1
|
Dutilloy E, Arias AA, Richet N, Guise JF, Duban M, Leclere V, Selim S, Jacques P, Jacquard C, Clément C, Ait Barka E, Esmaeel Q. Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance. Appl Microbiol Biotechnol 2024; 108:64. [PMID: 38189957 DOI: 10.1007/s00253-023-12864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 01/09/2024]
Abstract
Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.
Collapse
Affiliation(s)
- Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Anthony Arguëlles Arias
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nicolas Richet
- Université de Reims Champagne Ardenne, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, URCA/INERIS, UFR Sciences Exactes Et Naturelles, Reims, France
| | - Jean-François Guise
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Matthieu Duban
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Valérie Leclere
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Sameh Selim
- AGHYLE UP 2018.C101, SFR Condorcet FR CNRS 3417, Institut Polytechnique UniLaSalle, 19 Rue Pierre Waguet, BP 30313, F-60026, Beauvais Cedex, France
| | - Philippe Jacques
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Christophe Clément
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Essaïd Ait Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
2
|
Wei B, Cao S, Zhang G, Wang H, Cao Z, Chen Q, Niu C. Citrus Fruits Produce Direct Defense Responses against Oviposition by Bactrocera minax (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23736-23746. [PMID: 39257316 DOI: 10.1021/acs.jafc.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plants perceive and orchestrate defense responses when herbivorous insects are ovipositing. Fruits, as a crucial reproductive organ in plants, have rarely been researched on the responses to insect eggs. Here, we found that oviposition by the specialist insect Bactrocera minax in navel oranges activated the lignin synthesis pathway and cell division, causing mechanical pressure that crushed the eggs. Transcriptome and metabolome analyses revealed an enrichment of oviposition-induced genes and metabolites within the lignin synthesis pathway, which was confirmed by histochemical staining. Furthermore, hydrogen peroxide (H2O2) accumulation was observed at the oviposition sites. Plant defense-related hormones jasmonic acid (JA) and salicylic acid (SA) exhibited rapid induction after oviposition, while indole-3-acetic acid (IAA) activation occurred in the later stages of oviposition. Additionally, secondary metabolites induced by prior egg deposition were found to influence larval performance. Our studies provide molecular evidence that host fruits have evolved defense mechanisms against insect eggs and pave the way for future development of insect-resistant citrus varieties.
Collapse
Affiliation(s)
- Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoran Chen
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Rumyantsev SD, Alekseev VY, Sorokan AV, Burkhanova GF, Cherepanova EA, Maksimov IV, Veselova SV. Search for biocontrol agents among endophytic lipopeptide-synthesizing bacteria Bacillus spp. to protect wheat plants against Greenbug aphid (Schizaphis graminum). Vavilovskii Zhurnal Genet Selektsii 2024; 28:276-287. [PMID: 38952706 PMCID: PMC11214898 DOI: 10.18699/vjgb-24-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 07/03/2024] Open
Abstract
Beneficial endophytic bacteria can suppress the development of insect pests through direct antagonism, with the help of metabolites, or indirectly by the induction of systemic resistance through the regulation of hormonal signaling pathways. Lipopeptides are bacterial metabolites that exhibit direct antagonistic activity against many organisms, including insects. Also, lipopeptides are able to trigger induced systemic resistance (ISR) in plants against harmful organisms, but the physiological mechanisms of their action are just beginning to be studied. In this work, we studied ten strains of bacteria isolated from the tissues of wheat and potatoes. Sequencing of the 16S rRNA gene showed that all isolates belong to the genus Bacillus and to two species, B. subtilis and B. velezensis. The genes for lipopeptide synthetase - surfactin synthetase (Bs_srf ), iturin synthetase (Bs_ituA, Bs_ituB) and fengycin synthetase (Bs_fenD) - were identified in all bacterial isolates using PCR. All strains had high aphicidal activity against the Greenbug aphid (Schizaphis graminum Rond.) due to the synthesis of lipopeptides, which was proven using lipopeptide-rich fractions (LRFs) isolated from the strains. Endophytic lipopeptide-synthesizing strains of Bacillus spp. indirectly affected the viability of aphids, the endurance of plants against aphids and triggered ISR in plants, which manifested itself in the regulation of oxidative metabolism and the accumulation of transcripts of the Pr1, Pr2, Pr3, Pr6 and Pr9 genes due to the synthesis of lipopeptides, which was proven using LRF isolated from three strains: B. subtilis 26D, B. subtilis 11VM, and B. thuringiensis B-6066. We have for the first time demonstrated the aphicidal effect of fengycin and the ability of the fengycin-synthesizing strains and isolates, B. subtilis Ttl2, Bacillus sp. Stl7 and B. thuringiensis B-6066, to regulate components of the pro-/antioxidant system of aphid-infested plants. In addition, this work is the first to demonstrate an elicitor role of fengycin in triggering a systemic resistance to S. graminum in wheat plants. We have discovered new promising strains and isolates of endophytes of the genus Bacillus, which may be included in the composition of new biocontrol agents against aphids. One of the criteria for searching for new bacteria active against phloem-feeding insects can be the presence of lipopeptide synthetase genes in the bacterial genome.
Collapse
Affiliation(s)
- S D Rumyantsev
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - V Y Alekseev
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - A V Sorokan
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - G F Burkhanova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - E A Cherepanova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - I V Maksimov
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S V Veselova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
5
|
Hussain S, Tai B, Ali M, Jahan I, Sakina S, Wang G, Zhang X, Yin Y, Xing F. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum. Microbiol Spectr 2024; 12:e0400823. [PMID: 38451229 PMCID: PMC10986469 DOI: 10.1128/spectrum.04008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.
Collapse
Affiliation(s)
- Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suha Sakina
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlong Zhang
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Yixuan Yin
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Xue Y, Sun J, Lu F, Bie X, Li Y, Lu Y, Lu Z, Lin F. Transcriptomic analysis reveals that Bacillomycin D-C16 induces multiple pathways of disease resistance in cherry tomato. BMC Genomics 2023; 24:218. [PMID: 37098460 PMCID: PMC10131338 DOI: 10.1186/s12864-023-09305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Bacillomycin D-C16 can induce resistance in cherry tomato against pathogens; however, the underlying molecular mechanism is poorly understood. Here, the effect of Bacillomycin D-C16 on induction of disease resistance in cherry tomato was investigated using a transcriptomic analysis. RESULTS Transcriptomic analysis revealed a series of obvious enrichment pathways. Bacillomycin D-C16 induced phenylpropanoid biosynthesis pathways and activated the synthesis of defense-related metabolites including phenolic acids and lignin. Moreover, Bacillomycin D-C16 triggered a defense response through both hormone signal transduction and plant-pathogen interactions pathways, and increased the transcription of several transcription factors (e.g., AP2/ERF, WRKY and MYB). These transcription factors might contribute to the further activated the expression of defense-related genes (PR1, PR10 and CHI) and stimulated the accumulation of H2O2. CONCLUSION Bacillomycin D-C16 can induce resistance in cherry tomato by activating the phenylpropanoid biosynthesis pathway, hormone signal transduction pathway and plant-pathogen interactions pathway, thus activating comprehensive defense reaction against pathogen invasion. These results provided a new insight into the bio-preservation of cherry tomato by the Bacillomycin D-C16.
Collapse
Affiliation(s)
- Yingying Xue
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuanhong Li
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Ahmad T, Xing F, Nie C, Cao C, Xiao Y, Yu X, Moosa A, Liu Y. Biocontrol potential of lipopeptides produced by the novel Bacillus subtilis strain Y17B against postharvest Alternaria fruit rot of cherry. Front Microbiol 2023; 14:1150217. [PMID: 37032895 PMCID: PMC10076150 DOI: 10.3389/fmicb.2023.1150217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
The use of synthetic fungicides against postharvest Alternaria rot adversely affects human health and the environment. In this study, as a safe alternative to fungicides, Bacillus subtilis strain Y17B isolated from soil exhibited significant antifungal activity against Alternaria alternata. Y17B was identified as B. subtilis based on phenotypic identification and 16S rRNA sequence analysis. To reveal the antimicrobial activity of this strain, a PCR-based study detected the presence of antifungal lipopeptide (LP) biosynthetic genes from genomic DNA. UPLC Q TOF mass spectrometry analysis detected the LPs surfactin (m/z 994.64, 1022.68, and 1026.62), iturin (m/z 1043.56), and fengycin (m/z 1491.85) in the extracted LP crude of B. subtilis Y17B. In vitro antagonistic study demonstrated the efficiency of LPs in inhibiting A. alternata growth. Microscopy (SEM and TEM) studies showed the alteration of the morphology of A. alternata in the interaction with LPs. In vivo test results revealed the efficiency of LPs in reducing the growth of the A. alternata pathogen. The overall results highlight the biocontrol potential of LPs produced by B. subtilis Y17B as an effective biological control agent against A. alternata fruit rot of cherry.
Collapse
Affiliation(s)
- Tanvir Ahmad
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Anam Moosa
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yang Liu,
| |
Collapse
|
8
|
Tsalgatidou PC, Thomloudi EE, Nifakos K, Delis C, Venieraki A, Katinakis P. Calendula officinalis-A Great Source of Plant Growth Promoting Endophytic Bacteria (PGPEB) and Biological Control Agents (BCA). Microorganisms 2023; 11:microorganisms11010206. [PMID: 36677498 PMCID: PMC9865722 DOI: 10.3390/microorganisms11010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic Bacteria, PGPEB). In the present study, 36 out of 119 isolated endophytic bacterial strains from roots, leaves and flowers of the pharmaceutical plant Calendula officinalis were further identified and classified into Bacillus, Pseudomonas, Pantoea, Stenotrophomonas and Rhizobium genera. Selected endophytes were evaluated depending on positive reaction to different plant growth promoting (PGP) traits, motility, survival rate and inhibition of phytopathogenic fungi in vitro and ex vivo (tomato fruit). Bacteria were further assessed for their plant growth effect on Arabidopsis thaliana seedlings and on seed bio-primed tomato plantlets, in vitro. Our results indicated that many bacterial endophytes increased seed germination, promoted plant growth and changed root structure by increasing lateral root density and length and root hair formation. The most promising antagonistic PGPEB strains (Cal.r.29, Cal.l.30, Cal.f.4, Cal.l.11, Cal.f.2.1, Cal.r.19 and Cal.r.11) are indicated as effective biological control agents (BCA) against Botrytis cinerea on detached tomato fruits. Results underlie the utility of beneficial endophytic bacteria for sustainable and efficient crop production and disease control.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kallimachos Nifakos
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
9
|
Raouani NEH, Claverie E, Randoux B, Chaveriat L, Yaseen Y, Yada B, Martin P, Cabrera JC, Jacques P, Reignault P, Magnin-Robert M, Lounès-Hadj Sahraoui A. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Molecules 2022; 27:molecules27196672. [PMID: 36235207 PMCID: PMC9571057 DOI: 10.3390/molecules27196672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Plant protection is mainly based on the application of synthetic pesticides to limit yield losses resulting from diseases. However, the use of more eco-friendly strategies for sustainable plant protection has become a necessity that could contribute to controlling pathogens through a direct antimicrobial effect and/or an induction of plant resistance. Three different families of natural or bioinspired compounds originated from bacterial or fungal strains have been evaluated to protect wheat against powdery mildew, caused by the biotrophic Blumeria graminis f.sp. tritici (Bgt). Thus, three bio-inspired mono-rhamnolipids (smRLs), three cyclic lipopeptides (CLPs, mycosubtilin (M), fengycin (F), surfactin (S)) applied individually and in mixtures (M + F and M + F + S), as well as a chitosan oligosaccharide (COS) BioA187 were tested against Bgt, in planta and in vitro. Only the three smRLs (Rh-Eth-C12, Rh-Est-C12 and Rh-Succ-C12), the two CLP mixtures and the BioA187 led to a partial protection of wheat against Bgt. The higher inhibitor effects on the germination of Bgt spores in vitro were observed from smRLs Rh-Eth-C12 and Rh-Succ-C12, mycosubtilin and the two CLP mixtures. Taking together, these results revealed that such molecules could constitute promising tools for a more eco-friendly agriculture.
Collapse
Affiliation(s)
- Nour El Houda Raouani
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Elodie Claverie
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Ludovic Chaveriat
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | - Yazen Yaseen
- Lipofabrik, Parc d’Activités du Mélantois, 917 Rue des Saules, 59810 Lesquin, France
| | - Bopha Yada
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Patrick Martin
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | | | - Philippe Jacques
- JUNIA, Joint Research Unit UMRt 1158-INRAE, BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, CEDEX BP 41290, 59014 Lille, France
- Joint Research Unit 1158 BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| |
Collapse
|
10
|
Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, Tu H. Isolation and Characterization of Bacillus velezensis Strain P2-1 for Biocontrol of Apple Postharvest Decay Caused by Botryosphaeria dothidea. Front Microbiol 2022; 12:808938. [PMID: 35058916 PMCID: PMC8764377 DOI: 10.3389/fmicb.2021.808938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeria dothidea causes apple ring rot, which is among the most prevalent postharvest diseases of apples and causes significant economic loss during storage. In this study, we investigated the biocontrol activity and possible mechanism of Bacillus velezensis strain P2-1 isolated from apple branches against B. dothidea in postharvest apple fruit. The results showed strain P2-1, one of the 80 different endophytic bacterial strains from apple branches, exhibited strong inhibitory effects against B. dothidea growth and resulted in hyphal deformity. B. velezensis P2-1 treatment significantly reduced the ring rot caused by B. dothidea. Additionally, the supernatant of strain P2-1 exhibited antifungal activity against B. dothidea. Re-isolation assay indicated the capability of strain P2-1 to colonize and survive in apple fruit. PCR and qRT-PCR assays revealed that strain P2-1 harbored the gene clusters required for biosynthesis of antifungal lipopeptides and polyketides. Strain P2-1 treatment significantly enhanced the expression levels of pathogenesis-related genes (MdPR1 and MdPR5) but did not significantly affect apple fruit qualities (measured in fruit firmness, titratable acid, ascorbic acid, and soluble sugar). Thus, our results suggest that B. velezensis strain P2-1 is a biocontrol agent against B. dothidea-induced apple postharvest decay. It acts partially by inhibiting mycelial growth of B. dothidea, secreting antifungal substances, and inducing apple defense responses.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianxiang Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zengqiang Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
11
|
Kamali M, Guo D, Naeimi S, Ahmadi J. Perception of Biocontrol Potential of Bacillus inaquosorum KR2-7 against Tomato Fusarium Wilt through Merging Genome Mining with Chemical Analysis. BIOLOGY 2022; 11:biology11010137. [PMID: 35053135 PMCID: PMC8773019 DOI: 10.3390/biology11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Bacillus is a bacterial genus that is widely used as a promising alternative to chemical pesticides due to its protective activity toward economically important plant pathogens. Fusarium wilt of tomato is a serious fungal disease limiting tomato production worldwide. Recently, the newly isolated B. inaquosorum strain KR2-7 considerably suppressed Fusarium wilt of tomato plants. The present study was performed to perceive potential direct and indirect biocontrol mechanisms implemented by KR2-7 against this disease through genome and chemical analysis. The potential direct biocontrol mechanisms of KR2-7 were determined through the identification of genes involved in the synthesis of antibiotically active compounds suppressing tomato Fusarium wilt. Furthermore, the indirect mechanisms of this bacterium were perceived through recognizing genes that contributed to the resource acquisition or modulation of plant hormone levels. This is the first study that aimed at the modes of actions of B. inaquosorum against Fusarium wilt of tomatoes and the results strongly indicate that strain KR2-7 could be a good candidate for microbial biopesticide formulations to be used for biological control of plant diseases and plant growth promotion. Abstract Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.
Collapse
Affiliation(s)
- Maedeh Kamali
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3943-6298
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| | - Jafar Ahmadi
- Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin 34149-16818, Iran;
| |
Collapse
|
12
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
13
|
Genomic and Metabolomic Insights into Secondary Metabolites of the Novel Bacillus halotolerans Hil4, an Endophyte with Promising Antagonistic Activity against Gray Mold and Plant Growth Promoting Potential. Microorganisms 2021; 9:microorganisms9122508. [PMID: 34946110 PMCID: PMC8704346 DOI: 10.3390/microorganisms9122508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
The endophytic bacterial strain Hil4 was isolated from leaves of the medicinal plant Hypericum hircinum. It exhibited antifungal activity against Botrytis cinerea and a plethora of plant growth promoting traits in vitro. Whole genome sequencing revealed that it belongs to Bacillus halotolerans and possesses numerous secondary metabolite biosynthetic gene clusters and genes involved in plant growth promotion, colonization, and plant defense elicitation. The Mojavensin cluster was present in the genome, making this strain novel among plant-associated B. halotolerans strains. Extracts of secreted agar-diffusible compounds from single culture secretome extracts and dual cultures with B. cinerea were bioactive and had the same antifungal pattern on TLC plates after bioautography. UHPLC-HRMS analysis of the single culture secretome extract putatively annotated the consecutively produced antimicrobial substances and ISR elicitors. The isolate also proved efficient in minimizing the severity of gray mold post-harvest disease on table grape berries, as well as cherry tomatoes. Finally, it positively influenced the growth of Arabidopsis thaliana Col-0 and Solanum lycopersicum var. Chondrokatsari Messinias after seed biopriming in vitro. Overall, these results indicate that the B. halotolerans strain Hil4 is a promising novel plant growth promoting and biocontrol agent, and can be used in future research for the development of biostimulants and/or biological control agents.
Collapse
|
14
|
Tunsagool P, Ploypetch S, Jaresitthikunchai J, Roytrakul S, Choowongkomon K, Rattanasrisomporn J. Efficacy of cyclic lipopeptides obtained from Bacillus subtilis to inhibit the growth of Microsporum canis isolated from cats. Heliyon 2021; 7:e07980. [PMID: 34585007 PMCID: PMC8450251 DOI: 10.1016/j.heliyon.2021.e07980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background and aim Microsporum canis (M. canis) is a dermatophyte fungal pathogen that causes ringworms. Cats are considered to be a dominant reservoir host enabling M. canis transmission to humans. The concerns of dermatophyte resistance were raised among the usage of antifungal drugs to treat the ringworm. This study aimed to evaluate the fungal activity of cyclic lipopeptides (CLPs) obtained from Bacillus subtilis (B. subtilis) as an alternative method for the inhibition of M. canis growth. Materials and methods The culture plate of M. canis from confirmed cats with ringworm infection was provided. The purification of CLP extract, fengycin, iturin A, and surfactin was carried out from B. subtilis by preparative thin-layer chromatography (PTLC) coupled with solid-phase extraction (SPE) methods. Half-maximal effective concentration (EC50) and agar well diffusion assays were performed to determine the efficacy of Bacillus CLP extract, fengycin, iturin A, and surfactin to inhibit the growth of M. canis isolated from cats. Results All purified Bacillus substances displayed antifungal activity to control the growth of M. canis when compared with 80% ethanol (control). EC50 values for CLP extract, fengycin, iturin A, and surfactin were 0.23, 0.05, 0.17, and 0.08 mg/mL, respectively. In agar well diffusion assay, the ability of CLP extract, fengycin, iturin A, and surfactin on fungal inhibition had no statistically significant difference at 24 and 48 h after treatment (p < 0.05). However, CLP extract showed a statistically significant difference on M. canis inhibition at 62.21% followed by surfactin with 59.04% at 72 h after treatment. Conclusion In vitro, Bacillus CLPs revealed an inhibitory effect on M. canis growth which is a zoonotic pathogen that causes ringworms. This study suggests an alternative approach to control the growth of M. canis using substances obtained from B. subtilis as a biomedicine agent with antifungal activity.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
15
|
Kumar A, Rabha J, Jha DK. Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP, against Colletotrichum capsici, the causal organism of anthracnose disease of chilli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. PLANTS 2021; 10:plants10081716. [PMID: 34451760 PMCID: PMC8400388 DOI: 10.3390/plants10081716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Botrytis bunch rot caused by Botrytis cinerea is one of the most economically significant post-harvest diseases of grapes. In the present study, we showed that the bacterial strain Bvel1 is phylogenetically affiliated to Bacillus velezensis species. The strain Bvel1 and its secreted metabolites exerted an antifungal activity, under in vitro conditions, against B. cinerea. UHPLC-HRMS chemical analysis revealed that iturin A2, surfactin-C13 and -C15, oxydifficidin, bacillibactin, L-dihydroanticapsin, and azelaic acid were among the metabolites secreted by Bvel1. Treatment of wounded grape berries with Bacillus sp. Bvel1 cell culture was effective for controlling grey mold ingress and expansion in vivo. The effectiveness of this biological control agent was a function of the cell culture concentration of the antagonist applied, while preventive treatment proved to be more effective compared to curative. The strain Bvel1 exhibited an adequate colonization efficiency in wounded grapes. The whole-genome phylogeny, combined with ANI and dDDH analyses, provided compelling evidence that the strain Bvel1 should be taxonomically classified as Bacillus velezensis. Genome mining approaches showed that the strain Bvel1 harbors 13 antimicrobial biosynthetic gene clusters, including iturin A, fengycin, surfactin, bacilysin, difficidin, bacillaene, and bacillibactin. The results provide new insights into the understanding of the endophytic Bacillus velezensis Bvel1 biocontrol mechanism against post-harvest fungal pathogens, including bunch rot disease in grape berries.
Collapse
|
17
|
Ratanaprom S, Nakkanong K, Nualsri C, Jiwanit P, Rongsawat T, Woraathakorn N. Overcoming Encouragement of Dragon Fruit Plant (Hylocereus undatus) against Stem Brown Spot Disease Caused by Neoscytalidium dimidiatum Using Bacillus subtilis Combined with Sodium Bicarbonate. THE PLANT PATHOLOGY JOURNAL 2021; 37:205-214. [PMID: 34111911 PMCID: PMC8200576 DOI: 10.5423/ppj.oa.01.2021.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 06/03/2023]
Abstract
The use of the supernatant from a Bacillus subtilis culture mixed with sodium bicarbonate was explored as a means of controlling stem brown spot disease in dragon fruit plants. In in vitro experiments, the B. subtilis supernatant used with sodium bicarbonate showed a strong inhibition effect on the growth of the fungus, Neoscytalidium dimidiatum, the agent causing stem brown spot disease and was notably effective in preventing fungal invasion of dragon fruit plant. This combination not only directly suppressed the growth of N. dimidiatum, but also indirectly affected the development of the disease by eliciting the dragon-fruit plant's defense response. Substantial levels of the pathogenesis-related proteins, chitinase and glucanase, and the phenylpropanoid biosynthetic pathway enzymes, peroxidase and phenyl alanine ammonia-lyase, were triggered. Significant lignin deposition was also detected in treated cladodes of injured dragon fruit plants in in vivo experiments. In summary, B. subtilis supernatant combined with sodium bicarbonate protected dragon fruit plant loss through stem brown spot disease during plant development in the field through pathogenic fungal inhibition and the induction of defense response mechanisms.
Collapse
Affiliation(s)
- Sanan Ratanaprom
- Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
| | - Korakot Nakkanong
- Agriculture Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Charassri Nualsri
- Agriculture Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Palakrit Jiwanit
- Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
| | - Thanyakorn Rongsawat
- Tropical Fruit and Plantation Crops Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Natthakorn Woraathakorn
- Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
| |
Collapse
|
18
|
Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. World J Microbiol Biotechnol 2021; 37:97. [PMID: 33969441 DOI: 10.1007/s11274-021-03064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Bacterial lipopeptides have become a research focus of many studies owing to their industrial and pharmaceutical importance. Although such studies focused on researching purification procedures and qualitative analysis, much remains to be explored and developed to improve the current methods. To enable thorough studies of lipopeptides, this paper describes a new method for purification and characterization of in-gel anionic lipopeptides. Specifically, lipopeptides attributed to the anti-staphylococcal activity of Bacillus mojavensis HF were separated using SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and subsequently characterized using mass spectrometry. Lipopeptide band obtained by gel electrophoresis was first visualized using three different staining methods. Next, the lipopeptide isomers were efficiently recovered from the gel band and structural characterization of the extracted lipopeptides was carried out by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). MS analysis revealed that Bacillus mojavensis HF produced three types of lipopeptides including surfactin, fengycin, and kurstakin. 14 clusters of ion peaks were identified as fengycin A with fatty acid of C15-C17, fengycin B (C16, C17), surfactin (C13-C16), and kurstakin (C9-C12). Moreover, tandem mass spectrometric analysis (MS/MS) revealed the sequences of fengycin A and surfactin. In this study, we identified a high variety and number of surfactin and fengycin isomers, which previous reports lacked. To the best of our knowledge, we are the first to report the presence of kurstakin in Bacillus mojavensis species. Finally, we demonstrated that our gel-based study of lipopeptides allowed for a precise and reproducible investigation of these molecules.
Collapse
|
19
|
Nan J, Zhang S, Jiang L. Antibacterial Potential of Bacillus amyloliquefaciens GJ1 against Citrus Huanglongbing. PLANTS 2021; 10:plants10020261. [PMID: 33572917 PMCID: PMC7910844 DOI: 10.3390/plants10020261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
Citrus huanglongbing (HLB) is a destructive disease caused by Candidatus Liberibacter species and is a serious global concern for the citrus industry. To date, there is no established strategy for control of this disease. Previously, Bacillus amyloliquefaciens GJ1 was screened as the biocontrol agent against HLB. In this study, two-year-old citrus infected by Ca. L. asiaticus were treated with B. amyloliquefaciens GJ1 solution via root irrigation. In these plants, after seven irrigation treatments, the results indicated that the photosynthetic parameters, chlorophyll content, resistance-associated enzyme content and the expression of defense-related genes were significantly higher than for the plants treated with the same volume water. The content of starch and soluble sugar were significantly lower, compared to the control treatment. The parallel reaction monitoring (PRM) results revealed that treatment with B. amyloliquefaciens GJ1 solution, the expression levels of 3 proteins with photosynthetic function were upregulated in citrus leaves. The accumulation of reactive oxygen species (ROS) in citrus leaves treated with B. amyloliquefaciens GJ1 flag22 was significantly higher than untreated plants and induced the defense-related gene expression in citrus. Finally, surfactin was identified from the fermentation broth of B. amyloliquefaciens GJ1 by high-performance liquid chromatography. These results indicate that B. amyloliquefaciens GJ1 may improve the immunity of citrus by increasing the photosynthesis and enhancing the expression of the resistance-related genes.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ling Jiang
- College of Horticulture and Forestry, Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence:
| |
Collapse
|
20
|
Chacón-López A, Guardado-Valdivia L, Bañuelos-González M, López-García U, Montalvo-González E, Arvizu-Gómez J, Stoll A, Aguilera S. Effect of Metabolites Produced by Bacillus atrophaeus and Brevibacterium frigoritolerans Strains on Postharvest Biocontrol of Alternaria alternata in Tomato (Solanum lycopersicum L.). Biocontrol Sci 2021; 26:67-74. [PMID: 34092716 DOI: 10.4265/bio.26.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, the antifungal activity of metabolites produced by Bacillus atrophaeus B5 and a new Brevibacterium strain against Alternaria alternata was evaluated. Assays in vitro and in vivo on tomato fruit during postharvest were made. Based on the 16S rDNA gene sequence analysis, the new strain (strain B7) was identified as Brevibacterium frigoritolerans. Metabolites produced by both bacterial strains reduced the spore germination of A. alternata in vitro and decreased the severity of the alternaria rot disease on tomato fruit during postharvest. This is the first report that demonstrates the potential of B. frigoritolerans B7 as a biocontrol agent against this fungal phytopathogen. The use of metabolites produced by B. atrophaeus B5 and B. frigoritolerans B7 represents a new approach to reduce the use of chemical pesticides and control fungal decay during the postharvest stage.
Collapse
Affiliation(s)
- Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Lizeth Guardado-Valdivia
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Miriam Bañuelos-González
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Ulises López-García
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Jackeline Arvizu-Gómez
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit
| | | | - Selene Aguilera
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| |
Collapse
|
21
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
22
|
Maksimov IV, Singh BP, Cherepanova EA, Burkhanova GF, Khairullin RM. Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Suppression of Sclerotinia sclerotiorum by the Induction of Systemic Resistance and Regulation of Antioxidant Pathways in Tomato Using Fengycin Produced by Bacillus amyloliquefaciens FZB42. Biomolecules 2019; 9:biom9100613. [PMID: 31623124 PMCID: PMC6843208 DOI: 10.3390/biom9100613] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Lipopeptides from Bacillus species exhibit promising biological control activity against plant pathogens. This study aimed to explore the potential of purified fengycin to induce systemic resistance in tomato against Sclerotinia sclerotiorum. Bacillus amyloliquefaciens FZB42, its mutant AK1S, and their corresponding metabolites showed in vitro inhibition of S. sclerotiorum mycelium. Fengycin derived from an AK1S mutant was purified and identified through HPLC and MALDI-TOF-MS, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed structural deformities in the fungal mycelium. Moreover, fengycin induced the accumulation of reactive oxygen species (ROS) in S. sclerotiorum mycelium and downregulated the expression of ROS-scavenging genes viz., superoxide dismutase (SsSOD1), peroxidase (SsPO), and catalase (SsCAT1) compared to the untreated control. Furthermore, the lesion size was dramatically reduced in fengycin-treated tomato plants compared to plants infected with S. sclerotiorum only in a greenhouse experiment. Additionally, the transcriptional regulation of defense-related genes GST, SOD, PAL, HMGR, and MPK3 showed the highest upsurge in expression at 48 h post-inoculation (hpi). However, their expression was subsequently decreased at 96 hpi in fengycin + S. sclerotiorum treatment compared to the plants treated with fengycin only. Conversely, the expression of PPO increased in a linear manner up to 96 hpi.
Collapse
|
24
|
Bacillomycin D inhibits growth of Rhizopus stolonifer and induces defense-related mechanism in cherry tomato. Appl Microbiol Biotechnol 2019; 103:7663-7674. [PMID: 31297555 DOI: 10.1007/s00253-019-09991-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/02/2023]
Abstract
The inhibitory effect of Bacillomycin D, a cyclic lipopeptide, on Rhizopus stolonifer colonization of cherry tomato was studied, and its possible mechanism of action was explored. Bacillomycin D showed a direct inhibitory effect on R. stolonifer spore germination and mycelial growth in vitro. It conferred both a direct inhibitory effect on R. stolonifer growth in cherry tomato in vivo and induced host resistance in cherry tomato. Moreover, Bacillomycin D treatment significantly increased the activities of plant defense-related enzymes, including chitinase (CHI), β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and peroxidase (POD). Real-time PCR (RT-PCR) showed that defense-related genes involved in the salicylic acid defense signaling pathway and genes encoding pathogenesis-related proteins were up-regulated in Bacillomycin D treatment. Furthermore, Bacillomycin D-C16 resulted in direct inhibition and a remarkable induced resistance to R. stolonifer which was higher than as induced by Bacillomycin D-C14. Together, the data indicated that Bacillomycin D can control the growth of R. stolonifer through both the direct inhibition of the fungus and the activation of defense-related genes and enzymes in cherry tomato.
Collapse
|
25
|
Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLoS One 2019; 14:e0217202. [PMID: 31120923 PMCID: PMC6532888 DOI: 10.1371/journal.pone.0217202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Application of Bacillus cyclic lipopeptides (CLPs); fengycin, iturin A and surfactin has shown a great potential in controlling the spread of green mold pathogen invasion (Penicillium digitatum) in wounded mandarin fruit during postharvest period. The limited defensive protein profiles followed specific expression of pivotal genes relating to plant hormone mediating signaling pathways of the CLPs’ action on stimulating host plant resistance have been exhibited. The present study aimed to elucidate the specific effect of individual CLP obtained from Bacillus subtilis ABS-S14 as elicitor role on activation of plant defensive system at transcriptional and proteomic levels with and without P. digitatum co-application in mandarin fruit. Fengycin and iturin A elevated the gene expression of PAL, ACS1, ACO, CHI, and GLU while significantly stimulating plant POD transcription was only detected in the treatments of surfactin both with and without following P. digitatum. An increase of LOX and PR1 gene transcripts was determined in the treatments of individual CLP with fungal pathogen co-application. Fengycin activated production of unique defensive proteins such as protein involved in ubiquinone biosynthetic process in treated flavedo without P. digitatum infection. Proteins involved in the auxin modulating pathway were present in the iturin A and surfactin treatments. CLP-protein binding assay following proteome analysis reveals that iturin A attached to 12-oxophytodienoate reductase 2 involved in the oxylipin biosynthetic process required for jasmonic acid production which is implicated in induced systemic resistance (ISR). This study suggests specific elicitor action of individual CLP, particularly iturin A showed the most powerful in stimulating the ISR system in response to stresses in postharvest mandarins.
Collapse
|
26
|
Chen C, Cai N, Chen J, Wan C. Clove Essential Oil as an Alternative Approach to Control Postharvest Blue Mold Caused by Penicillium italicum in Citrus Fruit. Biomolecules 2019; 9:197. [PMID: 31117317 PMCID: PMC6572225 DOI: 10.3390/biom9050197] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Penicillium italicum causes blue mold disease and leads to huge economic losses in citrus production. As a natural antifungal agent, clove essential oil (CEO), which is a generally recognized as safe (GRAS) substance, shows strong in vitro activity against fungal pathogens. However, few studies on CEO for controlling postharvest blue mold disease caused by P. italicum in citrus fruit have been reported. Our aims were to investigate the control efficacy and possible mechanisms involved of CEO against P. italicum. In the present study, CEO treatment inhibited the disease development of blue mold when applied at 0.05% to 0.8% (v/v), and with the effective concentration being obtained as 0.4% (v/v). Besides its direct antifungal activity, CEO treatment also spurred a rapid accumulation of H2O2 compared with untreated fruits, which might contribute to enhancing an increase in the activities of defense-related enzymes, such as β-1,3-glucanase (β-Glu), chitinase (CHI), phenylalanine ammonia-lyase (PAL), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) in citrus fruit. Results of real time-quantitative polymerase chain reaction (RT-qPCR) showed that the gene expressions of β-Glu, CHI, PAL, POD and PPO were up-regulated in CEO-treated fruits. At the same time, CEO treatment led to down-regulated expression of the LOX gene in citrus fruit. Clove essential oil effectively control the disease incidence of blue mold decay in citrus fruit by motivating the host-defense responses, suppressing the malondialdehyde (MDA) accumulation while enhancing the activities and gene expressions of defense-related enzymes. Our study provides an alternative preservative applying CEO to reduce postharvest fungal decay in citrus fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
- Pingxiang University, Pingxiang 337055, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
27
|
Tunsagool P, Jutidamrongphan W, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Leelasuphakul W. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. PLANT CELL REPORTS 2019; 38:559-575. [PMID: 30715581 DOI: 10.1007/s00299-019-02386-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 05/11/2023]
Abstract
Bacillus subtilis CLP extract activates defense gene expression and increases the unique protein production involving in pathways of ISR, SAR, ubiquitin-proteasome system, and glycolysis for stress responses in flavedo tissues. Cyclic lipopeptides (CLPs) of Bacillus subtilis ABS-S14 had ability to activate plant defensive pathways, increase resistance and control green mold rot caused by Penicillium digitatum in mandarin fruit. The current study investigated transcriptional and proteomic data to highlight the unique induction effect of CLPs produced by B. subtilis ABS-S14 on the defense mechanism of mandarins in response to P. digitatum attack, and their differences from those following the exogenous plant hormone application. The proteomic patterns of the flavedo tissues as affected by Bacillus CLP extract, salicylic acid (SA), methyl jasmonate (MeJA), and ethephon (Et) were explored. qPCR analysis revealed the great effects of CLP extract in enhancing the transcription of PAL, ACS1, GLU, POD, and PR1. Tryptic peptides by LC-MS analysis between treatments with and without fungal infection were compared. B. subtilis CLP extract empowered the plant's immune response to wound stress by the significant production of calmodulin-binding receptor-like cytoplasmic kinase 2, molybdenum cofactor sulfurase, and NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase. Ubiquitin carrier protein abundance was developed only in the treated flavedo with CLP extract coupled with P. digitatum infection. The gene expression and overall proteome findings involving pathways of ubiquitin proteasome system, ISR, SAR, and energy production provide a new insight into the molecular mechanisms of the antagonist B. subtilis ABS-S14 inducing resistance against green mold in mandarins.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biochemistry, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | | |
Collapse
|
28
|
Masum MMI, Liu L, Yang M, Hossain MM, Siddiqa MM, Supty ME, Ogunyemi SO, Hossain A, An Q, Li B. Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae. J Appl Microbiol 2018; 125:1852-1867. [PMID: 30146698 DOI: 10.1111/jam.14088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022]
Abstract
AIMS The aim of this study was to evaluate the antagonistic activity of halotolerant bacteria against rice brown stripe pathogen Acidovorax oryzae. METHODS AND RESULTS Fifteen of 136 isolates of halotolerant bacteria exhibited strong in vitro and in vivo antagonistic activity against both strains of A. oryzae. The 15 antagonistic isolates were identified as 'operational group Bacillus amyloliquefaciens' based on physiological and biochemical features, fatty acid profiles as well as sequence analysis of 16S rRNA, gyrA and rpoB genes. Furthermore, this result indicated that the most effective antagonistic isolates K5-3 and PPB6 could produce siderophore in iron-limiting medium, and four kinds of secondary metabolites based on MALDI-TOF analysis. In addition, the culture filtrates of isolates K5-3 and PPB6 caused the damage of cell membrane evidenced by the TEM images, and resulted in 73-80% reduction in cell numbers, 55-65% reduction in biofilm formation, and 42-50% reduction in swimming ability of both strains of A. oryzae. CONCLUSIONS These isolates in particular K5-3 and PPB6 of halotolerant bacteria markedly inhibited the growth of A. oryzae. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report on biological control of halotolerant bacteria against bacterial brown stripe of rice.
Collapse
Affiliation(s)
- M M I Masum
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - L Liu
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - M Yang
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - M M Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M M Siddiqa
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - M E Supty
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S O Ogunyemi
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - A Hossain
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Q An
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - B Li
- State Key laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Toral L, Rodríguez M, Béjar V, Sampedro I. Antifungal Activity of Lipopeptides From Bacillus XT1 CECT 8661 Against Botrytis cinerea. Front Microbiol 2018; 9:1315. [PMID: 29997581 PMCID: PMC6028715 DOI: 10.3389/fmicb.2018.01315] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
This work aims to explore the capacity of a Bacillus methylotrophicus (later heterotypic synonym of Bacillus velezensis) strain named XT1 CECT 8661 against the necrotrophic plant pathogen Botrytis cinerea and to identify the compounds responsible for its activity. Q_TOF electrospray mass spectrometry analysis allows us to detect several lipopeptides – surfactin, bacillomycin, and fengycin – in XT1 cultures. In vitro antibiosis studies demonstrated the efficiency of the lipopeptide fraction for the inhibition of fungal growth. In fact, microscopy studies (SEM/TEM) revealed, an alteration of the morphology of the phytopathogen in interaction with lipopeptides, with resistance structures appearing in the early stages of growth of the fungus. Our studies, carried out with tomatoes, grapes, and strawberries have demonstrated the efficiency of Bacillus XT1 CECT 8661 lipopeptides against B. cinerea infection and it capability to trigger the antioxidant activity in fruit. Overall, the results of this study highlight the potential of lipopeptides of this strain as an effective biological control agent against the colonisation of B. cinerea.
Collapse
Affiliation(s)
- Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Granada, Spain
| | - Miguel Rodríguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Victoria Béjar
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| |
Collapse
|
30
|
Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, López-García U, Gutiérrez-Martínez P, Stoll A, Aguilera S. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol Res 2018; 210:26-32. [PMID: 29625655 DOI: 10.1016/j.micres.2018.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 11/15/2022]
Abstract
Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous fruit, including soursop and avocado. The use of fungicides to maintain the high quality of fruit creates a potential health risk. One alternative to this problem is the biological control, which has been applied successfully during postharvest. The Bacillus species are one of the most studied biological agents against postharvest pathogens because accomplish their biocontrol performance by producing a variety of metabolites. In this study, we evaluated the activity of metabolites contained in the cell free supernatant, obtained from Bacillus strain B5 culture, against micelial growth and spore germination of two virulent strains of C. gloeosporioides isolated from soursop and avocado. On the basis of 16S rDNA gene sequence analysis, this strain was identified as Bacillus atrophaeus. A preventive treatment using cell free supernatant, reduced severity and incidence of anthracnose disease on harvested soursop and avocado fruit. B. atrophaeus strain B5 harbors genes involved in the production of antibiotics such as surfactin, bacillomycin and iturin, which could be contributing to the efficiency of the preventive treatment during postharvest. The antagonistic role of metabolites contained in the cell free supernatant against anthracnose disease, provide a new approach by which to attack this problem and can help reduce the use of chemical pesticides, environmental pollution, leading to the safer fruit preservation.
Collapse
Affiliation(s)
- Lizeth Guardado-Valdivia
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit 63175, Mexico
| | - Erik Tovar-Pérez
- Laboratorio Integral de Investigación en Alimentos, CONACYT-Instituto Tecnológico de Tepic, Av Tecnológico 2595, Tepic, Nayarit, 63175, Mexico
| | - Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit 63175, Mexico
| | - Ulises López-García
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit 63175, Mexico
| | - Porfirio Gutiérrez-Martínez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit 63175, Mexico
| | - Alexandra Stoll
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile
| | - Selene Aguilera
- Laboratorio Integral de Investigación en Alimentos, CONACYT-Instituto Tecnológico de Tepic, Av Tecnológico 2595, Tepic, Nayarit, 63175, Mexico.
| |
Collapse
|
31
|
Asari S, Ongena M, Debois D, De Pauw E, Chen K, Bejai S, Meijer J. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. ANNALS OF BOTANY 2017; 120:551-562. [PMID: 28961818 PMCID: PMC5737243 DOI: 10.1093/aob/mcx089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/09/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Certain micro-organisms can improve plant protection against pathogens. The protective effect may be direct, e.g. due to antibiotic compounds, or indirect, by priming of plant defence as induced systemic resistance (ISR). The plant growth-promoting rhizobacterium Bacillus amyloliquefaciens UCMB5113 shows potential for disease management of oilseed rape. To investigate the mode of action of this protection, especially in relation to jasmonic acid-dependent ISR, Bacillus UCMB5113 was tested with Arabidopsis thaliana mutants and several important fungal pathogens of Brassica species. METHODS Secreted lipopeptide fractions from Bacillus UCMB5113, together with synthetic peptide mimics, were evaluated for their effects on fungal phytopathogens and A. thaliana . The structures of secreted lipopeptides were analysed using mass spectrometry. Plant mutants and reporter lines were used to identify signalling steps involved in disease suppression by lipopeptides. KEY RESULTS In plate tests Bacillus UCMB5113 and lipopeptide extracts suppressed growth of several fungal pathogens infecting Brassica plants. Separation of secreted lipopeptides using reversed-phase high-performance liquid chromatography revealed several fractions that inhibited fungal growth. Analysis by mass spectrometry identified the most potent compounds as novel linear forms of antifungal fengycins, with synthetic peptide mimics confirming the biological activity. Application of the lipopeptide extracts on Arabidopsis roots provided systemic protection against Alternaria brassicicola on leaves. Arabidopsis signalling mutants and PDF1.2 and VSP2 promoter-driven GUS lines indicated that the lipopeptide fraction involved jasmonic-acid-dependent host responses for suppression of fungal growth indicative of ISR. CONCLUSIONS The ability of Bacillus UCMB5113 to counteract pathogens using both antagonistic lipopeptides and through ISR provides a promising tool for sustainable crop production.
Collapse
Affiliation(s)
- Shashidar Asari
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, University of Liège/Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - Delphine Debois
- Mass Spectrometry Laboratory, University of Liège, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, B-4000 Liège, Belgium
| | - Kunling Chen
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarosh Bejai
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| | - Johan Meijer
- Department of Plant Biology, Uppsala Biocenter, Linnéan Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| |
Collapse
|
32
|
Fan H, Ru J, Zhang Y, Wang Q, Li Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 2017; 199:89-97. [PMID: 28454713 DOI: 10.1016/j.micres.2017.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Jinjiang Ru
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Yuanyuan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
33
|
Li X, Zhang Y, Wei Z, Guan Z, Cai Y, Liao X. Antifungal Activity of Isolated Bacillus amyloliquefaciens SYBC H47 for the Biocontrol of Peach Gummosis. PLoS One 2016; 11:e0162125. [PMID: 27583463 PMCID: PMC5008826 DOI: 10.1371/journal.pone.0162125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
The gummosis disease is caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., and it is one of the most important diseases of stone fruits worldwide. The use of biocontrol as an alternative approach to synthetic chemical fungicides has aroused general concern about how to control plant diseases that are caused by phytopathogens. The aim of this study is to isolate Bacillus strains from raw honeys with the capacity to inhibit B. dothidea and to explore the mechanisms by which they could be used in the biocontrol of peach gummosis. Bacillus amyloliquefaciens SYBC H47 was isolated and identified on the basis of its physiological and biochemical characteristics and its 16S rRNA and gyrB gene sequences. The cell suspension and the cell-free supernatant of its culture showed significant antifungal activity against Aspergillus niger, Mucor racemosus, Fusarium oxysporum, Penicillium citrinum, and Candida albicans by agar-diffusion assays. The primary antifungal substances were bacillomycin L, fengycin, and surfactin, which were analyzed by HPLC LC/ESI-MS/MS. Bacillomycin L showed the best inhibitory effect against conidial germination of B. dothidea, followed by fengycin and surfactin. Surfactin had limited effects on mycelial growth, contrary to those of bacillomycin L and fengycin. However, a mixture of the three lipopeptides had a synergistic effect that disrupted the structure of the conidia and mycelia. In order to reduce the production cost, the use of waste frying peanut oil and soy oil as the sole carbon source increased the lipopeptide yield levels by approximately 17% (2.42 g/L) and 110% (4.35 g/L), respectively. In a field trial, the decreases in the infected gummosis rate (IGR) and the disease severity index (DSI) through cell suspension treatments were 20% and 57.5% (in 2014), respectively, and 40% and 57.5% (in 2015), respectively, in comparison with the control. In conclusion, B. amyloliquefaciens SYBC H47 could inhibit the germination of conidia and the growth of mycelia from B. dothidea; therefore, this strain behaves as a potential biocontrol agent against the gummosis disease.
Collapse
Affiliation(s)
- Xunhang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- The Bioscience and Engineering College, Jiangxi Agriculture University, Nanchang, 330045, China
| | - Yanzhou Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhiwen Wei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
34
|
Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6690-6699. [PMID: 26645234 DOI: 10.1007/s11356-015-5826-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50% (IC50%), and an inhibitory concentration at 90% (IC90%) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50%, and IC90% values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds.
Collapse
Affiliation(s)
- Inès Mnif
- Unit "Enzymes and Bioconversion," National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.
- Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
- Inès Mnif, Unité "Enzyme et Bioconversion," ENIS, BP W 3038, Sfax, Tunisia.
| | - Ariadna Grau-Campistany
- Faculty of Chemistry, Department of Organic Chemistry, University of Barcelona, Joan XXIII s/n, 08028, Barcelona, Spain
| | - Jonathan Coronel-León
- Laboratory of Microbiology, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028, Barcelona, Spain
| | - Inès Hammami
- Higher School of Agriculture of Kef, 7119, Kef, Tunisia
| | - Mohamed Ali Triki
- Laboratory "Amélioration et Protection des Ressources Génétiques de l'Olivier," Institut de l'Olivier, University of Sfax, Sfax, Tunisia
| | - Angeles Manresa
- Laboratory of Microbiology, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028, Barcelona, Spain
| | - Dhouha Ghribi
- Unit "Enzymes and Bioconversion," National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
- Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|