1
|
Cavalcante BRR, Freitas RD, Siquara da Rocha LO, Santos RSB, Souza BSDF, Ramos PIP, Rocha GV, Gurgel Rocha CA. In silico approaches for drug repurposing in oncology: a scoping review. Front Pharmacol 2024; 15:1400029. [PMID: 38919258 PMCID: PMC11196849 DOI: 10.3389/fphar.2024.1400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction: Cancer refers to a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. Due to its complexity, it has been hard to find an ideal medicine to treat all cancer types, although there is an urgent need for it. However, the cost of developing a new drug is high and time-consuming. In this sense, drug repurposing (DR) can hasten drug discovery by giving existing drugs new disease indications. Many computational methods have been applied to achieve DR, but just a few have succeeded. Therefore, this review aims to show in silico DR approaches and the gap between these strategies and their ultimate application in oncology. Methods: The scoping review was conducted according to the Arksey and O'Malley framework and the Joanna Briggs Institute recommendations. Relevant studies were identified through electronic searching of PubMed/MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey literature. We included peer-reviewed research articles involving in silico strategies applied to drug repurposing in oncology, published between 1 January 2003, and 31 December 2021. Results: We identified 238 studies for inclusion in the review. Most studies revealed that the United States, India, China, South Korea, and Italy are top publishers. Regarding cancer types, breast cancer, lymphomas and leukemias, lung, colorectal, and prostate cancer are the top investigated. Additionally, most studies solely used computational methods, and just a few assessed more complex scientific models. Lastly, molecular modeling, which includes molecular docking and molecular dynamics simulations, was the most frequently used method, followed by signature-, Machine Learning-, and network-based strategies. Discussion: DR is a trending opportunity but still demands extensive testing to ensure its safety and efficacy for the new indications. Finally, implementing DR can be challenging due to various factors, including lack of quality data, patient populations, cost, intellectual property issues, market considerations, and regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for identifying new treatments for numerous diseases, including cancer types, and giving patients faster access to new medications.
Collapse
Affiliation(s)
- Bruno Raphael Ribeiro Cavalcante
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Raíza Dias Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Gazdova M, Michalkova R, Kello M, Vilkova M, Kudlickova Z, Baloghova J, Mirossay L, Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int J Mol Sci 2022; 23:12266. [PMID: 36293123 PMCID: PMC9603750 DOI: 10.3390/ijms232012266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Maria Vilkova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Pal D, Song IH, Dashrath Warkad S, Song KS, Seong Yeom G, Saha S, Shinde PB, Balasaheb Nimse S. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorg Chem 2022; 122:105735. [PMID: 35298962 DOI: 10.1016/j.bioorg.2022.105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Tremendous research is focused on developing novel drug candidates targeting microtubules to inhibit their function in several cellular processes, including cell division. In this regard, several indazole derivatives were sought to target the colchicine binding site on the β-tubulin, a crucial protein required to form microtubules, to develop microtubule targeting agents. Even though there are several reviews on the indazole-based compounds, none of them focused on using indazole scaffold to develop microtubule targeting agents. Therefore, this review aims to present the advances in research on compounds containing indazole scaffolds as microtubule targeting agents based on the articles published in the last two decades. Among the articles reviewed, we found that compounds 6 and 7 showed the lowest IC50 values of 0.6 ∼ 0.9 nM in the cell line studies, making them the strongest indazole derivatives that target microtubules. The compounds 30, 31, 37 (IC50 = ∼ 1 nM) and compounds 8, 38 (IC50 = ∼ 2 nM) have proved to be potent microtubule inhibitors. The compounds 18, 31, 44, 45 also showed strong anticancer activity (IC50 = ∼ 8 nM). It is important to notice that except for compounds 9, 12, 13, 15, and SRF, the top activity compounds including 6, 7, 8, 10, 11, 30, 31, 37, 44, and 45 contain 3,4,5‑trimethoxyphenyl substitution similar to that of colchicine. Therefore, it appears that the 3,4,5‑trimethoxyphenyl substituent on the indazole scaffold is crucial for targeting CBS.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Viswavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009, India
| | - In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | | | - Keum-Soo Song
- Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Supriyo Saha
- Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
4
|
Zhang YL, Yang R, Xia LY, Man RJ, Chu YC, Jiang AQ, Wang ZC, Zhu HL. Synthesis, anticancer activity and molecular docking studies on 1,2-diarylbenzimidazole analogues as anti-tubulin agents. Bioorg Chem 2019; 92:103219. [DOI: 10.1016/j.bioorg.2019.103219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
|
5
|
A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci U S A 2019; 116:20991-21000. [PMID: 31570586 DOI: 10.1073/pnas.1901893116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.
Collapse
|
6
|
Gamage CDB, Park SY, Yang Y, Zhou R, Taş İ, Bae WK, Kim KK, Shim JH, Kim E, Yoon G, Kim H. Deoxypodophyllotoxin Exerts Anti-Cancer Effects on Colorectal Cancer Cells Through Induction of Apoptosis and Suppression of Tumorigenesis. Int J Mol Sci 2019; 20:E2612. [PMID: 31141929 PMCID: PMC6601030 DOI: 10.3390/ijms20112612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.
Collapse
Affiliation(s)
- Chathurika D B Gamage
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - İsa Taş
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Jung-Hyun Shim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, muan, Jeonnam 58554, Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Goo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, muan, Jeonnam 58554, Korea.
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| |
Collapse
|
7
|
Correction: Suprafenacine, an Indazole-Hydrazide Agent, Targets Cancer Cells Through Microtubule Destabilization. PLoS One 2018; 13:e0201149. [PMID: 30021010 PMCID: PMC6051642 DOI: 10.1371/journal.pone.0201149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Kulshrestha A, Katara GK, Ibrahim SA, Patil R, Patil SA, Beaman KD. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget 2017; 8:67017-67028. [PMID: 28978013 PMCID: PMC5620153 DOI: 10.18632/oncotarget.17549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
In ovarian cancer (OVCA), treatment failure due to chemo-resistance is a serious challenge. It is therefore critical to identify new therapies that are effective against resistant tumors and have reduced side effects. We recently identified 4-H-chromenes as tubulin depolymerizing agents that bind to colchicine site of beta-tubulin. Here, we screened a chemical library of substituted 4-H-chromenes and identified SP-6-27 to exhibit most potent anti-proliferative activity towards a panel of human cisplatin sensitive and resistant OVCA cell lines with 50% inhibitory concentration (IC50; mean ± SD) ranging from 0.10 ± 0.01 to 0.84 ± 0.20 μM. SP-6-27 exhibited minimum cytotoxicity to normal ovarian epithelia. A pronounced decrease in microtubule density as well as G2/M cell cycle arrest was observed in SP-6-27 treated cisplatin sensitive/resistant OVCA cells. The molecular mechanism of SP-6-27 induced cell death revealed modulation in cell-cycle regulation by upregulation of growth arrest and DNA damage inducible alpha transcripts (GADD45). An enhanced intrinsic apoptosis was observed in OVCA cells through upregulation of Bax, Apaf-1, caspase-6, -9, and caspase-3. In vitro wound healing assay revealed reduced OVCA cell migration upon SP-6-27 treatment. Additionally, SP-6-27 and cisplatin combinatorial treatment showed enhanced cytotoxicity in chemo-sensitive/resistant OVCA cells. Besides effect on cancer cells, SP-6-27 further restrained angiogenesis by inhibiting capillary tube formation by human umbilical vein endothelial cells (HUVEC). Together, these findings show that the chromene analog SP-6-27 is a novel chemotherapeutic agent that offers important advantages for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| |
Collapse
|
9
|
Kuo TC, Li LW, Pan SH, Fang JM, Liu JH, Cheng TJ, Wang CJ, Hung PF, Chen HY, Hong TM, Hsu YL, Wong CH, Yang PC. Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. J Med Chem 2016; 59:8521-34. [DOI: 10.1021/acs.jmedchem.6b00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ting-Chun Kuo
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ling-Wei Li
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Szu-Hua Pan
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Genome
and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Jim-Min Fang
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jyung-Hurng Liu
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Institute
of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural
Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong
Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ting-Jen Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Jen Wang
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial HospitalTaipei 105, Taiwan
| | - Pei-Fang Hung
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsuan-Yu Chen
- Institute
of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | - Tse-Ming Hong
- Institute
of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | - Yuan-Ling Hsu
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- NTU
Center for Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
10
|
Chen C, Wang CC, Wang Z, Geng WY, Xu H, Song XM, Luo DQ. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:486-494. [PMID: 27123550 DOI: 10.1080/10286020.2015.1131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Podophyllotoxin and its synthetic derivatives are valuable medicinal agents that have antitumor, insecticidal, and antifungal properties. We previously synthesized a deoxypodophyllotoxin derivative with an opened D-ring (DPD) exhibiting potent insecticidal activity. This article was firstly performed to identify the cytotoxicity of DPD toward human cancer cell lines (SGC7901, HeLa, and A549) and normal cell line (HEK293T) using MTT assay. DPD showed potent cytotoxicity against human cancer lines (HeLa and A549) and less cytotoxicity against normal cell lines HEK293T. DPD could also induce the cell cycle arrest at G2/M phase in HeLa cells and significantly increase the phosphorylation (Tyr 15) of CDC2 leading to inactivation of CDC2. The effects of DPD on cellular microtubule networks were detected using immunofluorescence technique in HeLa cells. The immunofluorescence results showed DPD influenced the arrangement and organization of cellular microtubule networks in HeLa cells. Microtubules are long, hollow cylinders made up of polymerized tubulin dimers. Total microtubules were separated after DPD treatment. Western blot results showed that the free polymerized tubulin dimers were obviously increased after DPD treatment. DPD may be a good drug candidate with the therapeutic potential to human cancer by affecting microtubule polymerization.
Collapse
Affiliation(s)
- Chuan Chen
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Cui-Cui Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Zhong Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Wen-Yue Geng
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Hui Xu
- b Laboratory of Pharmaceutical Design & Synthesis , College of Sciences, Northwest A&F University , Yangling , China
| | - Xiao-Mei Song
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Du-Qiang Luo
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| |
Collapse
|
11
|
Briceño A, Muñoz P, Brito P, Huenchuguala S, Segura-Aguilar J, Paris IB. Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin. Neurotox Res 2015; 29:381-93. [PMID: 26345577 DOI: 10.1007/s12640-015-9560-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the role of adducts formation between aminochrome and tubulin and its interference in microtubules assembly and stability in aminochrome-induced toxicity in SH-SY5Y cells. We also investigated whether changes in the microtubules structures are an early event that could affect tubulin expression. We demonstrated in vitro that aminochrome tubulin adducts inhibit tubulin polymerization and that aminochrome induces microtubules disassembly. Moreover, when the SH-SY5Y cells were incubated with aminochrome, we observed an increase in soluble tubulin, indicating depolymerization of microtubules. Aminochrome generates disruption of the microtubules network, leading to changes in the morphology of the cells inducing cell death, in a dose- and time-dependent manner. Interestingly, these changes preceded cell death and were partly inhibited by paclitaxel, a microtubule-stabilizing agent. Furthermore, we observed that aminochrome increased early tubulin expression before significant cell death occurred. Consequently, all these antecedents suggest that aminochrome toxicity is mediated by early disruption of microtubules network, where the adduct formation between aminochrome and tubulin could be responsible for the inhibition in the assembly microtubules and the loss of microtubules stability. Possibly, the early changes in tubulin expression could correspond to compensatory mechanisms against the toxic effects of aminochrome.
Collapse
Affiliation(s)
- Andrea Briceño
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Patricia Brito
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Limonares 190, 2561780, Viña del Mar, Chile
| | - Sandro Huenchuguala
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile
| | - Irmgard B Paris
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8380453, Santiago, Chile. .,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Limonares 190, 2561780, Viña del Mar, Chile.
| |
Collapse
|