1
|
Liu G, Wei C, Yuan S, Zhang Z, Li J, Zhang L, Wang G, Fang L. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1/P53/SLC7A11 pathway. Phytother Res 2022; 36:4230-4243. [PMID: 35817562 DOI: 10.1002/ptr.7558] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Wogonoside (WG) is a flavonoid chemical component extracted from Scutellaria baicalensis, which exerts therapeutic effects on liver diseases. Ferroptosis, a novel form of programmed cell death, regulates diverse physiological/pathological processes. In this study, we attempted to investigate a novel mechanism by which WG mitigates liver fibrosis by inducing ferroptosis in hepatic stellate cells (HSCs). A CCl4 -induced mouse liver fibrosis model and a rat HSC line were employed for in vivo and in vitro experiments, both treated with WG. Firstly, the levels of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I)collagen (COL1α1) were effectively decreased by WG in CCl4 -induced mice and HSC-T6 cells. Additionally, mitochondrial condensation and mitochondrial ridge breakage were observed in WG-treated HSC-T6 cells. Furthermore, ferroptotic events including depletion of SLC7A11, GPX4 and GSH, and accumulation of iron, ROS and MDA were discovered in WG-treated HSC-T6 cells. Intriguingly, these ferroptotic events did not appear in hepatocytes or macrophages. WG-elicited HSC ferroptosis and ECM reduction were dramatically abrogated by ferrostatin-1 (Fer-1), a ferroptosis inhibitor. Importantly, our results confirm that SOCS1/P53/SLC7A11 is a signaling pathway which promotes WG attenuation of liver fibrosis. On the contrary, WG mitigated liver fibrosis and inducted HSC-T6 cell ferroptosis were hindered by SOCS1 siRNA and pifithrin-α (PFT-α). These findings demonstrate that SOCS1/P53/SLC7A11-mediated HSC ferroptosis is associated with WG alleviating liver fibrosis, which provides a new clue for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guofang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Can Wei
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Siyu Yuan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiahao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lijun Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Circular dorsal ruffles disturb the growth factor-induced PI3K-AKT pathway in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2022; 20:102. [PMID: 35799301 PMCID: PMC9264614 DOI: 10.1186/s12964-022-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced on the dorsal surfaces of cells stimulated by growth factors (GF). They can serve as signal platforms to activate AKT protein kinase. After GF stimulation, phosphatidylinositol 3-kinase (PI3K) generates phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the plasma membrane. PIP3 accumulates inside CDRs, recruits AKT into the structures, and phosphorylates them (pAKT). Given the importance of the PI3K-AKT pathway in GF signaling, CDRs are likely involved in cell growth. Interestingly, some cancer cell lines express CDRs. We hypothesized that CDRs contribute to carcinogenesis by modulating the AKT pathway. In the present study, we identified CDR-expressing cancer cell lines and investigated their cellular functions. Methods CDR formation was examined in six cancer cell lines in response to epidermal growth factor (EGF) and insulin. The morphology of the CDRs was characterized, and the related signaling molecules were observed using confocal and scanning electron microscopy. The role of CDRs in the AKT pathway was studied using biochemical analysis. The actin inhibitor cytochalasin D (Cyto D) and the PI3K inhibitor TGX221 were used to block CDRs. Results GF treatment induced CDRs in the hepatocellular carcinoma (HCC) Hep3B cell line, but not in others, including HCC cell lines HepG2 and Huh7, and the LO2 hepatocyte cell line. Confocal microscopy and western blot analysis showed that the PI3K-PIP3-AKT pathway was activated at the CDRs and that receptor proteins were recruited to the structures. Cyto D and TGX221 completely blocked CDRs and partially attenuated GF-induced pAKT. These results indicate that CDRs regulate the receptor-mediated PI3K-AKT pathway in Hep3B cells and the existence of CDR-independent pAKT mechanisms. Conclusions Our results showed that CDRs modulate the AKT pathway in Hep3B cells. Since CDRs were not observed in other HCC and hepatocyte cell lines, we propose that CDRs in Hep3B would determine the carcinoma characteristic of the cell by aberrantly triggering the AKT pathway. Signaling molecules involved in CDR formation are promising therapeutic targets for some types of HCC. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00911-6.
Collapse
|
3
|
Kadrmas JL, Beckerle MC, Yoshigi M. Genetic analyses in mouse fibroblast and melanoma cells demonstrate novel roles for PDGF-AB ligand and PDGF receptor alpha. Sci Rep 2020; 10:19303. [PMID: 33168840 PMCID: PMC7653911 DOI: 10.1038/s41598-020-75774-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Platelet Derived Growth Factor Receptor (PDGFR) signaling is a central mitogenic pathway in development, as well as tissue repair and homeostasis. The rules governing the binding of PDGF ligand to the receptor to produce activation and downstream signaling have been well defined over the last several decades. In cultured cells after a period of serum deprivation, treatment with PDGF leads to the rapid formation of dramatic, actin-rich Circular Dorsal Ruffles (CDRs). Using CDRs as a robust visual readout of early PDGFR signaling, we have identified several contradictory elements in the widely accepted model of PDGF activity. Employing CRISPR/Cas9 gene editing to disrupt the Pdgfra gene in two different murine cell lines, we show that in addition to the widely accepted function for PDGFR-beta in CDR formation, PDGFR-alpha is also clearly capable of eliciting CDRs. Moreover, we demonstrate activity for heterodimeric PDGF-AB ligand in the vigorous activation of PDGFR-beta homodimers to produce CDRs. These findings are key to a more complete understanding of PDGF ligand-receptor interactions and their downstream signaling consequences. This knowledge will allow for more rigorous experimental design in future studies of PDGFR signaling and its contributions to development and disease.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Mary C Beckerle
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, 84112, USA. .,School of Biological Sciences, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Masaaki Yoshigi
- Department of Pediatrics, The University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG. Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. J Biol Chem 2020; 295:13698-13710. [PMID: 32817335 DOI: 10.1074/jbc.ra120.013919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.
Collapse
Affiliation(s)
- Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Ueda Y, Sato M. Cell membrane dynamics induction using optogenetic tools. Biochem Biophys Res Commun 2018; 506:387-393. [DOI: 10.1016/j.bbrc.2017.11.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 10/25/2022]
|
6
|
Slomnicki LP, Chung DH, Parker A, Hermann T, Boyd NL, Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci Rep 2017; 7:16652. [PMID: 29192272 PMCID: PMC5709411 DOI: 10.1038/s41598-017-16952-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
We report here that in rat and human neuroprogenitor cells as well as rat embryonic cortical neurons Zika virus (ZIKV) infection leads to ribosomal stress that is characterized by structural disruption of the nucleolus. The anti-nucleolar effects were most pronounced in postmitotic neurons. Moreover, in the latter system, nucleolar presence of ZIKV capsid protein (ZIKV-C) was associated with ribosomal stress and apoptosis. Deletion of 22 C-terminal residues of ZIKV-C prevented nucleolar localization, ribosomal stress and apoptosis. Consistent with a casual relationship between ZIKV-C-induced ribosomal stress and apoptosis, ZIKV-C-overexpressing neurons were protected by loss-of-function manipulations targeting the ribosomal stress effector Tp53 or knockdown of the ribosomal stress mediator RPL11. Finally, capsid protein of Dengue virus, but not West Nile virus, induced ribosomal stress and apoptosis. Thus, anti-nucleolar and pro-apoptotic effects of protein C are flavivirus-species specific. In the case of ZIKV, capsid protein-mediated ribosomal stress may contribute to neuronal death, neurodevelopmental disruption and microcephaly.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Dong-Hoon Chung
- Center of Predictive Medicine and the Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Austin Parker
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Taylor Hermann
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Nolan L Boyd
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA.
- Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA.
| |
Collapse
|
7
|
Cao RY, Eves R, Jia L, Funk CD, Jia Z, Mak AS. Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS One 2017; 12:e0175061. [PMID: 28362832 PMCID: PMC5376331 DOI: 10.1371/journal.pone.0175061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Cell Movement/genetics
- Cell Movement/physiology
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Richard Yang Cao
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
9
|
Dynamics of actin waves on patterned substrates: a quantitative analysis of circular dorsal ruffles. PLoS One 2015; 10:e0115857. [PMID: 25574668 PMCID: PMC4289068 DOI: 10.1371/journal.pone.0115857] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Circular Dorsal Ruffles (CDRs) have been known for decades, but the mechanism that organizes these actin waves remains unclear. In this article we systematically analyze the dynamics of CDRs on fibroblasts with respect to characteristics of current models of actin waves. We studied CDRs on heterogeneously shaped cells and on cells that we forced into disk-like morphology. We show that CDRs exhibit phenomena such as periodic cycles of formation, spiral patterns, and mutual wave annihilations that are in accord with an active medium description of CDRs. On cells of controlled morphologies, CDRs exhibit extremely regular patterns of repeated wave formation and propagation, whereas on random-shaped cells the dynamics seem to be dominated by the limited availability of a reactive species. We show that theoretical models of reaction-diffusion type incorporating conserved species capture partially the behavior we observe in our data.
Collapse
|