1
|
Chen Z, Zhao W, Zhang T, Ren T, Chen J, Tian L, Lu S, Wu J, Wang Y. Sustained-Release Rapamycin-Eluting Cobalt-Based Alloy Stent Ameliorates Ureteral Stricture in Mini-Pigs by Regulating TGF-β1/Smad3/mTOR/4EBP1/eIF4E Signaling Pathways. J Endourol 2025. [PMID: 39937623 DOI: 10.1089/end.2024.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Purpose: To assess the feasibility and efficacy of sustained-release rapamycin-eluting metal stent in the repair of thermal injury-induced ureteral stricture in mini-pigs and explore its underlying mechanisms. Materials and Methods: A total of 18 female mini-pigs were used in this study. At 1 month after effective establishment of ureteral stricture model, they were randomly divided into normal control, model, bare-metal stent, and rapamycin-eluting stent groups. Before and at 4 weeks after stent placement, all animals underwent retrograde ureterography and single-photon emission computed tomography. Histologic examination was performed to assess the histomorphologic changes of the ureteral tissues. Real-time quantitative polymerase chain reaction and Western blot analysis were used to evaluate the expression levels of pro-fibrotic factors, transforming growth factor-beta1 (TGF-β1) and Smad3, as well as mammalian target of rapamycin (mTOR) downstream effectors, 4E binding protein 1 (4EBP1) and eukaryotic initiation factor 4E (eIF4E), in the ureteral stricture tissues. Results: Four weeks after stent placement, ureteral stricture was significantly ameliorated, and the glomerular filtration rate was significantly improved in the rapamycin-eluting stent group than the model and bare-metal stent groups (all p < 0.05). Pathologic examinations revealed obviously reduced fibroblasts and collagen fibers in the submucosa of the rapamycin-eluting stent group. The mRNA and protein expression levels of TGF-β1, Smad3, 4EBP1, and eIF4E were significantly decreased in the rapamycin-eluting stent group than the model and bare-metal stent groups (p < 0.05), whereas no significant difference was found between the model and bare-metal stent groups, indicating that rapamycin-eluting stent can inhibit fibroblast proliferation and attenuate fibrosis in the ureteral tissues. Conclusion: Sustained-release rapamycin-eluting stent can effectively ameliorate thermal injury-induced ureteral stricture in mini-pigs. The mechanism may be related to the role of rapamycin in inhibiting TGF-β1 and Smad3 expression, promoting the ureteral tissue remodeling through blocking mTOR, and suppressing 4EBP1 and eIF4E expression in the ureteral tissues. Sustained-release rapamycin-eluting stent deserves further investigation as a potentially effective means of treating iatrogenic ureteral strictures.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Urology, BanFu Hospital of Zhongshan, Zhongshan, China
| | - Wei Zhao
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Teng Zhang
- Department of Urology, The First People's Hospital of Guiyang, Guiyang, China
| | - Tengzhou Ren
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Lang Tian
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Sheng Lu
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jie Wu
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Yan Wang
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| |
Collapse
|
2
|
Xu X, Li Y, Niu Z, Xia J, Dai K, Wang C, Yao W, Guo Y, Deng X, He J, Deng M, Si H, Hao C. Inhibition of HIF-1α Attenuates Silica-Induced Pulmonary Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116775. [PMID: 35682354 PMCID: PMC9180362 DOI: 10.3390/ijerph19116775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022]
Abstract
Background: Excessive accumulation of extracellular matrix is a key feature of pulmonary fibrosis (PF), and myofibroblasts are the main producers of extracellular matrix. Fibroblasts are the major source of myofibroblasts, but the mechanisms of transdifferentiation are unclear. Methods: In vitro, transforming growth factor-β1 was used to induce NIH-3T3 cell transdifferentiation. DMOG was used to increase hypoxia-inducible factor-1α subunit (HIF-1α) expression. KC7F2 and siRNA decreased HIF-1α expression. In vivo, silica particles were used to induce PF in C57BL/6N mice, and KC7F2 was used to reduce HIF-1α expression in C57BL/6N mice. Western blot was used to detect the expression of collagen type 1 alpha 1(COL1A1), α-smooth muscle actin (α-SMA), SMAD family member (SAMD) 3, Phospho-SMAD3 (PSMAD3), and HIF-1α. PCR was used to detect the expression of COL1A1, α-SMA, and HIF-1α. Immunohistochemistry was used to detect the expression of COL1A1 and HIF-1α. Results: In vitro, compared to the control group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were elevated in the DMOG group, and COL1A1, α-SMA, PSMAD3, and HIF-1α expression were decreased in the KC7F2 group and siRNA group. Compared to the DMOG group, COL1A1, α-SMA, and PSMAD3 expression were decreased in the DMOG + SIS3 group. In vivo, compared to the saline group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were increased in the pulmonary tissue of C57BL/6N mice in the silica group. Compared to the silica group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression and the degree of PF were decreased in the silica + KC7F2 group. Conclusion: Inhibition of HIF-1α reduced α-SMA, decreased COL1A1 expression, and attenuated the degree of PF in C57BL/6N mice. Therefore, HIF-1α may be a new target for the treatment of silica-induced PF.
Collapse
|
3
|
Zhang T, Zhao W, Ren T, Chen J, Chen Z, Wang Y, Cheng X, Wu J, Yuan C, He T. The Effects and Mechanisms of the Rapamycin-eluting Stent in Urethral Stricture Prevention in Rabbits. Balkan Med J 2022; 39:107-114. [PMID: 35330555 PMCID: PMC8941225 DOI: 10.4274/balkanmedj.galenos.2021.2021-4-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rapamycin was shown to reduce transforming growth factor β1 (TGF-β1) expression, inhibit the Mammalian target of rapamycin function, and prevent TGF-β1-induced pulmonary fibrosis. Rapamycin-eluting stents (RES) were successfully used to prevent coronary artery restenosis. Urethral stricture is one of the most challenging problems in urology. Thus, combining the pharmacological effects of rapamycin and the mechanical support of the stent on the urethra may prevent urethral stricture formation. However, the use of RES for urethral stricture treatment has not been studied. AIMS To observe the effects of RES in urethral stricture in a rabbit model. STUDY DESIGN Animal experimentation. METHODS Twenty adult male New Zealand rabbits were randomly divided into control, urethral stricture model, bare-metal stent, and RES groups. The rabbits in the control group underwent urethroscopy alone without electrocoagulation. The rabbit model of urethral stricture was established by electrocoagulation using a self-made electrocoagulation device under direct vision using ureteroscopy. After model establishment, the rabbits in the bare-metal stent and RES groups received stent placement by ureteroscopy. On day 30, retrograde urethrography was performed to assess urethral stricture formation, ureteroscopy to remove the stents, and histological examinations to assess the degree of fibrosis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to evaluate the expression levels of TGF-β1, Smad3, and matrix metalloproteinase 1 (MMP1). RESULTS Urethral stricture formation was seen in the model group, whereas not in the bare-metal stent group. The bare-metal stents did not displace but were difficult to remove. In the RES group, RES was dislodged in itself at postoperative day 27 in one rabbit, whereas successfully removed by ureteroscopy in the remaining four rabbits, and urethral stricture formation was not seen on retrograde urethrography after stent removal. Histological examination revealed a large number of dense fibroblasts and blue-stained collagen fibers in the bare-metal stent group, whereas the number of fibroblasts and collagen fibers under the mucosa was reduced in the RES group. RT-qPCR and Western blot analyses showed that the messenger ribonucleic acid (mRNA) and protein expression of TGF-β1and Smad3 was significantly decreased, and mRNA and protein expression of MMP1 was significantly increased in the RES group than that in the model ((P < 0.001) and bare-metal stent groups (P < 0.001). CONCLUSION RES can effectively prevent electrocoagulation-induced urethral stricture in rabbits. The mechanism may be related to the effect of rapamycin on inhibiting TGF-β1 and Smad3 expression and promoting MMP1 expression in urethral tissues.
Collapse
Affiliation(s)
- Teng Zhang
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
- First people’s Hospital of Guiyang, Guiyang, China
| | - Wei Zhao
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Tengzhou Ren
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Jie Chen
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Zhiwei Chen
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Yan Wang
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Xiaoju Cheng
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Jie Wu
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Chaoyong Yuan
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| | - Tao He
- Third Affiliated Hospital of Zunyi Medical University (First people’s Hospital of Zhuyi), Zhuyi, China
| |
Collapse
|
4
|
Inoue C, Miki Y, Saito-Koyama R, Kobayashi K, Seyama K, Okada Y, Sasano H. Vasohibin-1 and -2 in pulmonary lymphangioleiomyomatosis (LAM) cells associated with angiogenic and prognostic factors. Pathol Res Pract 2022; 230:153758. [PMID: 35026646 DOI: 10.1016/j.prp.2022.153758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare pulmonary neoplasm, clinically associated with dyspnea and respiratory failure. Current therapeutic modalities do not necessarily reach satisfactory outcome and novel therapeutic approaches are currently warranted. Therefore, in this study, we focused on vasohibin-1 (VASH1) and -2 (VASH2); VASH1 terminated and VASH2 promoted angiogenesis. In addition, both VASH1/2 were reported to influence the progression of various human malignancies. We first performed hierarchical clustering analysis to attempt to classify 36 LAM cases into three different clusters according to immunoreactivity of VASH1/2 and other angiogenic and prognostic factors of LAM; VEGFR1/2/3, p-mTOR, p-S6, p-4EBP, ERα, PgR, MMP2, and MMP9. The cluster harboring higher angiogenic factors had higher VASH1/2 status. VASH1 was significantly positively correlated with VEGFR2, MMP9, and p-mTOR (p-value <0.05), and VASH2 with both angiogenic and prognostic factors including VEGFR1, PgR, MMP9, p-mTOR, p-S6, and p-4EBP (p-value <0.05). Subsequent PCR array of angiogenic genes demonstrated that high VASH1 mRNA was significantly positively associated with the status of SPHK1 and TYPM, lower EGF and EFNB2 (p-value <0.05), and high VASH2 mRNA negatively with MMP2 (p-value <0.05). VASH1 was considered to be up-regulated by activation of angiogenesis, whereas VASH2 could influence the angiogenesis and progression of LAM.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kazuma Kobayashi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Testing Hypoxia in Pig Meniscal Culture: Biological Role of the Vascular-Related Factors in the Differentiation and Viability of Neonatal Meniscus. Int J Mol Sci 2021; 22:ijms222212465. [PMID: 34830345 PMCID: PMC8617958 DOI: 10.3390/ijms222212465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Menisci play an essential role in shock absorption, joint stability, load resistance and its transmission thanks to their conformation. Adult menisci can be divided in three zones based on the vascularization: an avascular inner zone with no blood supply, a fully vascularized outer zone, and an intermediate zone. This organization, in addition to the incomplete knowledge about meniscal biology, composition, and gene expression, makes meniscal regeneration still one of the major challenges both in orthopedics and in tissue engineering. To overcome this issue, we aimed to investigate the role of hypoxia in the differentiation of the three anatomical areas of newborn piglet menisci (anterior horn (A), central body (C), and posterior horn (P)) and its effects on vascular factors. After sample collection, menisci were divided in A, C, P, and they were cultured in vitro under hypoxic (1% O2) and normoxic (21% O2) conditions at four different experimental time points (T0 = day of explant; T7 = day 7; T10 = day 10; T14 = day 14); samples were then evaluated through immune, histological, and molecular analyses, cell morpho-functional characteristics; with particular focus on matrix composition and expression of vascular factors. It was observed that hypoxia retained the initial phenotype of cells and induced extracellular matrix production resembling a mature tissue. Hypoxia also modulated the expression of angiogenic factors, especially in the early phase of the study. Thus, we observed that hypoxia contributes to the fibro-chondrogenic differentiation with the involvement of angiogenic factors, especially in the posterior horn, which corresponds to the predominant weight-bearing portion.
Collapse
|
6
|
Awonuga AO, Chatzicharalampous C, Thakur M, Rambhatla A, Qadri F, Awonuga M, Saed G, Diamond MP. Genetic and Epidemiological Similarities, and Differences Between Postoperative Intraperitoneal Adhesion Development and Other Benign Fibro-proliferative Disorders. Reprod Sci 2021; 29:3055-3077. [PMID: 34515982 DOI: 10.1007/s43032-021-00726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Charalampos Chatzicharalampous
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mili Thakur
- Reproductive Genomics Program, The Fertility Center, Grand Rapids, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anupama Rambhatla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Farnoosh Qadri
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Modupe Awonuga
- Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, 1355 Bogue Street, East Lansing, MI, USA
| | - Ghassan Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, CJ-1036, Augusta, GA, 30912, USA
| |
Collapse
|
7
|
Beghé B, Cerri S, Fabbri LM, Marchioni A. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci 2021; 22:ijms22179292. [PMID: 34502194 PMCID: PMC8430914 DOI: 10.3390/ijms22179292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Aging and smoking are associated with the progressive development of three main pulmonary diseases: chronic obstructive pulmonary disease (COPD), interstitial lung abnormalities (ILAs), and idiopathic pulmonary fibrosis (IPF). All three manifest mainly after the age of 60 years, but with different natural histories and prevalence: COPD prevalence increases with age to >40%, ILA prevalence is 8%, and IPF, a rare disease, is 0.0005–0.002%. While COPD and ILAs may be associated with gradual progression and mortality, the natural history of IPF remains obscure, with a worse prognosis and life expectancy of 2–5 years from diagnosis. Acute exacerbations are significant events in both COPD and IPF, with a much worse prognosis in IPF. This perspective discusses the paradox of the striking pathological and pathophysiologic responses on the background of the same main risk factors, aging and smoking, suggesting two distinct pathophysiologic processes for COPD and ILAs on one side and IPF on the other side. Pathologically, COPD is characterized by small airways fibrosis and remodeling, with the destruction of the lung parenchyma. By contrast, IPF almost exclusively affects the lung parenchyma and interstitium. ILAs are a heterogenous group of diseases, a minority of which present with the alveolar and interstitial abnormalities of interstitial lung disease.
Collapse
Affiliation(s)
- Bianca Beghé
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
- Correspondence:
| | - Stefania Cerri
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| | - Leonardo M. Fabbri
- Department of Translational Medicine and Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Alessandro Marchioni
- Respiratory Diseases Unit, University Hospital of Modena, 41124 Modena, Italy; (S.C.); (A.M.)
| |
Collapse
|
8
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
9
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
10
|
Wang Y, Wang Y, Li Y, Lu L, Peng Y, Zhang S, Xia A. Metformin attenuates renal interstitial fibrosis through upregulation of Deptor in unilateral ureteral obstruction in rats. Exp Ther Med 2020; 20:17. [PMID: 32934682 PMCID: PMC7471900 DOI: 10.3892/etm.2020.9144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological process that accompanies chronic kidney disease (CKD) and that progresses to end-stage renal failure (ESRD). Accumulating evidence has revealed that persistent mammalian target of rapamycin (mTOR) activation in kidneys is closely associated with the occurrence and progression of CKD. The DEP domain-containing mTOR interacting protein (Deptor) is an endogenous negative regulator of mTOR. Metformin can attenuate renal fibrosis in an animal model of diabetic nephropathy. Previous studies demonstrated that metformin can attenuate renal fibrosis in several models of CKD. However, the precise mechanisms of this effect are not well understood. The present study aimed to examine the mechanism of action of metformin on unilateral ureteral obstruction (UUO)-induced RIF in rats in vivo. Sprague-Dawley rats were randomly divided into a sham-operated group, three UUO groups examined at different time points (3, 7 and 14 days after UUO surgery), and three metformin-treated groups, treated with three different concentrations of metformin. The metformin-treated groups were administered metformin orally every day for 14 consecutive days following surgery. The protein expression levels of Deptor, α-smooth muscle actin (α-SMA), phosphorylated (p-)mTOR, p-ribosomal protein S6 kinase (p-p70S6K) and CD68 were assessed. The present results suggested that, following UUO, there was a significant reduction of Deptor expression, and an increase in collagen deposition in the extracellular matrix over time, accompanied by an increased expression of several proteins including CD68, α-SMA, p-mTOR and p-p70S6K. Notably, metformin treatment reversed these effects. In conclusion, the present results suggested that metformin attenuated RIF of UUO rats, and the mechanism of action was found to be associated with the increase in Deptor expression and inhibition of the mTOR/p70S6K pathway in the kidneys of UUO rats.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yan Wang
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Linghong Lu
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yingxian Peng
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Shu Zhang
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Anzhou Xia
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
11
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
12
|
Ceccherini E, Cecchettini A, Morales MA, Rocchiccioli S. The Potentiality of Herbal Remedies in Primary Sclerosing Cholangitis: From In Vitro to Clinical Studies. Front Pharmacol 2020; 11:813. [PMID: 32587513 PMCID: PMC7298067 DOI: 10.3389/fphar.2020.00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis is a complex pathological condition, characterized by chronic inflammation and fibrosis of the biliary epithelium. Without proper clinical management, progressive bile ducts and liver damage lead to cirrhosis and, ultimately, to liver failure. The known limited role of current drugs for treating this cholangiopathy has driven researchers to assess alternative therapeutic options. Some herbal remedies and their phytochemicals have shown anti-fibrotic properties in different experimental models of hepatic diseases and, occasionally, in clinical trials in primary sclerosing cholangitis patients; however their mechanism of action is not completely understood. This review briefly examines relevant studies focusing on the potential anti-fibrotic properties of Silybum marianum, Curcuma longa, Salvia miltiorrhiza, and quercetin. Each natural product is individually reviewed and the possible mechanisms of action discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
13
|
Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat M, Li X, Ng M, Braybrooke R, Molina-Molina M, Hobbs BD, Putman RK, Sakornsakolpat P, Booth HL, Fahy WA, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Whyte MKB, Zhang Y, Kaminski N, Adegunsoye A, Strek ME, Neighbors M, Sheng XR, Gudmundsson G, Gudnason V, Hatabu H, Lederer DJ, Manichaikul A, Newell JD, O’Connor GT, Ortega VE, Xu H, Fingerlin TE, Bossé Y, Hao K, Joubert P, Nickle DC, Sin DD, Timens W, Furniss D, Morris AP, Zondervan KT, Hall IP, Sayers I, Tobin MD, Maher TM, Cho MH, Hunninghake GM, Schwartz DA, Yaspan BL, Molyneaux PL, Flores C, Noth I, Jenkins RG, Wain LV. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 201:564-574. [PMID: 31710517 PMCID: PMC7047454 DOI: 10.1164/rccm.201905-1017oc] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.
Collapse
Affiliation(s)
- Richard J. Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Justin M. Oldham
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine
| | | | - Megan L. Paynton
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Luke M. Kraven
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Xuan Li
- The University of British Columbia Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
| | - Rebecca Braybrooke
- Division of Epidemiology and Public Health and
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Brian D. Hobbs
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | | | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Helen L. Booth
- Department of Thoracic Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - William A. Fahy
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Simon P. Hart
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - Mike R. Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health
| | - Nik Hirani
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard B. Hubbard
- Division of Epidemiology and Public Health and
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Robin J. McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Ann B. Millar
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Vidyia Navaratnam
- Division of Epidemiology and Public Health and
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Eunice Oballa
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Helen Parfrey
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Gauri Saini
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Moira K. B. Whyte
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and
- Simmons Center for Interstitial Lung Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Mary E. Strek
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | | | - Gunnar Gudmundsson
- Department of Respiratory Medicine, Landspital University Hospital, Reykjavik, Iceland
- Faculty of Medicine University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Faculty of Medicine University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Hiroto Hatabu
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David J. Lederer
- Department of Medicine, College of Physicians and Surgeons and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ani Manichaikul
- Center for Public Health Genomics, and
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - John D. Newell
- Division of Cardiovascular and Pulmonary Imaging, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology, University of Washington, Seattle, Washington
| | - George T. O’Connor
- Department of Medicine, Pulmonary Center, Boston University, Boston, Massachusetts
- NHLBI’s Framingham Heart Study, Framingham, Massachusetts
| | - Victor E. Ortega
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Tasha E. Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colarado
- Department of Biostatistics and Informatics
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences and
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David C. Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wim Timens
- University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology and
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
| | - Andrew P. Morris
- Wellcome Centre for Human Genetics, and
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics, and
- Oxford Endometriosis Care and Research Centre, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Toby M. Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom; and
| | - Michael H. Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David A. Schwartz
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colarado
- Department of Medicine, and
- Department of Immunology, University of Colorado Denver, Denver, Colorado
| | | | - Philip L. Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom; and
| | - Carlos Flores
- Unidad de Investigacion, Hospital Universitario Ntra. Sra. de Candelaria and
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Tecnológico y de Energías Renovables, S.A., Santa Cruz de Tenerife, Spain
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine
| | - R. Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre and
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
14
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Gong EY, Lee S, Park S, Kim KE, Kim MS, Kim D, Park HJ, Cho D. Erythroid differentiation regulator 1 (Erdr1) enhances wound healing through collagen synthesis in acne skin. Arch Dermatol Res 2019; 312:59-67. [DOI: 10.1007/s00403-019-01980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
|
16
|
Maity S, Das F, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. High glucose increases miR-214 to power a feedback loop involving PTEN and the Akt/mTORC1 signaling axis. FEBS Lett 2019; 593:2261-2272. [PMID: 31240704 DOI: 10.1002/1873-3468.13505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
The mechanism of PTEN repression by high glucose in diabetic nephropathy is not known. Using proximal tubular cells, we show that inhibition of PI3 kinase/Akt and their inactive enzymes prevents high glucose-induced PTEN downregulation. Similarly, rapamycin (Rapa) and shRaptor block suppression of PTEN by high glucose. In contrast, the constitutive activation of Akt and mechanistic target of rapamycin (mTOR)C1 decrease the expression of PTEN, similarly to high glucose. Remarkably, PI3 kinase/Akt/mTORC1 inhibition significantly attenuates high glucose-stimulated increase in miR-214, which targets PTEN, while constitutively active Akt/mTORC1 increases miR-214. Furthermore, anti-miR-214 and mTORC1 inhibition block high glucose-induced hypertrophy and fibronectin expression. These results reveal the first evidence for the presence of a high glucose-forced positive feedback conduit between the three-layered kinase cascade and miR-214/ PTEN in tubular cell injury.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
17
|
Das F, Maity S, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. Deacetylation of S6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation. J Biol Chem 2019; 294:9440-9460. [PMID: 31028173 DOI: 10.1074/jbc.ra118.007023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translational modification, S6 kinase undergoes acetylation at the C terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that trichostatin A, a pan-histone deacetylase (HDAC) inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation-mimetic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6 and eEF2 kinase, and inhibited the dephosphorylation of eEF2. Also, the acetylation mimetic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation-deficient mutant induced all the above effects of high glucose. Finally, in the renal glomeruli of diabetic rats, the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.
Collapse
Affiliation(s)
| | | | | | | | - Goutam Ghosh Choudhury
- Departments of Medicine and .,Departments of Medicine and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229 and
| |
Collapse
|
18
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
19
|
Yang Z, Zhang Y, Sun S. Deciphering the SUMO code in the kidney. J Cell Mol Med 2018; 23:711-719. [PMID: 30506859 PMCID: PMC6349152 DOI: 10.1111/jcmm.14021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 01/18/2023] Open
Abstract
SUMOylation of proteins is an important regulatory element in modulating protein function and has been implicated in the pathogenesis of numerous human diseases such as cancers, neurodegenerative diseases, brain injuries, diabetes, and familial dilated cardiomyopathy. Growing evidence has pointed to a significant role of SUMO in kidney diseases such as DN, RCC, nephritis, AKI, hypertonic stress and nephrolithiasis. Recently, emerging studies in podocytes demonstrated that SUMO might have a protective role against podocyte apoptosis. However, the SUMO code responsible for beneficial outcome in the kidney remains to be decrypted. Our recent experiments have revealed that the expression of both SUMO and SUMOylated proteins is appreciably elevated in hypoxia‐induced tubular epithelial cells (TECs) as well as in the unilateral ureteric obstruction (UUO) mouse model, suggesting a role of SUMO in TECs injury and renal fibrosis. In this review, we attempt to decipher the SUMO code in the development of kidney diseases by summarizing the defined function of SUMO and looking forward to the potential role of SUMO in kidney diseases, especially in the pathology of renal fibrosis and CKD, with the goal of developing strategies that maximize correct interpretation in clinical therapy and prognosis.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yuming Zhang
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Akt2 causes TGFβ-induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS One 2018; 13:e0207285. [PMID: 30444896 PMCID: PMC6239304 DOI: 10.1371/journal.pone.0207285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
TGFβ promotes podocyte hypertrophy and expression of matrix proteins in fibrotic kidney diseases such as diabetic nephropathy. Both mTORC1 and mTORC2 are hyperactive in response to TGFβ in various renal diseases. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. We identified that deptor downregulation by TGFβ maintains hyperactive mTOR in podocytes. To unravel the mechanism, we found that TGFβ -initiated noncanonical signaling controls deptor inhibition. Pharmacological inhibitor of PI 3 kinase, Ly 294002 and pan Akt kinase inhibitor MK 2206 prevented the TGFβ induced downregulation of deptor, resulting in suppression of both mTORC1 and mTORC2 activities. However, specific isoform of Akt involved in this process is not known. We identified Akt2 as predominant isoform expressed in kidney cortex, glomeruli and podocytes. TGFβ time-dependently increased the activating phosphorylation of Akt2. Expression of dominant negative PI 3 kinase and its signaling inhibitor PTEN blocked Akt2 phosphorylation by TGFβ. Inhibition of Akt2 using a phospho-deficient mutant that inactivates its kinase activity, as well as siRNA against the kinase markedly diminished TGFβ -mediated deptor suppression, its association with mTOR and activation of mTORC1 and mTORC2. Importantly, inhibition of Akt2 blocked TGFβ -induced podocyte hypertrophy and expression of the matrix protein fibronectin. This inhibition was reversed by the downregulation of deptor. Interestingly, we detected increased phosphorylation of Akt2 concomitant with TGFβ expression in the kidneys of diabetic rats. Thus, our data identify previously unrecognized Akt2 kinase as a driver of TGFβ induced deptor downregulation and sustained mTORC1 and mTORC2 activation. Furthermore, we provide the first evidence that deptor downstream of Akt2 contributes to podocyte hypertrophy and matrix protein expression found in glomerulosclerosis in different renal diseases.
Collapse
|
21
|
Wang C, Dai H, Xiong Z, Song Q, Zou Z, Li M, Nie J, Bai X, Chen Z. Loss of DEPTOR in renal tubules protects against cisplatin-induced acute kidney injury. Cell Death Dis 2018; 9:441. [PMID: 29670094 PMCID: PMC5906659 DOI: 10.1038/s41419-018-0483-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
DEP domain containing mTOR-interacting protein (DEPTOR) was originally identified as an in vivo dual inhibitor of mechanistic target of rapamycin (mTOR). It was recently reported to be involved in renal physiology and pathology in vitro; however, its detailed roles and mechanisms in vivo are completely unknown. We observed that DEPTOR expression in the kidney was markedly increased on day 3 after cisplatin treatment, at which time cell apoptosis peaked, implicating DEPTOR in cisplatin-induced acute kidney injury (AKI). We then used the Cre–LoxP system to generate mutant mice in which the DEPTOR gene was specifically deleted in the proximal tubule cells. DEPTOR deficiency did not alter the renal histology or functions in the saline-treated group, indicating that DEPTOR is not essential for kidney function under physiological conditions. Interestingly, DEPTOR deletion extensively preserved the renal histology and maintained the kidney functions after cisplatin treatment, suggesting that the absence of DEPTOR ameliorates cisplatin-induced AKI. Mechanistically, DEPTOR modulated p38 MAPK signaling and TNFα production in vivo and in vitro, rather than mTOR signaling, thus moderating the inflammatory response and cell apoptosis induced by cisplatin. Collectively, our findings demonstrate the roles and mechanisms of DEPTOR in the regulation of the renal physiology and pathology, and demonstrate that the loss of DEPTOR in the proximal tubules protects against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Caixia Wang
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huaiqian Dai
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Xiong
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiancheng Song
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhipeng Zou
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mangmang Li
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenguo Chen
- The State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Rapamycin Inhibits the Growth and Collagen Production of Fibroblasts Derived from Human Urethral Scar Tissue. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7851327. [PMID: 29850566 PMCID: PMC5932518 DOI: 10.1155/2018/7851327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/15/2018] [Accepted: 03/01/2018] [Indexed: 11/17/2022]
Abstract
Rapamycin can inhibit fibroblast proliferation, collagen accumulation, and urethral stricture in rabbits. Transforming growth factor-beta-1 (TGF-β1) signaling, with downstream recruitment of Smad2, is known to promote fibrosis. This in vitro study examined the effects of rapamycin on fibroblasts derived from human urethral scar tissue (FHUS) and investigated the possible mechanism with respect to regulation of TGF-β1 signaling. FHUS were cultured from urethral scar tissues collected from four patients with urethral stricture. The cells were exposed to different concentrations of rapamycin (0, 10, 20, 40, 80, or 160 ng/ml) for 24 or 48 hours. Cell growth was assessed by the MTT assay. Collagen content was measured based on hydroxyproline levels. The mRNA expressions of Smad2, eIF-4E, and alpha-1 chains of collagen types I and III (Col1α1 and Col3α1) were determined by semiquantitative reverse-transcription PCR. The protein expressions of Smad2, phospho-Smad2, and eIF-4E were evaluated by western blot. Rapamycin caused a concentration-dependent inhibition of FHUS growth at 24 and 48 hours (P < 0.01). Rapamycin decreased total collagen content (P < 0.01), collagen content per 105 cells (P < 0.05), and mRNA expressions of Col1α1 and Col3α1 (P < 0.05) in a concentration-dependent manner. Rapamycin elicited concentration-dependent reductions in the mRNA (P < 0.05) and protein (P < 0.01) expressions of Smad2 and eIF-4E. The two highest concentrations of rapamycin also enhanced phospho-Smad2 levels (P < 0.01). In conclusion, the present study confirmed that rapamycin may reduce the growth and collagen production of FHUS, possibly through inhibition of TGF-β1 signaling.
Collapse
|
23
|
Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 2017; 42:44-53. [PMID: 28951244 DOI: 10.1016/j.cellsig.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, UT Health at San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health at San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
24
|
XPLN is modulated by HDAC inhibitors and negatively regulates SPARC expression by targeting mTORC2 in human lung fibroblasts. Pulm Pharmacol Ther 2017; 44:61-69. [DOI: 10.1016/j.pupt.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/12/2017] [Indexed: 11/19/2022]
|
25
|
Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells Int 2017; 2017:8936156. [PMID: 28512473 PMCID: PMC5415867 DOI: 10.1155/2017/8936156] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Transcription factors and signaling molecules are well-known regulators of stem cell identity and behavior; however, increasing evidence indicates that environmental cues contribute to this complex network of stimuli, acting as crucial determinants of stem cell fate. l-Ascorbic acid (vitamin C (VitC)) has gained growing interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. Here, we review the main functions of VitC and its effects on stem cells, focusing on its activity as cofactor of Fe+2/αKG dioxygenases, which regulate the epigenetic signatures, the redox status, and the extracellular matrix (ECM) composition, depending on the enzymes' subcellular localization. Acting as cofactor of collagen prolyl hydroxylases in the endoplasmic reticulum, VitC regulates ECM/collagen homeostasis and plays a key role in the differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes, and tendons. In the nucleus, VitC enhances the activity of DNA and histone demethylases, improving somatic cell reprogramming and pushing embryonic stem cell towards the naive pluripotent state. The broad spectrum of actions of VitC highlights its relevance for stem cell biology in both physiology and disease.
Collapse
|
26
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
27
|
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q. Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 2017; 21:1248-1259. [PMID: 28097825 PMCID: PMC5487923 DOI: 10.1111/jcmm.13060] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
Abstract
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.
Collapse
Affiliation(s)
- Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rong Li
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxia Yang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and hypertension, Mayo Clinic College of Medicine, Mayo Graduate School, Rochester, MN, USA
| |
Collapse
|
28
|
Tanaka S, Tanaka T, Nangaku M. Hypoxia and hypoxia-inducible factors in chronic kidney disease. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Das F, Dey N, Bera A, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells. J Biol Chem 2016; 291:14662-76. [PMID: 27226530 DOI: 10.1074/jbc.m115.694331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/21/2023] Open
Abstract
Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3'UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3'UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1.
Collapse
Affiliation(s)
| | | | | | | | - Nandini Ghosh-Choudhury
- From Veterans Affairs Research and Geriatric Research, Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Goutam Ghosh Choudhury
- the Departments of Medicine and From Veterans Affairs Research and Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900 and
| |
Collapse
|
30
|
Oza VS, Mamlouk MD, Hess CP, Mathes EF, Frieden IJ. Role of Sirolimus in Advanced Kaposiform Hemangioendothelioma. Pediatr Dermatol 2016; 33:e88-92. [PMID: 26864138 DOI: 10.1111/pde.12787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kaposiform hemangioendothelioma (KHE) is an infiltrative vascular tumor that classically presents in infancy. Management typically focuses on treating Kasabach-Merritt phenomenon (KMP), a disorder of severe and at times life-threatening platelet trapping. However, the morbidity of KHE extends beyond KMP. The infiltrative nature of the tumor can lead to long-term disability and often makes complete surgical resection impossible. We report the case of a 10-year-old boy with a KHE of his right distal thigh who was unable to walk without assistance due to fibrotic change and right knee contracture. He had no laboratory evidence of KMP at the time of representation. Rapamycin was started in hopes of reducing the tumor burden. Within 2 months of therapy, fibrotic areas softened, his contracture nearly resolved, and there was marked improvement in his mobility. Rapamycin has been previously reported to be effective in managing cases of KHE complicated by KMP. Our report emphasizes the role for rapamycin in the treatment of KHE in the absence of KMP through the inhibition of vasculogenesis and fibrotic pathways.
Collapse
Affiliation(s)
- Vikash S Oza
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - Mark D Mamlouk
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Christopher P Hess
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Erin F Mathes
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Ilona J Frieden
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
31
|
Abstract
The excitement surrounding checkpoint inhibitors in the treatment of patients with cancer exemplifies a triumph of the long-term value of investing in basic science and fundamental questions of T-cell signaling. The pharmaceutical future actively embraces ways of making more patients’ cancers responsive to these inhibitors. Such a process will be aided by elucidation of signaling and regulation. With thousands of articles spread across almost 30 years, this commentary can touch only on portions of the canonical picture of T-cell signaling and provide a few parables from work on mammalian (or mechanistic) target of rapamycin (mTOR) pathways as they link to early and later phases of lymphocyte activation. The piece will turn a critical eye to some issues with models about these pathways in T cells. Many of the best insights lie in the future despite all that is uncovered already, but a contention is that further therapeutic successes will be fostered by dealing with disparities among findings and attention to the temporal, spatial, and stochastic aspects of T-cell responses. Finally, thoughts on some (though not all) items urgently needed for future progress will be mooted.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
32
|
Bruneau S, Wedel J, Fakhouri F, Nakayama H, Boneschansker L, Irimia D, Daly KP, Briscoe DM. Translational implications of endothelial cell dysfunction in association with chronic allograft rejection. Pediatr Nephrol 2016; 31:41-51. [PMID: 25903640 PMCID: PMC4619184 DOI: 10.1007/s00467-015-3094-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Advances in therapeutics have dramatically improved short-term graft survival, but the incidence of chronic rejection has not changed in the past 20 years. New insights into mechanism are sorely needed at this time and it is hoped that the development of predictive biomarkers will pave the way for the emergence of preventative therapeutics. In this review, we discuss a paradigm suggesting that sequential changes within graft endothelial cells (EC) lead to an intragraft microenvironment that favors the development of chronic rejection. Key initial events include EC injury, activation and uncontrolled leukocyte-induced angiogenesis. We propose that all of these early changes in the microvasculature lead to abnormal blood flow patterns, local tissue hypoxia, and an associated overexpression of HIF-1α-inducible genes, including vascular endothelial growth factor. We also discuss how cell intrinsic regulators of mTOR-mediated signaling within EC are of critical importance in microvascular stability and may thus have a role in the inhibition of chronic rejection. Finally, we discuss recent findings indicating that miRNAs may regulate EC stability, and we review their potential as novel non-invasive biomarkers of allograft rejection. Overall, this review provides insights into molecular events, genes, and signals that promote chronic rejection and their potential as biomarkers that serve to support the future development of interruption therapeutics.
Collapse
Affiliation(s)
- Sarah Bruneau
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Johannes Wedel
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Fadi Fakhouri
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Hironao Nakayama
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leo Boneschansker
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Kevin P Daly
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Mao YQ, Fan XM. Autophagy: A new therapeutic target for liver fibrosis. World J Hepatol 2015; 7:1982-1986. [PMID: 26261688 PMCID: PMC4528272 DOI: 10.4254/wjh.v7.i16.1982] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a wound-healing response to liver injury and the result of imbalance of extracellular matrix (ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM can lead to end-stage liver disease. Although significant progress has been achieved in elucidating the mechanisms of fibrogenesis, effective anti-fibrotic strategies are still lacking. Autophagy is an intracellular process of self-digestion of defective organelles to provide material recycling or energy for cell survival. Autophagy has been implicated in the pathophysiology of many human disorders including hepatic fibrosis. However, the exact relationships between autophagy and hepatic fibrosis are not totally clear and need further investigations. A new therapeutic target for liver fibrosis could be developed with a better understanding of autophagy.
Collapse
|
34
|
Abstract
Based on own translational research of the biochemical and hormonal effects of cow's milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases.
Collapse
|
35
|
Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 2015; 68:82-91. [PMID: 25936601 DOI: 10.1016/j.mcn.2015.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) frequently leads to a permanent functional impairment as a result of the initial injury followed by secondary injury mechanism, which is characterised by increased inflammation, glial scarring and neuronal cell death. Finding drugs that may reduce inflammatory cell invasion and activation to reduce glial scarring and increase neuronal survival is of major importance for improving the outcome after SCI. In the present study, we examined the effect of rapamycin, an mTORC1 inhibitor and an inducer of autophagy, on recovery from spinal cord injury. Autophagy, a process that facilitates the degradation of cytoplasmic proteins, is also important for maintenance of neuronal homeostasis and plays a major role in neurodegeneration after neurotrauma. We examined rapamycin effects on the inflammatory response, glial scar formation, neuronal survival and regeneration in vivo using spinal cord hemisection model in mice, and in vitro using primary cortical neurons and human astrocytes. We show that a single injection of rapamycin, inhibited p62/SQSTM1, a marker of autophagy, inhibited mTORC1 downstream effector p70S6K, reduced macrophage/neutrophil infiltration into the lesion site, microglia activation and secretion of TNFα. Rapamycin inhibited astrocyte proliferation and reduced the number of GFAP expressing cells at the lesion site. Finally, it increased neuronal survival and axonogenesis towards the lesion site. Our study shows that rapamycin treatment increased significantly p-Akt levels at the lesion site following SCI. Similarly, rapamycin treatment of neurons and astrocytes induced p-Akt elevation under stress conditions. Together, these findings indicate that rapamycin is a promising candidate for treatment of acute SCI condition and may be a useful therapeutic agent.
Collapse
Affiliation(s)
- Yona Goldshmit
- Department of Neurobiology, Tel-Aviv University, Israel; Australian Regenerative Medicine Institute, Monash University, VIC, Australia.
| | - Sivan Kanner
- Department of Neurobiology, Tel-Aviv University, Israel
| | - Maria Zacs
- Department of Neurobiology, Tel-Aviv University, Israel
| | - Frisca Frisca
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Department of Ophthalmology, the University of Melbourne, East Melbourne VIC, Australia
| | - Alexander R Pinto
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | | |
Collapse
|