochem 2019; 120:7024-7031. [PMID: 30387167 DOI: 10.1002/jcb.27968] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
MicroRNAs are involved in osteoclast differentiation. Although miR-199a-5p plays an important role in many different systems and diseases, its function during osteoclastogenesis remains unclear. In this study, we investigated the function and the target gene of miR-199a-5p in osteoclast differentiation. The in vitro data showed that miR-199a-5p was significantly upregulated after the stimulation by receptor activator of nuclear factor kappa-B ligand in macrophages and RAW 264.7 cells. After transfection of miR-199a-5p mimic, the messenger RNA expression level of nuclear factor of activated T-cells cytoplasmic 1, tartrate-resistant acid phosphatase (TRAP), and receptor activator of nuclear factor kappa-B was significantly increased in RAW 264.7 cells and the number of TRAP-positive cells was also increased. MiR-199a-5p inhibitor showed the complete opposite outcome which brought additional proof to our finding. Overexpression of miR-199a-5p led to downregulation of Mafb protein. The luciferase activity was obviously repressed when WT-pGL3-Mafb and miR-199a-5p mimics were cotransfected into 293 T cells and the inhibitors cotransfected demonstrated reverse result. MiR-199a-5p overexpressed during osteoclast differentiation and positively regulated osteoclast formation in vitro by target Mafb.
Collapse
Affiliation(s)
- Kai Guo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dawei Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haining Wu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingsheng Zhu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chongfei Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyu Zhu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Hrdlicka HC, Lee SK, Delany AM. MicroRNAs are Critical Regulators of Osteoclast Differentiation. CURRENT MOLECULAR BIOLOGY REPORTS 2019; 5:65-74. [PMID: 30800633 PMCID: PMC6380495 DOI: 10.1007/s40610-019-0116-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our goal is to comprehensively review the most recent reports of microRNA (miRNA) regulation of osteoclastogenesis. We highlight validated miRNA-target interactions and their place in the signaling networks controlling osteoclast differentiation and function. RECENT FINDINGS Using unbiased approaches to identify miRNAs of interest and reporter-3'UTR assays to validate interactions, recent studies have elucidated the impact of specific miRNA-mRNA interactions during in vitro osteoclastogenesis. There has been a focus on signaling mediators downstream of the RANK and CSF1R signaling, and genes essential for differentiation and function. For example, several miRNAs directly and indirectly target the master osteoclast transcription factor, Nfatc1 (e.g. miR-124 and miR-214) and Rho-GTPases, Cdc42 and Rac1 (e.g. miR-29 family). SUMMARY Validating miRNA expression patterns, targets, and impact in osteoclasts and other skeletal cells is critical for understanding basic bone biology and for fulfilling the therapeutic potential of miRNA-based strategies in the treatment bone diseases.
Collapse
Affiliation(s)
| | | | - Anne M. Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 03030
| |
Collapse
|
23
|
Enoxacin and bis-enoxacin stimulate 4T1 murine breast cancer cells to release extracellular vesicles that inhibit osteoclastogenesis. Sci Rep 2018; 8:16182. [PMID: 30385810 PMCID: PMC6212457 DOI: 10.1038/s41598-018-34698-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Enoxacin and its bone-seeking bisphosphonate derivative, bis-enoxacin, have recently captured attention as potential therapeutic agents for the treatment of cancer and bone disease. No differences in growth or survival of 4T1 murine breast cancer cells were detected at a concentration of 50 µM of enoxacin or bis-enoxacin. Growth was perturbed at higher concentrations. Both 50 µM enoxacin and bis-enoxacin stimulated increases in the number of GW/Processing bodies, but there were minimal changes in microRNA levels. Extracellular vesicles (EVs) released from 4T1 cells treated with 50 µM enoxacin or 50 µM bis-enoxacin stimulated proliferation of RAW 264.7 cells, and both significantly inhibited osteoclastogenesis in calcitriol-stimulated mouse marrow. EVs from 4T1 cells treated with enoxacin and bis-enoxacin displayed small reductions in the amount of microRNA (miR)-146a-5p and let-7b-5p. In marked contrast, miR-214-3p, which has been shown to regulate bone remodeling, was increased 22-fold and 30-fold respectively. We conclude that enoxacin and bis-enoxacin trigger the release of EVs from 4T1 cancer cells that inhibit osteoclastogenesis.
Collapse
|
24
|
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, Yu P, Wu Z, Jiang X. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 2018; 233:9191-9208. [PMID: 30078225 DOI: 10.1002/jcp.26939] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed. Moreover, the miRNAs that act as clusters in the biology of cells in the bone microenvironment and the difference of some important miRNAs for bone homeostasis between bone and other organs are mentioned. Overall, miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are considered.
Collapse
Affiliation(s)
- Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Jin D, Wu X, Yu H, Jiang L, Zhou P, Yao X, Meng J, Wang L, Zhang M, Zhang Y. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res 2018; 10:1498-1510. [PMID: 29887963 PMCID: PMC5992556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis (OP) is a disease characterized by bone loss, imbalance of bone metabolism and destruction of trabecular microstructure, and associated with menopause. Studies have shown that immune related lymphocytes are involved in bone metabolism. However, the molecular mechanisms hidden in the interaction of lymphocytes with OP need to be further studied. In the present study, we investigated the expression profiles and differences of lncRNAs, mRNAs, circRNAs and miRNAs in peripheral blood lymphocytes of patients with postmenopausal OP using Illumina-based complementary DNA (cDNA) deep sequencing (RNA-seq). 70 lncRNAs, 475 mRNAs, 260 circRNAs and 13 miRNAs were differentially expressed in patients with postmenopausal osteoporosis (OP group) compared with healthy controls (NC group). The functions of differentially expressed lncRNAs, circRNA, miRNA and potential targeting genes were predicted by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Complex lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA regulatory networks were constructed based on differentially expressed RNAs. Taken together, our study indicated that lncRNAs, mRNA, circRNAs and miRNA could associate with the occurrence of postmenopausal OP and may be as possible biomarkers and target genes in lymphocytes for OP.
Collapse
Affiliation(s)
- Di Jin
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Xiaowei Wu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Hongwen Yu
- Department of Orthopaedics, Fifth Hospital of HarbinNO. 27 Jiankang Road, Xiangfang District, Harbin 150040, China
| | - Lihong Jiang
- General Practice, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Jia Meng
- General Practice, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Liping Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Meijie Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical UniversityNO. 246 Xuefu Road, Nangang District, Harbin 150086, China
| |
Collapse
|
27
|
The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 2017; 22:1084-1091. [DOI: 10.1016/j.drudis.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
28
|
Abstract
MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.
Collapse
Affiliation(s)
- L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - S Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab 2016; 101:4125-4134. [PMID: 27552543 DOI: 10.1210/jc.2016-2365] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Established bone turnover markers do not reflect fracture risk in idiopathic male and premenopausal osteoporosis and the role of microRNAs (miRNAs) in these patients is currently unclear. miRNAs are a class of small non-coding RNAs that regulate gene expression and bone tissue homeostasis. They are considered a new class of endocrine regulators with promising potential as biomarkers. OBJECTIVE Evaluation of circulating miRNA signatures in male and female subjects with idiopathic and postmenopausal osteoporotic low-traumatic fractures. DESIGN, SETTING, AND PATIENTS This was a case-control study of cross-sectional design of 36 patients with prevalent low-traumatic fractures and 39 control subjects Main Outcome Measures: One hundred eighty-seven miRNAs were quantified in serum by qPCR, compared between groups and correlated with established bone turnover markers. RESULTS Significant differences in serum levels of circulating miRNAs were identified in all three subgroups (46 in premenopausal, 52 in postmenopausal, 55 in male). A set of 19 miRNAs was consistently regulated in all three subgroups. Eight miRNAs [miR-152-3p, miR-30e-5p, miR-140-5p, miR-324-3p, miR-19b-3p, miR-335-5p, miR-19a-3p, miR-550a-3p] were excellent discriminators of patients with low-traumatic fractures, regardless of age and sex, with area under the curve values > 0.9. The 11 remaining miRNAs showed area under the curve values between 0.81 and 0.89. Correlation analysis identified significant correlations between miR-29b-3p and P1NP, and miR-365-5p and iPTH, TRAP5b, P1NP and Osteocalcin, as well as BMDL1-L4 and miR-19b-3p, miR-324-3p, miR-532-5p, and miR-93-5p. CONCLUSIONS Specific serum miRNA profiles are strongly related to bone pathologies. Therefore miRNAs might be directly linked to bone tissue homeostasis. In particular, miR-29b-3p has previously been reported as regulator of osteogenic differentiation and could serve as a novel marker of bone turnover in osteoporotic patients as a member of a miRNA signature.
Collapse
Affiliation(s)
- Roland Kocijan
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Christian Muschitz
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Elisabeth Geiger
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Susanna Skalicky
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Andreas Baierl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Rainer Dormann
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Fabian Plachel
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Xaver Feichtinger
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Patrick Heimel
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Astrid Fahrleitner-Pammer
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Johannes Grillari
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Heinz Redl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Heinrich Resch
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| | - Matthias Hackl
- St. Vincent Hospital-Medical Department II (R.K., C.M., R.D., F.P., X.F., H.Res.), The VINFORCE Study Group, Academic Teaching Hospital of Medical University of Vienna, 1090 Vienna, Austria; TAmiRNA, GmbH (E.G., S.S, M.H..), 1190 Vienna, Austria; Department of Statistics and Operations Research (A.B.), University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (R.K., P.H., H.Red.), 1200 Vienna, Austria; Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery (P.H.), Medical University of Vienna, 1090 Vienna, Austria; Department of Internal Medicine, Division of Endocrinology and Diabetes (A.F.-P.), Medical University of Graz, 8010 Graz, Austria; Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology (J.G.), University of Natural Resources and Life Sciences Vienna, 1180 Viena, Austria; Austrian Cluster for Tissue Regeneration (H.Red., J.G.), Department of Traumatology, Medical University of Vienna, 1090 Vienna, Austria; and Medical Faculty of Bone Diseases (H.Red.), Sigmund Freud University-Vienna, 1020 Vienna, Austria
| |
Collapse
|
30
|
Shen G, Ren H, Qiu T, Liang D, Xie B, Zhang Z, Yao Z, Yang Z, Jiang X. Implications of the Interaction Between miRNAs and Autophagy in Osteoporosis. Calcif Tissue Int 2016; 99:1-12. [PMID: 26922423 DOI: 10.1007/s00223-016-0122-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
Abstract
Imbalances between bone formation and resorption are the primary cause of osteoporosis. However, currently, a detailed molecular mechanism of osteoporosis is not available. Autophagy is the conserved process characterized by degrading and recycling aggregated proteins, intracellular pathogens, and damaged organelles. MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes, including autophagy, through the posttranscriptional regulation of gene expression. Conversely, autophagy plays a role in the regulation of miRNA homeostasis. Recent advances have revealed that both autophagy and miRNAs are involved in the maintenance of bone homoeostasis, whereas the role of the interaction of miRNAs with autophagy in osteoporosis remains unclear. In this paper, we review previous reports on autophagy, miRNAs, and their interaction in osteoporosis.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hui Ren
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
31
|
MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int J Mol Sci 2016; 17:349. [PMID: 27005616 PMCID: PMC4813210 DOI: 10.3390/ijms17030349] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 02/05/2023] Open
Abstract
Abnormal osteoclast formation and resorption play a fundamental role in osteoporosis pathogenesis. Over the past two decades, much progress has been made to target osteoclasts. The existing therapeutic drugs include bisphosphonates, hormone replacement therapy, selective estrogen receptor modulators, calcitonin and receptor activator of nuclear factor NF-κB ligand (RANKL) inhibitor (denosumab), etc. Among them, bisphosphonates are most widely used due to their low price and high efficiency in reducing the risk of fracture. However, bisphosphonates still have their limitations, such as the gastrointestinal side-effects, osteonecrosis of the jaw, and atypical subtrochanteric fracture. Based on the current situation, research for new drugs to regulate bone resorption remains relevant. MicroRNAs (miRNAs) are a new group of small, noncoding RNAs of 19–25 nucleotides, which negatively regulate gene expression after transcription. Recent studies discovered miRNAs play a considerable function in bone remodeling by regulating osteoblast and osteoclast differentiation and function. An increasing number of miRNAs have been identified to participate in osteoclast formation, differentiation, apoptosis, and resorption. miRNAs show great promise to serve as biomarkers and potential therapeutic targets for osteoporosis. In this review, we will summarize our current understanding of how miRNAs regulate osteoclastogenesis and function. We will further discuss the approach to develop drugs for osteoporosis based on these miRNA networks.
Collapse
|
32
|
Dole NS, Delany AM. MicroRNA variants as genetic determinants of bone mass. Bone 2016; 84:57-68. [PMID: 26723575 PMCID: PMC4755870 DOI: 10.1016/j.bone.2015.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant genetic variants that contribute to the heritability of bone mass. MicroRNAs (miRNAs, miRs) are key post-transcriptional regulators that modulate the differentiation and function of skeletal cells by targeting multiple genes in the same or distinct signaling pathways. SNPs in miRNA genes and miRNA binding sites can alter miRNA abundance and mRNA targeting. This review describes the potential impact of miRNA-related SNPs on skeletal phenotype. Although many associations between SNPs and bone mass have been described, this review is limited to gene variants for which a function has been experimentally validated. SNPs in miRNA genes (miR-SNPs) that impair miRNA processing and alter the abundance of mature miRNA are discussed for miR-146a, miR-125a, miR-196a, miR-149 and miR-27a. SNPs in miRNA targeting sites (miR-TS-SNPs) that alter miRNA binding are described for the bone remodeling genes bone morphogenetic protein receptor 1 (Bmpr1), fibroblast growth factor 2 (Fgf2), osteonectin (Sparc) and histone deacetylase 5 (Hdac5). The review highlights two aspects of miRNA-associated SNPs: the mechanism for altering miRNA mediated gene regulation and the potential of miR-associated SNPs to alter osteoblast, osteoclast or chondrocyte differentiation and function. Given the polygenic nature of skeletal diseases like osteoporosis and osteoarthritis, validating the function of additional miRNA-associated SNPs has the potential to enhance our understanding of the genetic determinants of bone mass and predisposition to selected skeletal diseases.
Collapse
Affiliation(s)
- Neha S Dole
- Center for Molecular Medicine, UCONN Health, Farmington, CT, USA.
| | - Anne M Delany
- Center for Molecular Medicine, UCONN Health, Farmington, CT, USA.
| |
Collapse
|
33
|
Role of miR-222-3p in c-Src-Mediated Regulation of Osteoclastogenesis. Int J Mol Sci 2016; 17:240. [PMID: 26891296 PMCID: PMC4783971 DOI: 10.3390/ijms17020240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a mostly post-transcriptional regulatory role in gene expression. Using RAW264.7 pre-osteoclast cells and genome-wide expression analysis, we identified a set of miRNAs that are involved in osteoclastogenesis. Based on in silico analysis, we specifically focused on miR-222-3p and evaluated its role in osteoclastogenesis. The results show that the inhibitor of miR-222-3p upregulated the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and tartrate-resistant acid phosphatase (TRAP), while its mimicking agent downregulated their mRNA levels. Western blot analysis showed that its inhibitor increased the protein levels of TRAP and cathepsin K, while its mimicking agent decreased their levels. Genome-wide mRNA expression analysis in the presence and absence of receptor activator of nuclear factor κ-B ligand (RANKL) predicted c-Src as a potential regulatory target of miR-222-3p. Live cell imaging using a fluorescence resonance energy transfer (FRET) technique revealed that miR-222-3p acted as an inhibitor of c-Src activity, and a partial silencing of c-Src suppressed RANKL-induced expression of TRAP and cathepsin K, as well as the number of multi-nucleated osteoclasts and their pit formation. Collectively, the study herein demonstrates that miR-222-3p serves as an inhibitor of osteoclastogenesis and c-Src mediates its inhibition of cathepsin K and TRAP.
Collapse
|