1
|
Zhang S, Ren L, Li W, Zhang Y, Yang Y, Yang H, Xu F, Cao W, Li X, Zhang X, Du G, Wang J. Interferon Gamma Inducible Protein 30: from biological functions to potential therapeutic target in cancers. Cell Oncol (Dordr) 2024; 47:1593-1605. [PMID: 39141317 DOI: 10.1007/s13402-024-00979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Interferon Gamma Inducible Protein 30 (IFI30), also known as Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT), is predominantly found in lysosomes and the cytoplasm. As the sole enzyme identified to catalyze disulfide bond reduction in the endocytic pathway, IFI30 contributes to both major histocompatibility complex (MHC) class I-restricted antigen cross-presentation and MHC class II-restricted antigen processing by decreasing the disulfide bonds of endocytosed proteins. Remarkably, emerging research has revealed that IFI30 is involved in tumorigenesis, tumor development, and the tumor immune response. Targeting IFI30 may provide new strategies for cancer therapy and improve the prognosis of patients. This review provided a comprehensive overview of the research progress on IFI30 in tumor progression, cellular redox status, autophagy, tumor immune response, and drug sensitivity, with a view to providing the theoretical basis for pharmacological intervention of IFI30 in tumor therapy, particularly in immunotherapy.
Collapse
Affiliation(s)
- Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoxue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xu Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Liu M, Tao M, Li J, Sang M, Wu X, Luo H, Zhang J. Functional of tongue sole (Cynoglossus semilaevis) gamma-interferon-inducible lysosomal thiol reductase with implications in innate immune reponse depend on CXXC active site. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104901. [PMID: 37531973 DOI: 10.1016/j.dci.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The enzyme gamma-interferon-inducible lysosomal thiol reductase (GILT) plays an important role in promoting the processing and presentation of major histocompatibility complex (MHC) class II-restricted antigens. It is also involved in MHC I-restricted antigens catalyzing disulfide bond reduction in fishes' adaptive immunity. The open reading frame of tongue sole (Cynoglossus semilaevis) GILT (tsGILT) gene is 771 bp long, encoding 257 amino acids, with a calculated molecular weight of 28.465 kDa and isoelectric point (pI) of 5.35. After induction with lipopolysaccharide, the expression of tsGILT mRNA was upregulated in spleen and kidney and recombinant tsGILT protein transferred to late endosomes and lysosomes in HeLa cells. The refolded tsGILT was capable of catalyzing the reduction of the interchain disulfide bonds against an IgG substrate depend on the active site CXXC motif at residues 75-78. The process of immune response to bacteria challenge needs GILT to catalyze the reduction of disulfide bond and unfolding native protein antigens, promoting their hydrolysis by proteases. Whether a single mutation or a double mutation of active site CXXC at residues75-78, the 3D structure of tsGILT protein has undergone major changes and lost its activity of catalyzing the reduction of the interchain disulfide bonds.
Collapse
Affiliation(s)
- Meiyan Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China; School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingxuan Tao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Jianfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China; Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, China
| | - Ming Sang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China; Laboratory of Cellular and Molecular Biology Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaolong Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Jiaxin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
3
|
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol 2023; 83:102330. [PMID: 37130456 PMCID: PMC10524529 DOI: 10.1016/j.coi.2023.102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
Major histocompatibility complex class-II-restricted presentation by nonprofessional antigen-presenting cells in the tumor microenvironment can regulate antitumor T-cell responses. In murine models, tumor cell-specific MHC class II expression decreases in vivo tumor growth, dependent on T cells. Tumor cell-specific MHC class II expression is associated with improved survival and response to immune checkpoint inhibitors in human cancers. Antigen-presenting cancer-associated fibroblasts (apCAF) present MHC class-II-restricted antigens and activate CD4 T cells. The role of MHC class II on apCAFs depends on the cell of origin. MHC class II on tumoral lymphatic endothelial cells leads to expansion of regulatory T cells and increased in vivo tumor growth.
Collapse
Affiliation(s)
- Anne M Macy
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Lauren M Herrmann
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Anngela C Adams
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - K Taraszka Hastings
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| |
Collapse
|
4
|
Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I, Crake R, Bellier J, Nokin MJ, Calonne E, Deplus R, Wissocq T, Peulen O, Castronovo V, Fuks F, Bellahcène A. Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 2023; 42:78. [PMID: 36998085 PMCID: PMC10064647 DOI: 10.1186/s13046-023-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Collapse
Affiliation(s)
- Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Nan X, Zhao K, Qin Y, Song Y, Guo Y, Luo Z, Li W, Wang Q. Antibacterial responses and functional characterization of the interferon gamma inducible lysosomal thiol reductase (GILT) protein in Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104514. [PMID: 35977559 DOI: 10.1016/j.dci.2022.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The inducible reductase of interferon gamma (IFN- γ), IFN-γ-induced lysosomal thiol reductase (GILT) is important in antiviral immunity, but its mechanism in invertebrate antimicrobial immunity is unclear. We determined that GILT protein was involved in the antibacterial immunity of Chinese mitten crab (Eriocheir sinensis). GILT protein was highly expressed in crab hemocytes and was significantly upregulated 6 h after bacterial stimulation. Recombinant E. sinensis GILT (rEsGILT) contained a CXXS active site that catalyzed disulfide bond reduction. Vibrio parahaemolyticus and Staphylococcus aureus were bound through interaction with peptidoglycan and lipopolysaccharide, respectively, and bacterial agglutination and clearance in the crabs was markedly promoted. Nevertheless, EsGILT exhibited no direct antibacterial or bactericidal activity. EsGILT also promoted crab hemocyte phagocytosis and played an anti-bacterial role, and inhibited hemocyte apoptosis. In summary, EsGILT promoted bacterial agglutination, clearance, and phagocytosis by recognizing and agglutinating pathogenic microorganisms and reduced the apoptosis level, indirectly participating in antibacterial reactions.
Collapse
Affiliation(s)
- Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
High GILT Expression Is Associated with Improved Survival in Metastatic Melanoma Patients Treated with Immune Checkpoint Inhibition. Cancers (Basel) 2022; 14:cancers14092200. [PMID: 35565329 PMCID: PMC9100272 DOI: 10.3390/cancers14092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Skin cancer is the most common type of cancer, with melanoma being among the deadliest of skin cancers due to its propensity to metastasize. Immune checkpoint inhibitors (ICI) generate anti-tumor immune responses resulting in improved outcomes in patients with metastatic melanoma. However, only a subset of melanoma patients responds to these therapies, which are costly and come with a risk of adverse effects. Therefore, there is a need for biomarkers to predict which patients will respond to ICI. We found that ICI-treated metastatic melanoma patients with high GILT mRNA expression in bulk tumor samples had improved survival. Additionally, high GILT protein expression within metastatic melanoma cells was associated with improved survival in patients treated with ICI. This study suggests that GILT may serve as a biomarker to predict which patients will respond to ICI, which could improve patient care, reduce healthcare costs, and facilitate appropriate selection of therapies for patients with metastatic melanoma. Abstract Gamma-interferon-inducible lysosomal thiol reductase (GILT) is critical for MHC class II restricted presentation of multiple melanoma antigens. There is variable GILT protein expression in malignant melanocytes in melanoma specimens. High GILT mRNA expression in melanoma specimens is associated with improved overall survival, before the advent of immune checkpoint inhibitors (ICI). However, the association of GILT in metastatic melanoma with survival in patients treated with ICI and the cell type expressing GILT associated with survival have not been determined. Using RNA sequencing datasets, high GILT mRNA expression in metastatic melanoma specimens was associated with improved progression-free and overall survival in patients treated with ICI. A clinical dataset of metastatic melanoma specimens was generated and annotated with clinical information. Positive GILT immunohistochemical staining in antigen presenting cells and melanoma cells was observed in 100% and 65% of metastatic melanoma specimens, respectively. In the subset of patients treated with ICI in the clinical dataset, high GILT protein expression within melanoma cells was associated with improved overall survival. The association of GILT mRNA and protein expression with survival was independent of cancer stage. These studies support that high GILT mRNA expression in bulk tumor samples and high GILT protein expression in melanoma cells is associated with improved survival in ICI-treated patients. These findings support further investigation of GILT as a biomarker to predict the response to ICI.
Collapse
|
7
|
Ye C, Zhou W, Wang F, Yin G, Zhang X, Kong L, Gao Z, Feng M, Zhou C, Sun D, Wang L, Liu L, Zheng C, Xiang Y, Guo M, Huang S, Yu Z. Prognostic value of gamma-interferon-inducible lysosomal thiol reductase expression in female patients diagnosed with breast cancer. Int J Cancer 2021; 150:705-717. [PMID: 34648659 DOI: 10.1002/ijc.33843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022]
Abstract
Because of the high heterogeneity of breast cancer outcome, identification of novel prognostic biomarkers is critical to improve patient stratification and guide precise treatment. We examined the prognostic value of gamma-interferon-inducible lysosomal thiol reductase (GILT) expression in a training set of 416 breast cancer patients and a validation set of 210 patients, and performed functional studies to investigate the functions and underlying mechanisms of GILT on breast cancer prognosis. Our results indicated that high GILT expression in breast cancer cells was associated with improved disease-free survival (DFS; hazard ratio [HR] = 0.189, 95% confidence interval [CI]: 0.099-0.361) and breast cancer-specific survival (BCSS; HR = 0.187, 95% CI: 0.080-0.437) of breast cancer patients both in the training set and the external validation set (HR = 0.453, 95% CI: 0.235-0.873 for DFS, HR = 0.488, 95% CI: 0.245-0.970 for BCSS). In vitro and in vivo studies showed that GILT overexpression inhibited breast cancer cells proliferation, invasion, migration and tumor formation in nude mice and increased sensitivity of breast cancer cells to standard treatment. Proteomics analysis indicated that GILT inhibited reactive oxygen species (ROS) and autophagy activation in breast cancer cells, and GILT overexpression-mediated tumor growth was further enhanced in the presence of autophagy or ROS inhibitors. Our results demonstrate that GILT expression can be effectively used to predict the prognosis and guide treatment strategies of breast cancer patients.
Collapse
Affiliation(s)
- Chunmiao Ye
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gengshen Yin
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoxia Zhang
- Department of Thyroid and Breast Surgery, Linyi People's Hospital, Linyi, China
| | - Lingyu Kong
- Department of Breast Surgery, Linyi Cancer Hospital, Linyi, China
| | - Zhongcheng Gao
- Department of Thyroid and Breast Surgery, Linyi People's Hospital, Linyi, China
| | - Man Feng
- Department of Pathology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dianshui Sun
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Oncology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingming Guo
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuya Huang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Fan Y, Wang X, Li Y. IFI30 expression predicts patient prognosis in breast cancer and dictates breast cancer cells proliferation via regulating autophagy. Int J Med Sci 2021; 18:3342-3352. [PMID: 34400904 PMCID: PMC8364447 DOI: 10.7150/ijms.62870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction: Incidence and mortality rates of breast cancer are increasing in women worldwide. Immunotherapy is a relatively popular treatment modality for all malignant tumors including breast cancer in recent years. Interferon γ-inducible protein 30 (IFI30) could catalyze the reduction of disulfide bonds and enhance major histocompatibility complex (MHC) class II-restricted antigen processing. Recent studies showed that IFI30 played an important role in the immune response of malignant tumors. Methods: The Cancer Genome Atlas (TCGA) database and clinical proteomic tumor Analysis consortium (CPTAC) database were applied to predict the role of IFI30 in breast cancer and the relationship between IFI30 and prognosis of breast cancer patients. Then we detected the expression of IFI30 in clinical samples of breast cancer patients, and analyzed the relationship between IFI30 and the prognosis of breast cancer patients. We used lentivirus infection method to construct a stable IFI30 knockdown cell line, and detected the effect of IFI30 in breast cancer cells. Nude mice tumor bearing experiment was performed to investigate the effect of IFI30 on breast cancer cells in vivo. Western blot was used to verify the regulation of autophagy related protein LC3 and p62 by IFI30. Results: We found that IFI30 was highly expressed in breast cancer tissues and was associated with poor outcome of patients. The knockdown of IFI30 could inhibit the proliferation, migration and invasion of breast cancer cells and significantly inhibit tumor growth in vivo. Increased accumulation of LC3-II and p62 suggested impaired autophagy in IFI30 knockdown cells. Discussion: As a result, we suggested that IFI30 might play a key role in the initiation and progression of human breast cancer and might be a new therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang , Liaoning, 110001 China
| | - Xu Wang
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang , Liaoning, 110001 China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning,110122 China
| |
Collapse
|
9
|
Lin Y, Luo Y, Sun Y, Guo W, Zhao X, Xi Y, Ma Y, Shao M, Tan W, Gao G, Wu C, Lin D. Genomic and transcriptomic alterations associated with drug vulnerabilities and prognosis in adenocarcinoma at the gastroesophageal junction. Nat Commun 2020; 11:6091. [PMID: 33257699 PMCID: PMC7705019 DOI: 10.1038/s41467-020-19949-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Adenocarcinoma at the gastroesophageal junction (ACGEJ) has dismal clinical outcomes, and there are currently few specific effective therapies because of limited knowledge on its genomic and transcriptomic alterations. The present study investigates genomic and transcriptomic changes in ACGEJ from Chinese patients and analyzes their drug vulnerabilities and associations with the survival time. Here we show that the major genomic changes of Chinese ACGEJ patients are chromosome instability promoted tumorigenic focal copy-number variations and COSMIC Signature 17-featured single nucleotide variations. We provide a comprehensive profile of genetic changes that are potentially vulnerable to existing therapeutic agents and identify Signature 17-correlated IFN-α response pathway as a prognostic marker that might have practical value for clinical prognosis of ACGEJ. These findings further our understanding on the molecular biology of ACGEJ and may help develop more effective therapeutic strategies. Adenocarcinoma at the gastroesophageal junction has a dismal prognosis and few drug options. Here, the authors present genomic and transcriptomic features and potential therapeutic targets and prognostic biomarkers of Chinese and Caucasian tumours, and reveal the molecular similarities.
Collapse
Affiliation(s)
- Yuan Lin
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yingying Luo
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxia Sun
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjia Guo
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Cancer Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Shao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Gao
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China. .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Bioinformatics, Peking University, Beijing, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,CAMS Key Laboratory of Genetics and Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
10
|
Liu X, Song C, Yang S, Ji Q, Chen F, Li W. IFI30 expression is an independent unfavourable prognostic factor in glioma. J Cell Mol Med 2020; 24:12433-12443. [PMID: 32969157 PMCID: PMC7686962 DOI: 10.1111/jcmm.15758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/24/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase, the only known lysosomal thiol reductase, is encoded by gene IFI30 and expressed constitutively in antigen-presenting cells. Our comprehensive study on IFI30 in gliomas found its expression to be high in glioblastomas and in gliomas with a mesenchymal subtype or wild-type isocitrate dehydrogenase, all of which indicated the malignancy and poor outcomes of gliomas. Kaplan-Meier survival analysis ascertained that high IFI30 expression conferred poor outcomes. The IFI30 expression levels also showed high efficiency in predicting 1-, 3- and 5-year overall survival. Univariable and multivariable Cox regression analyses were performed to define IFI30 as an independent prognostic marker. Biological process analysis suggested that IFI30 was involved in immune responses. ESTIMATE and CIBERSORT were applied to evaluate immune cell infiltration, with results indicating that samples with higher IFI30 expression had higher infiltration of immune cells, including regulatory T cells and M0 macrophages. Correlation analysis showed that IFI30 was significantly positively correlated with immune checkpoints that suppress effective antitumour immune responses. Immunohistochemical staining was also performed to confirm the association between IFI30 expression and the immune phenotype. The suggested correlation between high IFI30 expression and an immunosuppressive phenotype contributes to our knowledge about the glioma microenvironment and might provide clues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyan Song
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Xu L, Pelosof L, Wang R, McFarland HI, Wu WW, Phue JN, Lee CT, Shen RF, Juhl H, Wu LH, Alterovitz WL, Petricon E, Rosenberg AS. NGS Evaluation of Colorectal Cancer Reveals Interferon Gamma Dependent Expression of Immune Checkpoint Genes and Identification of Novel IFNγ Induced Genes. Front Immunol 2020; 11:224. [PMID: 32265897 PMCID: PMC7103651 DOI: 10.3389/fimmu.2020.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
To evaluate the expression of immune checkpoint genes, their concordance with expression of IFNγ, and to identify potential novel ICP related genes (ICPRG) in colorectal cancer (CRC), the biological connectivity of six well documented ("classical") ICPs (CTLA4, PD1, PDL1, Tim3, IDO1, and LAG3) with IFNγ and its co-expressed genes was examined by NGS in 79 CRC/healthy colon tissue pairs. Identification of novel IFNγ- induced molecules with potential ICP activity was also sought. In our study, the six classical ICPs were statistically upregulated and correlated with IFNγ, CD8A, CD8B, CD4, and 180 additional immunologically related genes in IFNγ positive (FPKM > 1) tumors. By ICP co-expression analysis, we also identified three IFNγ-induced genes [(IFNγ-inducible lysosomal thiol reductase (IFI30), guanylate binding protein1 (GBP1), and guanylate binding protein 4 (GBP4)] as potential novel ICPRGs. These three genes were upregulated in tumor compared to normal tissues in IFNγ positive tumors, co-expressed with CD8A and had relatively high abundance (average FPKM = 362, 51, and 25, respectively), compared to the abundance of the 5 well-defined ICPs (Tim3, LAG3, PDL1, CTLA4, PD1; average FPKM = 10, 9, 6, 6, and 2, respectively), although IDO1 is expressed at comparably high levels (FPKM = 39). We extended our evaluation by querying the TCGA database which revealed the commonality of IFNγ dependent expression of the three potential ICPRGs in 638 CRCs, 103 skin cutaneous melanomas (SKCM), 1105 breast cancers (BC), 184 esophageal cancers (ESC), 416 stomach cancers (STC), and 501 lung squamous carcinomas (LUSC). In terms of prognosis, based on Pathology Atlas data, correlation of GBP1 and GBP4, but not IFI30, with 5-year survival rate was favorable in CRC, BC, SKCM, and STC. Thus, further studies defining the role of IFI30, GBP1, and GBP4 in CRC are warranted.
Collapse
Affiliation(s)
- Lai Xu
- Office of Oncologic Diseases, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Lorraine Pelosof
- Office of Oncologic Diseases, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Rong Wang
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Hugh I. McFarland
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Chun-Ting Lee
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | | | - Lei-Hong Wu
- Division of Bioinformatics and Biostatistics (DBB), National Center for Toxicological Research (NCTR), FDA, Jefferson, AR, United States
| | - Wei-Lun Alterovitz
- HIVE, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Emanuel Petricon
- Center for Applied Proteomics and Molecular Medicine (CAPMM), George Mason University, Fairfax, VA, United States
| | - Amy S. Rosenberg
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| |
Collapse
|
12
|
Shen C, Liu J, Wang J, Zhong X, Dong D, Yang X, Wang Y. Development and validation of a prognostic immune-associated gene signature in clear cell renal cell carcinoma. Int Immunopharmacol 2020; 81:106274. [PMID: 32044664 DOI: 10.1016/j.intimp.2020.106274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent studies have demonstrated that immune-associated genes (IAGs) play an important role in the occurrence and progression of clear renal clear cell carcinoma (ccRCC). Novel biomarkers and a reliable prognostic prediction model for ccRCC patients are still limited. The objective of this study was to develop a IAGs signature and validate its prognostic value in ccRCC using bioinformatic methods and publicly database. METHODS In the present study, we identified differentially expressed IAGs in ccRCC based on The Cancer Genome Atlas (TCGA) database. A prognostic IAGs risk model was further developed and its prognostic and predictive value was evaluated by survival analysis and nomogram. RESULTS A total of 681 differentially expressed IAGs were identified and seven IAGs (IFI30, WNT5A, IRF9, AGER, PLAUR, TEK, BID) were finally selected in a IAGs signature. Survival analysis revealed that high IAGs risk scores were significantly related to poor survival outcomes. The IAGs signature was demonstrated as an independent prognostic factor and closely related to the metastasis status of ccRCC. A nomogram with clinicopathologic characteristics and IAGs signature was also constructed to superiorly predict prognosis of ccRCC patients. CONCLUSIONS We identified seven IAGs as a potential signature for reflecting the prognosis of ccRCC based on TCGA database. Further clinical trials are needed to validate our observations and the mechanisms underlying the prognostic value of IAGs signature in ccRCC also deserve further experimental exploration.
Collapse
Affiliation(s)
- Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Liu
- Department of Research Management and International Cooperation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jirong Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiulong Zhong
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dahai Dong
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Buetow KH, Meador LR, Menon H, Lu YK, Brill J, Cui H, Roe DJ, DiCaudo DJ, Hastings KT. High GILT Expression and an Active and Intact MHC Class II Antigen Presentation Pathway Are Associated with Improved Survival in Melanoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2577-2587. [PMID: 31591149 PMCID: PMC6832889 DOI: 10.4049/jimmunol.1900476] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
The MHC class I Ag presentation pathway in melanoma cells has a well-established role in immune-mediated destruction of tumors. However, the clinical significance of the MHC class II Ag presentation pathway in melanoma cells is less clear. In Ag-presenting cells, IFN-γ-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of multiple melanoma Ags. Although not expressed in benign melanocytes of nevi, GILT and MHC class II expression is induced in malignant melanocytes in a portion of melanoma specimens. Analysis of The Cancer Genome Atlas cutaneous melanoma data set showed that high GILT mRNA expression was associated with improved overall survival. Expression of IFN-γ, TNF-α, and IL-1β was positively associated with GILT expression in melanoma specimens. These cytokines were capable of inducing GILT expression in human melanoma cells in vitro. GILT protein expression in melanocytes was induced in halo nevi, which are nevi undergoing immune-mediated regression, and is consistent with the association of GILT expression with improved survival in melanoma. To explore potential mechanisms of GILT's association with patient outcome, we investigated pathways related to GILT function and expression. In contrast to healthy skin specimens, in which the MHC class II pathway was nearly uniformly expressed and intact, there was substantial variation in the MHC class II pathway in the The Cancer Genome Atlas melanoma specimens. Both an active and intact MHC class II pathway were associated with improved overall survival in melanoma. These studies support a role for GILT and the MHC class II Ag presentation pathway in melanoma outcome.
Collapse
Affiliation(s)
- Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Lydia R Meador
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Hari Menon
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004
| | - Yih-Kuang Lu
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Jacob Brill
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Haiyan Cui
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Denise J Roe
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724; and
| | | | - K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
14
|
Advani AS, Cooper B, Visconte V, Elson P, Chan R, Carew J, Wei W, Mukherjee S, Gerds A, Carraway H, Nazha A, Hamilton B, Sobecks R, Caimi P, Tomlinson B, Malek E, Little J, Miron A, Pink J, Maciejewski J, Unger A, Kalaycio M, de Lima M, Sekeres MA. A Phase I/II Trial of MEC (Mitoxantrone, Etoposide, Cytarabine) in Combination with Ixazomib for Relapsed Refractory Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:4231-4237. [PMID: 30992301 PMCID: PMC6635077 DOI: 10.1158/1078-0432.ccr-18-3886] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE The prognosis of patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) remains poor, and novel therapies are needed. The proteasome pathway represents a potential therapeutic target. A phase I trial of the second-generation proteasome inhibitor ixazomib in combination with MEC (mitoxantrone, etoposide, and cytarabine) was conducted in patients with R/R AML. PATIENTS AND METHODS Dose escalation of ixazomib was performed using a standard 3 × 3 design. Gene-expression profiling was performed on pretreatment and posttreatment bone marrow or blood samples. RESULTS The maximum tolerated dose of ixazomib in combination with MEC was 1.0 mg. The dose limiting toxicity was thrombocytopenia. Despite a poor risk population, the response rate [complete remission (CR)/CR with incomplete count recovery (CRi)] was encouraging at 53%. Gene-expression analysis identified two genes, IFI30 (γ-interferon inducible lysosomal thiol reductase) and RORα (retinoic orphan receptor A), which were significantly differentially expressed between responding and resistant patients and could classify CR. CONCLUSIONS These results are encouraging, but a randomized trial is needed to address whether the addition of ixazomib to MEC improves outcome. Gene-expression profiling also helped us identify predictors of response and potentially novel therapeutic targets.
Collapse
Affiliation(s)
| | - Brenda Cooper
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | | | - Paul Elson
- Cleveland Clinic Department of Quantitative Health Science, Cleveland, Ohio
| | - Ricky Chan
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Jennifer Carew
- University of Arizona Cancer Center, Leon Levy Cancer Center, Tucson, Arizona
| | - Wei Wei
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | | | - Aaron Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Hetty Carraway
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Aziz Nazha
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Betty Hamilton
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Ronald Sobecks
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Paolo Caimi
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | - Benjamin Tomlinson
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | - Ehsan Malek
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | - Jane Little
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | - Alexander Miron
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Genetics and Genome Science, CWRU School of Medicine, Cleveland, Ohio
| | - John Pink
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | - Allison Unger
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Matt Kalaycio
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Marcos de Lima
- University Hospitals of Cleveland Seidman Cancer Center, Cleveland, Ohio
| | | |
Collapse
|
15
|
Pang Z, Zhang Y, Liu L. Identification and functional characterization of interferon-γ-inducible lysosomal thiol reductase (GILT) gene in common Chinese cuttlefish Sepiella japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 86:627-634. [PMID: 30529465 DOI: 10.1016/j.fsi.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Interferon-γ-inducible lysosomal thiol reductase (GILT) is a pivotal enzyme involved in the histocompatibility complex (MHC) class II-restricted antigen processing whereby it catalyzes the disulfide bond reduction in the endocytic pathway. Here, a novel GILT homologue termed as SjGILT firstly identified from common Chinese cuttlefish Sepiella japonica. SjGILT shared domain topology containing a signal peptide, a signature sequence CQHGX2ECX2NX4C, an activate-site CXXC motif, two potential N-glycosylation sites and six conserved cysteins with its counterparts in other animals. SjGILT transcripts were constitutively expressed in all examined tissues in S. japonica, with the higher expression levels in immune-related tissues such as pancreas, intestines, liver and gills. Upon lipopolysaccharide (LPS) challenge, SjGILT transcripts were significantly induced in liver and gill tissues, and SjGILT protein transferred to late endosomes and lysosomes in HeLa cells. Further study showed that recombinant SjGILT had obvious thiol reductase activity demonstrated by reducing the interchain disulfide bonds of IgG under acidic conditions. Taken together, these results suggested that SjGILT may be involved in the immune response to bacteria challenge, and then might play an important role in the processing of MHC class II-restricted antigens in S. japonica.
Collapse
Affiliation(s)
- Zan Pang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yao Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Liqin Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
16
|
Chen S, Wang Q, Shao X, Di G, Dai Y, Jiang X, Cheng L. Lentivirus mediated γ-interferon-inducible lysosomal thiol reductase (GILT) knockdown suppresses human glioma U373MG cell proliferation. Biochem Biophys Res Commun 2018; 509:182-187. [PMID: 30587343 DOI: 10.1016/j.bbrc.2018.12.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glioma is the most common malignancy in brain carcinoma with poor prognosis due to the lack of understanding of the mechanism underlying the disease. γ-interferon-inducible lysosomal thiol reductase (GILT) plays a critical role in the process of antigen processing. However, the role of GILT in the tumorigenesis of glioma remains unknown. MATERIALS AND METHODS The expression of GILT was analyzed by bioinformatics using the public database and by qPCR in three human glioma cell lines. Cell growth and viability were determined by Celigo and MTT assays, while cell cycle arrest and apoptosis were determined using flow cytometry. Giemsa staining was used to analyze the colony formation, while cell motility was assessed using transwell migration and invasion assays, as well as, using tumor growth in nude mice. RESULTS GILT was highly expressed as observed in the public database on human gliomas and two human glioma cell lines, U373MG and U87MG cells. The downregulation of GILT by lentiviral-mediated silencing inhibits the cell growth, colony formation, and migration but promotes apoptosis and results in cell cycle arrest at the G0/G1 phase in the U373MG cells. Also, the knockdown of GILT inhibits tumor growth in vivo. CONCLUSION Elevated GILT is positively associated with glioma progression. GILT silencing suppresses cell proliferation, colony formation, migration, and tumor growth, and induces apoptosis and cell cycle arrest. GILT may serve as a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Sansong Chen
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China
| | - Qifu Wang
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China
| | - Xuefei Shao
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China
| | - Yi Dai
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No.2 Zheshan Road, Wuhu, 241001, Anhui, China.
| | - Limin Cheng
- Central Laboratory of Microscopic Morphology, School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
17
|
Cao F, Wu H, Lv T, Yang Y, Li Y, Liu S, Hu L, Xu X, Ma L, Zhang X, Li J, Bi X, Gu W, Zhang S. Molecular and biological characterization of gamma-interferon-inducible lysosomal thiol reductase in silver carp (Hypophthalmichthys molitrix). FISH & SHELLFISH IMMUNOLOGY 2018; 79:73-78. [PMID: 29729312 DOI: 10.1016/j.fsi.2018.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) plays an important role in the processing of major histocompatibility complex (MHC) class II-restricted antigens by catalyzing disulfide bonds reduction. Herein, a GILT homolog (ScGILT) was identified from silver carp. Its open reading frame covers 771 base pairs, encoding a protein of 256 amino acids that possesses GILT signature sequence CQHGX2ECX2NX4C, active-site CXXC motif, and two potential N-linked glycosylation sites. The predicted tertiary structures of ScGILT and other GILTs were quite similar in shape and positional arrangement of the key motifs. ScGILT mRNA was constitutively expressed in all detected tissues, with high-level expression in fish immune organs, spleen and head kidney. After stimulation with lipopolysaccharide, the expression of ScGILT mRNA significantly increased in spleen and head kidney cells, and ScGILT protein translocated to late endosomes and lysosomes in HeLa cells. Recombinant ScGILT fused with a His6 tag was expressed and purified, and could reduce the interchain disulfide bonds of IgG at pH 4.5. These results suggested that ScGILT was capable of catalyzing disulfide bonds reduction, and then might play an important role in the processing of MHC class II-restricted antigens in silver carp.
Collapse
Affiliation(s)
- Fang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Haitao Wu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tongtong Lv
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Yunqing Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Yue Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Shuaimei Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Lingling Hu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Xixi Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Lei Ma
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Xinyi Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China
| | - Jianfeng Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaolin Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuangquan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
19
|
Abstract
T-cell-mediated immunity has the ability to produce durable antimelanoma responses, resulting in improved survival of patients with advanced melanoma. Antigen presentation is a key determinant of T-cell responses. Gamma-interferon-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of multiple melanoma antigens to CD4+ T cells. However, GILT expression in melanoma has not been defined. We evaluated GILT and MHC class II expression in human primary and metastatic melanomas and nevi using immunohistochemical analysis. GILT staining in melanocytes was observed in 70% of primary and 58% of metastatic melanomas versus 0% of nevi. When present, the GILT staining intensity in melanocytes was typically faint. Both GILT and MHC class II expression were increased in melanocytes of primary and metastatic melanomas compared with nevi. GILT staining in antigen-presenting cells (APCs) was detected in 100% of primary and metastatic melanomas versus 31% of nevi, and it was typically intense. GILT expression was increased in APCs of primary and metastatic melanomas compared with nevi, whereas MHC class II had equivalent high expression in APCs of all melanocytic lesions. GILT staining in keratinocytes was detected in 67% of primary melanomas versus 14% of nevi and 6% of metastatic melanomas. GILT, but not MHC class II, expression was increased in keratinocytes of primary melanomas compared with nevi and metastases. GILT expression is anticipated to result in improved presentation of melanoma antigens and more effective antimelanoma T-cell responses. GILT expression may be a biomarker of immune recognition of melanoma.
Collapse
|
20
|
Yang Q, Zhang J, Hu L, Lu J, Sang M, Zhang S. Molecular structure and functional characterization of the gamma-interferon-inducible lysosomal thiol reductase (GILT) gene in largemouth bass (Microptenus salmoides). FISH & SHELLFISH IMMUNOLOGY 2015; 47:689-696. [PMID: 26477576 DOI: 10.1016/j.fsi.2015.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The enzyme gamma-interferon-inducible lysosomal thiol reductase (GILT) plays a role in facilitating the processing and presentation of major histocompatibility complex (MHC) class II-restricted antigens and is also involved in MHC I-restricted antigens in adaptive immunity catalyzing disulfide bond reduction in mammals. In this study, we cloned a GILT gene homolog from largemouth bass (designated 'lbGILT'), a freshwater fish belonging to Perciformes and known for its nutritive value. We obtained the full-length cDNA of lbGILT by reverse transcription PCR and rapid amplification of cDNA ends. This cDNA is comprised of a 5'-untranslated region (UTR) of 87 bp, a 3'-UTR of 189 bp, and an open reading frame of 771 bp. It encodes a protein of 256 amino acids with a deduced molecular weight of 28.548 kDa and a predicted isoelectric point of 5.62. The deduced protein possesses the typical structural features of known GILTs, including an active site motif, two potential N-linked glycosylation sites, a GILT signature sequence, and six conserved cysteines. Tissue-specific expression of lbGILT was shown by real-time quantitative PCR. The expression of lbGILT mRNA was obviously up regulated in spleen and kidney after induction with lipopolysaccharide. Recombinant lbGILT was produced as an inclusion body with a His6 tag in ArcticExpress (DE3), and the protein was then washed, solubilized, and refolded. The refolded lbGILT showed reduction activity against an IgG substrate. These results suggest that lbGILT plays a role in innate immunity.
Collapse
Affiliation(s)
- Qian Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Jiaxin Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lingling Hu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Jia Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Ming Sang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Key Laboratory for Aquatic Crustacean Diseases, Life Sciences College, Nanjing Normal University, Nanjing 210046, China
| | - Shuangquan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, China; Jiangsu Province Key Laboratory for Aquatic Crustacean Diseases, Life Sciences College, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
21
|
Rausch MP, Hastings KT. Diverse cellular and organismal functions of the lysosomal thiol reductase GILT. Mol Immunol 2015; 68:124-8. [PMID: 26116226 DOI: 10.1016/j.molimm.2015.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/02/2015] [Indexed: 01/21/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is the only enzyme known to catalyze disulfide bond reduction in the endocytic pathway. GILT facilitates the presentation of a subset of epitopes from disulfide bond-containing antigens. Enhanced presentation of MHC class II-restricted epitopes alters central tolerance and modulates CD4+ T cell-mediated autoimmunity. Improved cross-presentation of viral epitopes results in improved cross-priming of viral-specific CD8+ T cells. GILT regulates the cellular redox state. In GILT-/- cells, there is a shift from the reduced to the oxidized form of glutathione, resulting in mitochondrial autophagy, decreased superoxide dismutase 2, and elevated superoxide levels. GILT expression diminishes cellular activation, including decreased phosphorylated ERK1/2, and decreases cellular proliferation. GILT enhances the activity of bacterial hemolysins, such as listeriolysin O, and increases bacterial replication and infection. GILT expression in cancer cells is associated with improved patient survival. These diverse roles of GILT are discussed.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA; University of Arizona Cancer Center, AZ, USA
| | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA; University of Arizona Cancer Center, AZ, USA; Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
22
|
Screening for candidate genes related to breast cancer with cDNA microarray analysis. Chronic Dis Transl Med 2015; 1:65-72. [PMID: 29062989 PMCID: PMC5643563 DOI: 10.1016/j.cdtm.2015.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/22/2022] Open
Abstract
Objective The aim of this study was to reveal the exact changes during the occurrence of breast cancer to explore significant new and promising genes or factors related to this disease. Methods We compared the gene expression profiles of breast cancer tissues with its uninvolved normal breast tissues as controls using the cDNA microarray analysis in seven breast cancer patients. Further, one representative gene, named IFI30, was quantitatively analyzed by real-time PCR to confirm the result of the cDNA microarray analysis. Results A total of 427 genes were identified with significantly differential expression, 221 genes were up-regulated and 206 genes were down-regulated. And the result of cDNA microarray analysis was validated by detection of IFI30 mRNA level changes by real-time PCR. Genes for cell proliferation, cell cycle, cell division, mitosis, apoptosis, and immune response were enriched in the up-regulated genes, while genes for cell adhesion, proteolysis, and transport were significantly enriched in the down-regulated genes in breast cancer tissues compared with normal breast tissues by a gene ontology analysis. Conclusion Our present study revealed a range of differentially expressed genes between breast cancer tissues and normal breast tissues, and provide candidate genes for further study focusing on the pathogenesis and new biomarkers for breast cancer.
Collapse
|
23
|
Correction: Absence of Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT) Is Associated with Poor Disease-Free Survival in Breast Cancer Patients. PLoS One 2015; 10:e0117653. [PMID: 25629608 PMCID: PMC4309405 DOI: 10.1371/journal.pone.0117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|