1
|
Singh M, Saini VP, Meena LL. Heat stress induces oxidative stress and weakens the immune system in catfish Clarias magur: Evidence from physiological, histological, and transcriptomic analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110294. [PMID: 40154646 DOI: 10.1016/j.fsi.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Climate change is unequivocal, causing a rise in the Earth's temperature, which ultimately impacts all ecosystems. However, aquatic ecosystems are most severely affected by rising temperatures resulting in huge losses to aquaculture industry. The present study investigated the oxidative stress, histopathological changes, and transcriptomic responses in a freshwater catfish Clarias magur subjected to acute heat stress. Fish were exposed to four different temperatures, i.e., 28, 30, 32, and 34 °C, for 96 h to assess their heat tolerance and adaptation behavior. Fish kept at 26 °C were considered the control group. Elevated levels of key antioxidative enzymes such as catalase, glutathione reductase, and superoxide dismutase, were recorded in vital organs (gills, kidney, liver, and rosette). High rates of lipid peroxidation were also observed in the gills, kidney, liver, and rosette. An analysis of the top 25 differentially expressed genes of the gill transcriptome revealed that 72 percent of the transcripts were represented by innate and adaptive immune response genes. Downregulation of BOLA class I and MHC class I molecules indicated impaired immunity whereas, upregulation of MHC class II beta chain and GTPase IMAP8 suggested a compensatory immune response. These findings were also supported by the observed histoarchitectural alterations, such as disintegration of the skin barrier, hepatic and nephrotic apoptosis, tissue hyperplasia, macrophage infiltration, and development of splenic granulomas. This study provides important insights into physiological and molecular mechanisms underlying acute heat stress responses. Understanding these mechanisms is important for developing mitigation strategies to improve the sustainability and resilience of commercially important catfish under continuously changing climatic conditions.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India.
| | - Ved Prakash Saini
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| | - Lakan Lal Meena
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| |
Collapse
|
2
|
Xie L, Du B, Yu H, Gui L, Qiu J, Yuan L, Shen Y, Xu X, Li J. MicroRNA-30e-3p regulates the inflammatory response by targeting the gimap8 gene in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109524. [PMID: 38527657 DOI: 10.1016/j.fsi.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.
Collapse
Affiliation(s)
- Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Limoges MA, Cloutier M, Nandi M, Ilangumaran S, Ramanathan S. The GIMAP Family Proteins: An Incomplete Puzzle. Front Immunol 2021; 12:679739. [PMID: 34135906 PMCID: PMC8201404 DOI: 10.3389/fimmu.2021.679739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs and in peripheral circulation. In the BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of the immune associated nucleotide binding protein 5) results in profound peripheral T lymphopenia. This discovery heralded the identification of a new family of proteins initially called Immune-associated nucleotide binding protein (IAN) family. In this review we will use ‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins may interact with each other and also be involved in the movement of the cellular cargo along the cytoskeletal network. Here we will summarize the current knowledge on the characteristics and functions of GIMAP family of proteins.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Berg HE, Blackburn PR, Baughn LB, Ketterling RP, Xu X, Greipp PT, Hoppman NL, Smadbeck JB, Vasmatzis G, Shi M, Reichard KK, Viswanatha DS, Jevremovic D, Maher GM, Peterson JF. Identification of a novel KMT2A/GIMAP8 gene fusion in a pediatric patient with acute undifferentiated leukemia. Genes Chromosomes Cancer 2020; 60:108-111. [PMID: 33078871 DOI: 10.1002/gcc.22902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023] Open
Abstract
Acute undifferentiated leukemia (AUL) is a very rare hematologic neoplasm that expresses no markers specific for either myeloid or lymphoid lineages. While commonly observed in several acute leukemias, KMT2A rearrangements in AUL have been rarely reported in the literature. We report the third case to our knowledge of AUL harboring a KMT2A rearrangement. Furthermore, the KMT2A/GIMAP8 gene fusion identified in this case represents a novel KMT2A rearrangement.
Collapse
Affiliation(s)
- Holly E Berg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George M Maher
- Divison of Pediatric Hematology/Oncology, Sanford Children's Hospital, Sioux Falls, South Dakota, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Bertolotti AC, Layer RM, Gundappa MK, Gallagher MD, Pehlivanoglu E, Nome T, Robledo D, Kent MP, Røsæg LL, Holen MM, Mulugeta TD, Ashton TJ, Hindar K, Sægrov H, Florø-Larsen B, Erkinaro J, Primmer CR, Bernatchez L, Martin SAM, Johnston IA, Sandve SR, Lien S, Macqueen DJ. The structural variation landscape in 492 Atlantic salmon genomes. Nat Commun 2020; 11:5176. [PMID: 33056985 PMCID: PMC7560756 DOI: 10.1038/s41467-020-18972-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species. This study presents and validates a novel approach to reliably identify structural variations (SVs) in non-model genomes using whole genome sequencing, which was used to detect 15,483 SVs in 492 Atlantic salmon, shedding light on their roles in genome evolution and the genetic architecture of domestication.
Collapse
Affiliation(s)
- Alicia C Bertolotti
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Michael D Gallagher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ege Pehlivanoglu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L Røsæg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matilde M Holen
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Teshome D Mulugeta
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | | | - Bjørn Florø-Larsen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Jaakko Erkinaro
- Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90014, Oulu, Finland
| | - Craig R Primmer
- Institute for Biotechnology, University of Helsinki, Helsinki, Finland
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS) Pavillon Charles-Eugène Marchand, Université Laval Québec, Québec, QC, Canada
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | | | - Simen R Sandve
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Pascall JC, Webb LMC, Eskelinen EL, Innocentin S, Attaf-Bouabdallah N, Butcher GW. GIMAP6 is required for T cell maintenance and efficient autophagy in mice. PLoS One 2018; 13:e0196504. [PMID: 29718959 PMCID: PMC5931655 DOI: 10.1371/journal.pone.0196504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The GTPases of the immunity-associated proteins (GIMAP) GTPases are a family of proteins expressed strongly in the adaptive immune system. We have previously reported that in human cells one member of this family, GIMAP6, interacts with the ATG8 family member GABARAPL2, and is recruited to autophagosomes upon starvation, suggesting a role for GIMAP6 in the autophagic process. To study this possibility and the function of GIMAP6 in the immune system, we have established a mouse line in which the Gimap6 gene can be inactivated by Cre-mediated recombination. In mice bred to carry the CD2Cre transgene such that the Gimap6 gene was deleted within the T and B cell lineages there was a 50–70% reduction in peripheral CD4+ and CD8+ T cells. Analysis of splenocyte-derived proteins from these mice indicated increased levels of MAP1LC3B, particularly the lipidated LC3-II form, and S405-phosphorylation of SQSTM1. Electron microscopic measurements of Gimap6-/- CD4+ T cells indicated an increased mitochondrial/cytoplasmic volume ratio and increased numbers of autophagosomes. These results are consistent with autophagic disruption in the cells. However, Gimap6-/- T cells were largely normal in character, could be effectively activated in vitro and supported T cell-dependent antibody production. Treatment in vitro of CD4+ splenocytes from GIMAP6fl/flERT2Cre mice with 4-hydroxytamoxifen resulted in the disappearance of GIMAP6 within five days. In parallel, increased phosphorylation of SQSTM1 and TBK1 was observed. These results indicate a requirement for GIMAP6 in the maintenance of a normal peripheral adaptive immune system and a significant role for the protein in normal autophagic processes. Moreover, as GIMAP6 is expressed in a cell-selective manner, this indicates the potential existence of a cell-restricted mode of autophagic regulation.
Collapse
Affiliation(s)
- John C. Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Noudjoud Attaf-Bouabdallah
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Geoffrey W. Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Datta P, Webb LMC, Avdo I, Pascall J, Butcher GW. Survival of mature T cells in the periphery is intrinsically dependent on GIMAP1 in mice. Eur J Immunol 2016; 47:84-93. [PMID: 27792288 PMCID: PMC5244661 DOI: 10.1002/eji.201646599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
An effective immune system depends upon the survival of mature T cells in the periphery. Members of the GIMAP family of GTPases have been proposed to regulate this homeostasis, supported by the paucity of peripheral T cells in rodents deficient for either GIMAP1 or GIMAP5. It is unclear whether this lack of T cells is a consequence of an ontological defect, causing the thymus to generate and export T cells incapable of surviving in the periphery, or whether (alternatively or additionally) mature T cells intrinsically require GIMAP1 for survival. Using the ERT2 Cre+ transgene, we conditionally deleted Gimap1 in C57BL/6 mice and demonstrate that GIMAP1 is intrinsically required for the survival of mature T cells in the periphery. We show that, in contrast to GIMAP5, this requirement is independent of the T-cells' activation status. We investigated the nature of the survival defect in GIMAP1-deficient CD4+ T cells and show that the death occurring after GIMAP1 ablation is accompanied by mitochondrial depolarization and activation of the extrinsic apoptotic pathway. This study shows that GIMAP1 is critical for maintaining the peripheral T-cell pool in mice and offers a potent target for the treatment of T-cell-mediated diseases.
Collapse
Affiliation(s)
- Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Inxhina Avdo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
9
|
Webb LMC, Datta P, Bell SE, Kitamura D, Turner M, Butcher GW. GIMAP1 Is Essential for the Survival of Naive and Activated B Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:207-16. [PMID: 26621859 DOI: 10.4049/jimmunol.1501582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/30/2015] [Indexed: 12/30/2022]
Abstract
An effective immune system depends upon regulation of lymphocyte function and homeostasis. In recent years, members of the GTPases of the immunity associated protein (GIMAP) family were proposed to regulate T cell homeostasis. In contrast, little is known about their function and mode of action in B cells. We used a combination of transgenic mice and in vivo and in vitro techniques to conditionally and electively ablate GIMAP1 in resting and activated peripheral B cells. Our data suggest that GIMAP1 is absolutely essential for the survival of peripheral B cells, irrespective of their activation state. Together with recent data showing increased expression of GIMAP1 in B cell lymphomas, our work points to the possible potential of GIMAP1 as a target for manipulation in a variety of B cell-mediated diseases.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| |
Collapse
|