1
|
Collantes-Fernández E, Horcajo P, Benavides J, Sánchez-Sánchez R, Blanco-Murcia J, Montaner-Da Torre S, Hecker YP, Ortega-Mora LM, Pastor-Fernández I. Evaluating the suitability of placental bovine explants for ex vivo modelling of host-pathogen interactions in Neospora caninum infections. Theriogenology 2024; 230:305-313. [PMID: 39368452 DOI: 10.1016/j.theriogenology.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Bovine abortions, often caused by infectious agents like Neospora caninum, inflict substantial economic losses. Studying host-pathogen interactions in pregnant cows is challenging, and existing cell cultures lack the intricate complexity of real tissues. To bridge the gap between in vitro and in vivo models, we explored the use of cryopreserved bovine placental explants. Building upon our successful development of protocols for obtaining, culturing, and cryopreserving sheep placental explants, we applied these methods to bovine tissues. Here, we compared fresh and cryopreserved bovine explants, evaluating their integrity and functionality over culture time. Additionally, we investigated their susceptibility to N. caninum infection. Our findings revealed that bovine explants deteriorate faster in culture compared to sheep explants, exhibiting diminished viability and function. Cryopreservation further exacerbated this deterioration. While fresh explants were successfully infected with N. caninum, parasite replication was limited. Notably, cryopreservation reduced infection efficiency. This pioneering work paves the way for developing ex vivo models to study reproductive pathogens in cattle. However, further optimization of the model is essential. These improved models will have the potential to significantly reduce the reliance on animals in research.
Collapse
Affiliation(s)
- Esther Collantes-Fernández
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Pilar Horcajo
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | | | - Roberto Sánchez-Sánchez
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Javier Blanco-Murcia
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain; Animal Medicine and Surgery Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Sandra Montaner-Da Torre
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Yanina P Hecker
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Iván Pastor-Fernández
- SALUVET Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain; Parasitology Unit, Microbiology and Parasitology Department, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| |
Collapse
|
2
|
Zavattieri L, Muñoz González F, Ferrero MC, Baldi PC. Immune Responses Potentially Involved in the Gestational Complications of Brucella Infection. Pathogens 2023; 12:1450. [PMID: 38133333 PMCID: PMC10747693 DOI: 10.3390/pathogens12121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Infection by Brucella species in pregnant animals and humans is associated with an increased risk of abortion, preterm birth, and transmission of the infection to the offspring. The pathogen has a marked tropism for the placenta and the pregnant uterus and has the ability to invade and replicate within cells of the maternal-fetal unit, including trophoblasts and decidual cells. Placentitis is a common finding in infected pregnant animals. Several proinflammatory factors have been found to be increased in both the placenta of Brucella-infected animals and in trophoblasts or decidual cells infected in vitro. As normal pregnancies require an anti-inflammatory placental environment during most of the gestational period, Brucella-induced placentitis is thought to be associated with the obstetric complications of brucellosis. A few studies suggest that the blockade of proinflammatory factors may prevent abortion in these cases.
Collapse
Affiliation(s)
- Lucía Zavattieri
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.Z.); (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
3
|
Horcajo P, Ortega-Mora LM, Benavides J, Sánchez-Sánchez R, Amieva R, Collantes-Fernández E, Pastor-Fernández I. Ovine placental explants: A new ex vivo model to study host‒pathogen interactions in reproductive pathogens. Theriogenology 2023; 212:157-171. [PMID: 37729817 DOI: 10.1016/j.theriogenology.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Reproductive failure is one of the main performance constraints in ruminant livestock. Transmissible agents such as Toxoplasma gondii and Neospora caninum are commonly involved in the occurrence of abortion in ruminants, but little is known about the mechanisms involved. While in vivo models are optimal for the study of abortion pathogenesis, they have a high economic cost and come with ethical concerns. Unfortunately, alternative in vitro models fail to replicate the complex in vivo placental structure. To overcome the limitations of currently available models, we developed an ex vivo model based on the cultivation of fresh and cryopreserved sheep placental explants, enabling the biobanking of tissues. Reproducible and simple markers of tissue integrity (histology, RNA concentrations), viability (resazurin reduction), and functionality (synthesis of steroid hormones) were also investigated, allowing a clear quality assessment of the model. This work shows that, similar to fresh explants, tissues cryopreserved in ethylene glycol using slow freezing rates maintain not only their structure and function but also their receptivity to T. gondii and N. caninum infection. In addition, the findings demonstrate that explant lifespan is mainly limited by the culture method, with protocols requiring improvements to extend it beyond 2 days. These findings suggest that cryopreserved tissues can be exploited to study the initial host‒pathogen interactions taking place in the placenta, thus deepening the knowledge of the specific mechanisms that trigger reproductive failure in sheep. Importantly, this work paves the way for the development of similar models in related species and contributes to the reduction of experimental animal use in the future.
Collapse
Affiliation(s)
- Pilar Horcajo
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Luis Miguel Ortega-Mora
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-ULE), Grulleros, León, 24346, Spain.
| | - Roberto Sánchez-Sánchez
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Rafael Amieva
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Esther Collantes-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| | - Iván Pastor-Fernández
- SALUVET group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
4
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
5
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
7
|
Głowacka P, Żakowska D, Naylor K, Niemcewicz M, Bielawska-Drózd A. Brucella - Virulence Factors, Pathogenesis and Treatment. Pol J Microbiol 2019; 67:151-161. [PMID: 30015453 PMCID: PMC7256693 DOI: 10.21307/pjm-2018-029] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
Brucellae are Gram-negative, small rods infecting mammals and capable of causing disease called brucellosis. The infection results in abortion and sterility in domestic animals (sheeps, pigs, rams etc). Especially dangerous for humans are: Brucella melitensis, Brucella suis, Brucella abortus, and Brucella canis that trigger unspecific symptoms (flu-like manifestation). Brucella rods are introduced via host cells, by inhalation, skin abrasions, ingestion or mucosal membranes. The most important feature of Brucella is the ability to survive and multiply within both phagocytic and non-phagocytic cells. Brucella does not produce classical virulence factors: exotoxin, cytolisins, exoenzymes, plasmids, fimbria, and drug resistant forms. Major virulence factors are: lipopolysaccharide (LPS), T4SS secretion system and BvrR/BvrS system, which allow interaction with host cell surface, formation of an early, late BCV (Brucella Containing Vacuole) and interaction with endoplasmic reticulum (ER) when the bacteria multiply. The treatment of brucellosis is based on two-drug therapy, the most common combinations of antibiotics are: doxycycline with rifampicin or fluoroquinolones with rifampicin. Currently, also other methods are used to disrupt Brucella intracellular replication (tauroursodeoxycholic acid or ginseng saponin fraction A).
Collapse
Affiliation(s)
- Patrycja Głowacka
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Dorota Żakowska
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Katarzyna Naylor
- Lublin Medical University, Department of Didactics and Medical Simulation,Lublin,Poland
| | - Marcin Niemcewicz
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Agata Bielawska-Drózd
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| |
Collapse
|
8
|
Cerqueira DM, Gomes MTR, Silva ALN, Rungue M, Assis NRG, Guimarães ES, Morais SB, Broz P, Zamboni DS, Oliveira SC. Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog 2018; 14:e1007519. [PMID: 30589883 PMCID: PMC6326519 DOI: 10.1371/journal.ppat.1007519] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
Innate immune response against Brucella abortus involves activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Among the NLRs involved in the recognition of B. abortus are NLRP3 and AIM2. Here, we demonstrate that B. abortus triggers non-canonical inflammasome activation dependent on caspase-11 and gasdermin-D (GSDMD). Additionally, we identify that Brucella-LPS is the ligand for caspase-11 activation. Interestingly, we determine that B. abortus is able to trigger pyroptosis leading to pore formation and cell death, and this process is dependent on caspase-11 and GSDMD but independently of caspase-1 protease activity and NLRP3. Mice lacking either caspase-11 or GSDMD were significantly more susceptible to infection with B. abortus than caspase-1 knockout or wild-type animals. Additionally, guanylate-binding proteins (GBPs) present in mouse chromosome 3 participate in the recognition of LPS by caspase-11 contributing to non-canonical inflammasome activation as observed by the response of Gbpchr3-/- BMDMs to bacterial stimulation. We further determined by siRNA knockdown that among the GBPs contained in mouse chromosome 3, GBP5 is the most important for Brucella LPS to be recognized by caspase-11 triggering IL-1β secretion and LDH release. Additionally, we observed a reduction in neutrophil, dendritic cell and macrophage influx in spleens of Casp11-/- and Gsdmd-/- compared to wild-type mice, indicating that caspase-11 and GSDMD are implicated in the recruitment and activation of immune cells during Brucella infection. Finally, depletion of neutrophils renders wild-type mice more susceptible to Brucella infection. Taken together, these data suggest that caspase-11/GSDMD-dependent pyroptosis triggered by B. abortus is important to infection restriction in vivo and contributes to immune cell recruitment and activation. Brucella abortus is the causative agent of brucellosis, a zoonotic disease that affects both humans and cattle. In humans, it is characterized by undulant fever and chronic symptoms as arthritis, endocarditis, and meningitis, while in cattle it causes abortion and infertility. Due to its difficult diagnosis and treatment, it leads to severe economic losses and human suffering. Recently, a novel non-canonical inflammasome pathway was described that involves sensing of bacterial LPS by an intracellular receptor termed caspase-11 and leads to pyroptosis and non-canonical NLRP3 inflammasome activation. Here, we show that B. abortus or its purified LPS is able to activate the non-canonical inflammasome. In this process, activated caspase-11 leads to GSDMD-dependent pyroptosis. Moreover, this pathway was dependent of IFN-induced GBP proteins, mainly GBP5. To analyze the role of caspase-1, caspase-11 and GSDMD in controlling B. abortus infection, we infected knockout (KO) mice for these molecules and we observed that caspase-11 and GSDMD KO animals were more susceptible to infection compared to wild-type animals. Casp11-/- and Gsdmd-/- animals also recruited less immune cells in mouse spleens compared to wild-type animals in response to B. abortus. Thus, caspase-11 and GSDMD are major components of the innate immune system to restrict B. abortus in vivo. This pathway of bacterial sensing by the host immune system is important to future development of drugs and vaccines that may contribute to the control of brucellosis worldwide.
Collapse
Affiliation(s)
- Daiane M Cerqueira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular, Universidade de São Paulo-Ribeirão Preto, Brazil
| | - Marcella Rungue
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natan R G Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suellen B Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Dario S Zamboni
- Departamento de Biologia Celular, Universidade de São Paulo-Ribeirão Preto, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
| |
Collapse
|
9
|
Mol JPS, Pires SF, Chapeaurouge AD, Perales J, Santos RL, Andrade HM, Lage AP. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants. PLoS One 2016; 11:e0154209. [PMID: 27104343 PMCID: PMC4841507 DOI: 10.1371/journal.pone.0154209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation.
Collapse
Affiliation(s)
- Juliana P. S. Mol
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Medicina Veterinária Preventiva, Belo Horizonte, Minas Gerais, Brazil
| | - Simone F. Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander D. Chapeaurouge
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato L. Santos
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Clínica e Cirurgia Veterinárias, Minas Gerais, Brasil
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Andrey P. Lage
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Medicina Veterinária Preventiva, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
10
|
Fernández AG, Ferrero MC, Hielpos MS, Fossati CA, Baldi PC. Proinflammatory Response of Human Trophoblastic Cells to Brucella abortus Infection and upon Interactions with Infected Phagocytes. Biol Reprod 2016; 94:48. [PMID: 26792938 DOI: 10.1095/biolreprod.115.131706] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
Trophoblasts are targets of infection by Brucella spp. but their role in the pathophysiology of pregnancy complications of brucellosis is unknown. Here we show that Brucella abortus invades and replicates in the human trophoblastic cell line Swan-71 and that the intracellular survival of the bacterium depends on a functional virB operon. The infection elicited significant increments of interleukin 8 (IL8), monocyte chemotactic protein 1 (MCP-1), and IL6 secretion, but levels of IL1beta and tumor necrosis factor-alpha (TNF-alpha) did not vary significantly. Such proinflammatory response was not modified by the absence of the Brucella TIR domain-containing proteins BtpA and BtpB. The stimulation of Swan-71 cells with conditioned medium (CM) from B. abortus-infected human monocytes (THP-1 cells) or macrophages induced a significant increase of IL8, MCP-1 and IL6 as compared to stimulation with CM from non-infected cells. Similar results were obtained when stimulation was performed with CM from infected neutrophils. Neutralization studies showed that IL1beta and/or TNF-alpha mediated the stimulating effects of CM from infected phagocytes. Reciprocally, stimulation of monocytes and neutrophils with CM from Brucella-infected trophoblasts increased IL8 and/or IL6 secretion. These results suggest that human trophoblasts may provide a local inflammatory environment during B. abortus infections either through a direct response to the pathogen or through interactions with monocytes/macrophages or neutrophils, potentially contributing to the pregnancy complications of brucellosis.
Collapse
Affiliation(s)
- Andrea G Fernández
- Instituto de Estudios de la Inmunidad Humoral (CONICET/UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral (CONICET/UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Soledad Hielpos
- Instituto de Estudios de la Inmunidad Humoral (CONICET/UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C Baldi
- Instituto de Estudios de la Inmunidad Humoral (CONICET/UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Abstract
Brucellosis, caused by bacteria of the genus Brucella, is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of Brucella infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by Brucella to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.
Collapse
Affiliation(s)
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616; ,
| |
Collapse
|
12
|
Macedo AA, Silva APC, Mol JPS, Costa LF, Garcia LNN, Araújo MS, Martins Filho OA, Paixão TA, Santos RL. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages. PLoS One 2015; 10:e0138131. [PMID: 26366863 PMCID: PMC4569489 DOI: 10.1371/journal.pone.0138131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/25/2015] [Indexed: 12/24/2022] Open
Abstract
Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment.
Collapse
Affiliation(s)
- Auricelio A. Macedo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana P. C. Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana F. Costa
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luize N. N. Garcia
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcio S. Araújo
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | | | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
13
|
Dos Santos LS, da Silva Mol JP, de Macedo AA, Silva APC, Dos Santos Ribeiro DL, Santos RL, da Paixão TA, de Carvalho Neta AV. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection. Vet Immunol Immunopathol 2015; 167:166-70. [PMID: 26188737 DOI: 10.1016/j.vetimm.2015.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022]
Abstract
Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site.
Collapse
Affiliation(s)
| | - Juliana Pinto da Silva Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Auricélio Alves de Macedo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Patrícia Carvalho Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|