1
|
Xu G, Wang Y. CNPY2 modulates senescence-associated secretory phenotype in tendon stem/progenitor cells. Tissue Cell 2025; 93:102706. [PMID: 39755057 DOI: 10.1016/j.tice.2024.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Age-related diseases are often linked to chronic inflammation. Senescent cells secrete inflammatory cytokines, chemokines and matrix metalloproteinases, collectively referred to as the senescence-associated secretory phenotype (SASP). The current study discovered that aging leads to the accumulation of senescent tendon stem/progenitor cells (TSPCs) in tendon tissue, resulting in the development of a SASP. Conditioned medium from aged TSPCs induced cellular inflammation in young TSPCs. In addition, we found that Canopy homolog 2 (CNPY2) expression is reduced during tendon aging. CNPY2 deficiency causes TSPCs senescence and SASP. Our findings showed that the NF-κB signaling pathway is activated in CNPY2 knockdown TSPCs, pharmacological inhibition of NF-κB signaling pathway with BMS-345541 attenuated SASP of senescent TSPCs, which indicated that CNPY2 regulates TSPCs SASP might through NF-κB signaling pathway. Our findings suggested that CNPY2 plays an important role in TSPCs senescence and SASP, CNPY2 could be a promising target for age-related tendon disorders.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Orthopaedics, The Eighth People's Hospital of Tongzhou, Nantong, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Mullick Chowdhury S, Hong F, Rolfo C, Li Z, He K, Wesolowski R, Mortazavi A, Meng L. CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications. BIOLOGY 2025; 14:214. [PMID: 40001982 PMCID: PMC11851889 DOI: 10.3390/biology14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Canopy FGF signaling regulator 2 (CNPY2) has emerged as a crucial player in cancer development by promoting cell proliferation, tissue repair, and angiogenesis. This review synthesizes the current understanding of CNPY2's role in solid tumors, particularly renal cell carcinoma, prostate cancer, hepatocellular carcinoma, and non-small-cell lung cancer. CNPY2 modulates key pathways such as p53, MYLIP, NF-κB, and AKT/GSK3β, thereby driving tumor growth and progression. In renal cell carcinoma, CNPY2 paradoxically promotes tumor growth through p53 upregulation, while in hepatocellular carcinoma, CNPY2 drives cell cycle progression via p53 destabilization. In prostate cancer, it enhances tumor progression by stabilizing androgen receptors through MYLIP interaction, and in non-small-cell lung cancer, it contributes to chemoresistance and metastasis through NF-κB and AKT/GSK3β signaling. Additionally, CNPY2 influences the tumor microenvironment, impacting immune function and metastatic potential. As a potential biomarker, CNPY2 shows promise for cancer detection and prognosis, particularly when used in combination with other markers. Early therapeutic strategies, including siRNA and miRNA approaches, are under exploration, though challenges remain due to CNPY2's expression in normal tissues and potential off-target effects. This review underscores the need for further research to fully elucidate CNPY2's oncogenic mechanisms and develop targeted therapies. Improved understanding of CNPY2's diverse roles may lead to novel diagnostic and therapeutic approaches in solid tumors.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Feng Hong
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Christian Rolfo
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| | - Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.M.C.); (F.H.); (C.R.); (Z.L.); (K.H.); (R.W.); (A.M.)
| |
Collapse
|
3
|
Qi F, Li T, Deng Q, Fan A. The impact of aerobic and anaerobic exercise interventions on the management and outcomes of non-alcoholic fatty liver disease. Physiol Res 2024; 73:671-686. [PMID: 39530904 PMCID: PMC11629946 DOI: 10.33549/physiolres.935244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder that includes non-alcoholic hepatic steatosis without or with moderate inflammation and non-alcoholic steatohepatitis (NASH), characterized by necroinflammation and a more rapid progression of fibrosis. It is the primary pathological basis for hepatocellular carcinoma. With its prevalence escalating annually, NAFLD has emerged as a global health epidemic, presenting a significant hazard to public health worldwide. Existing studies have shown that physical activity and exercise training have a positive effect on NAFLD. However, the extent to which exercise improves NAFLD depends on the type, intensity, and duration. Therefore, the type of exercise that has the best effect on improving NAFLD remains to be explored. To date, the most valuable discussions involve aerobic and anaerobic exercise. Exercise intervenes in the pathological process of NAFLD by regulating physiological changes in cells through multiple signaling pathways. The review aims to summarize the signaling pathways affected by two different exercise types associated with the onset and progression of NAFLD. It provides a new basis for improving and managing NAFLD in clinical practice.
Collapse
Affiliation(s)
- F Qi
- Chongqing College of International Business and Economics, Southwest University, Chongqing, China, College of Physical Education, Southwest University, Chongqing, China.
| | | | | | | |
Collapse
|
4
|
Scordino M, Stepanova P, Srinivasan V, Pham DD, Eriksson O, Lalowski M, Mudò G, Di Liberto V, Korhonen L, Voutilainen MH, Lindholm D. CNPY2 protects against ER stress and is expressed by corticostriatal neurons together with CTIP2 in a mouse model of Huntington's disease. Front Mol Neurosci 2024; 17:1473058. [PMID: 39359687 PMCID: PMC11446244 DOI: 10.3389/fnmol.2024.1473058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Canopy Homolog 2 (CNPY2) is an endoplasmic reticulum (ER) localized protein belonging to the CNPY gene family. We show here that CNPY2 is protective against ER stress induced by tunicamycin in neuronal cells. Overexpression of CNPY2 enhanced, while downregulation of CNPY2 using shRNA expression, reduced the viability of neuroblastoma cells after tunicamycin. Likewise, recombinant CNPY2 increased survival of cortical neurons in culture after ER stress. CNPY2 reduced the activating transcription factor 6 (ATF6) branch of ER stress and decreased the expression of CCAT/Enhancer-Binding Protein Homologous Protein (CHOP) involved in cell death. Immunostaining using mouse brain sections revealed that CNPY2 is expressed by cortical and striatal neurons and is co-expressed with the transcription factor, COUPTF-interacting protein 2 (CTIP2). In transgenic N171-82Q mice, as a model for Huntington's disease (HD), the number of CNPY2-immunopositive neurons was increased in the cortex together with CTIP2. In the striatum, however, the number of CNPY2 decreased at 19 weeks of age, representing a late-stage of pathology. Striatal cells in culture were shown to be more susceptible to ER stress after downregulation of CNPY2. These results demonstrate that CNPY2 is expressed by corticostriatal neurons involved in the regulation of movement. CNPY2 enhances neuronal survival by reducing ER stress and is a promising factor to consider in HD and possibly in other brain diseases.
Collapse
Affiliation(s)
- Miriana Scordino
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | | | - Vignesh Srinivasan
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Dan Duc Pham
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biochemistry, Adam Mickiewicz University, Poznań, Poland
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Li R, Zarate D, Avila-Magaña V, Li J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc Biol Sci 2024; 291:20232408. [PMID: 38807516 DOI: 10.1098/rspb.2023.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Photosymbioses between heterotrophic hosts and autotrophic symbionts are evolutionarily prevalent and ecologically significant. However, the molecular mechanisms behind such symbioses remain less elucidated, which hinders our understanding of their origin and adaptive evolution. This study compared gene expression patterns in a photosymbiotic bivalve (Fragum sueziense) and a closely related non-symbiotic species (Trigoniocardia granifera) under different light conditions to detect potential molecular pathways involved in mollusc photosymbiosis. We discovered that the presence of algal symbionts greatly impacted host gene expression in symbiont-containing tissues. We found that the host immune functions were suppressed under normal light compared with those in the dark. In addition, we found that cilia in the symbiont-containing tissues play important roles in symbiont regulation or photoreception. Interestingly, many potential photosymbiosis genes could not be annotated or do not exhibit orthologues in T. granifera transcriptomes, indicating unique molecular functions in photosymbiotic bivalves. Overall, we found both novel and known molecular mechanisms involved in animal-algal photosymbiosis within bivalves. Given that many of the molecular pathways are shared among distantly related host lineages, such as molluscs and cnidarians, it indicates that parallel and/or convergent evolution is instrumental in shaping host-symbiont interactions and responses in these organisms.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | - Daniel Zarate
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | | | - Jingchun Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| |
Collapse
|
6
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
7
|
Huang H, Tang N, Li Y, Huo Q, Chen Q, Meng Q. The role of CNPY2 in endothelial injury and inflammation during the progress of atherosclerosis. J Mol Histol 2023:10.1007/s10735-023-10122-z. [PMID: 37103758 DOI: 10.1007/s10735-023-10122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023]
Abstract
Vascular endothelial cells (VECs) injury is closely related to the occurrence and development of atherosclerosis. Canopy FGF signaling regulator 2 (CNPY2), a novel unfolded protein response promoter, has been reported to activate the PERK-CHOP pathway. This study aimed to explore whether CNPY2 is associated with atherosclerosis mediated by VEC injury. By establishing ApoE-/- mouse atherosclerosis model and oxidized low-density lipoprotein (ox-LDL) cell model, we found that CNPY2 was abnormally highly expressed in ApoE-/- mice and ox-LDL-induced mouse aortic endothelial cells (MAECs). Exogenous CNPY2 can significantly aggravate the activation, inflammation, and apoptosis of MAECs induced by ox-LDL and promote the activation of PERK/eIF2α/CHOP signal. The PERK inhibitor GSK2606414 can inhibit CNPY2-induced MAECs injury and PERK signal activation. In addition, in vivo animal experiments furtherly confirmed that CNPY2 could aggravate the process of atherosclerosis in ApoE-/- mice by activating PERK signaling. In conclusion, this study indicated that high level of CNPY2 induces VECs injury by activating PERK signaling and thus participating in the progress of atherosclerosis.
Collapse
Affiliation(s)
- Hong Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Yan Li
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qian Huo
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qiang Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, 650032, P.R. China.
- The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
8
|
Guo CL, Liu HM, Li B, Lu ZY. Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway. Apoptosis 2022; 28:379-396. [PMID: 36422742 DOI: 10.1007/s10495-022-01793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Endothelial apoptosis caused by activation of renin-angiotensin system (RAS) plays a vital part in the occurrence and progress of hypertension. Angiotensin-(1-9) (Ang-(1-9)) is a peptide of the counter-regulatory non-classical RAS with anti-hypertensive effects in vascular endothelial cells (ECs). However, the mechanism of action remains unclear. Considering that the endothelial apoptosis was closely related to endoplasmic reticulum stress (ERS) and mitochondrial function. Herein, we aimed to elucidate the effects of Ang-(1-9) on endothelial apoptosis and the underlying molecular mechanism in angiotensin II (Ang II) induced hypertension. In human umbilical vascular endothelial cells (HUVECs), we observed Ang-(1-9) inhibited Ang II-induced ERS associated endothelial apoptosis. Mechanically, Ang-(1-9) inhibited endothelial apoptosis by blocking CNPY2/PERK mediated CaMKII/Drp1-dependent mitochondrial fission and eIF2α/CHOP signal. Consistent with above effects in HUVECs, in Ang II-induced hypertensive mice, we found administration of exogenous Ang-(1-9) attenuated endothelial apoptosis and arterial blood pressure, which were mediated by CNPY2/PERK signaling pathway. Our study indicated Ang-(1-9) inhibited Ang II-induced hypertension through CNPY2/PERK pathway. These findings may provide new insights for prevention and treatment of hypertension in future.
Collapse
|
9
|
Li JW, Huang QR, Mo LG. CNPY4 is a potential promising prognostic-related biomarker and correlated with immune infiltrates in gliomas. Medicine (Baltimore) 2022; 101:e30044. [PMID: 35984129 PMCID: PMC9387968 DOI: 10.1097/md.0000000000030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastomas are classified into primary and secondary; primary glioblastomas develop rapidly and aggressively, whereas secondary glioblastomas are more common in grade II and III gliomas. Here, we aimed to demonstrate the role of the CNPY4 gene as a potential biomarker in immune infiltration in gliomas. Based on gene expression profile interaction analysis (GEPIA), we studied the survival model of CNPY4 and evaluated its effect on patients with glioma. The glioma dataset was downloaded from The Cancer Genome Atlas (TCGA) database. Logistic regression was used to analyze the relationship between clinical data and CNPY4 expression. Univariate and multivariate Cox proportional-hazards models were used to compare clinical features and patient survival. The relationship between CNPY4 and immune infiltration in glioma was studied using GEPIA and CIBERSORT online tools. TCGA data were analyzed using gene set enrichment analysis (GSEA). Finally, TIMER was used to analyze the expression and immune infiltration of CNPY4 in glioma to study the cumulative survival rate. Univariate logistic regression analysis showed that increased CNPY4 expression was associated with tumor age, grade, IDH status, and 1p/19q codeletion. Multivariate analysis showed that that downregulation of CNPY4 expression was an independent and satisfactory prognostic factor. CNPY4 expression was correlated with the infiltration level of dendritic cells in glioblastoma. In contrast, in low-grade gliomas, the infiltration level of B cells, dendritic cells, macrophages, neutrophils, and CD4+ T cells was significantly correlated with CNPY4 expression. The GSEA results showed that CNPY4 played an immunoregulatory role in immune-related phenotypic pathways between lymphoid and nonlymphoid cells. The intestinal immune networks for IgA production, rabbit thyroid disease, primary immunodeficiencies, and cancer immunotherapy were enriched by PD-1 blockade. High CNPY4 expression is a biomarker of glioma prognosis and is associated with the immune invasion of glioma.
Collapse
Affiliation(s)
- Jian-Wen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Qian-Rong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Li-Gen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
- *Correspondence: Li-Gen Mo, Address: Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China (e-mail: )
| |
Collapse
|
10
|
Li J, Huang L, Xiong W, Qian Y, Song M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochem Biophys Res Commun 2022; 603:35-40. [DOI: 10.1016/j.bbrc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
|
11
|
Gao K, Wang T, Qiao Y, Cui B. MicroRNA-30e-3p inhibits glioma development and promotes drug sensitivity to temozolomide treatment via targeting canopy FGF signaling regulator 2. Cell Cycle 2021; 20:2361-2371. [PMID: 34657557 DOI: 10.1080/15384101.2021.1974789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Glioma is one of the most aggressive malignancies in the central nervous system and the prognosis of glioma patients remains poor. In this study, we investigated the function of microRNA-30e-3p (miR-30e-3p) in glioma development and its regulatory role in drug-resistance to temozolomide (TMZ). We found that miR-30e-3p was downregulated in glioma tissues and cell lines. Ectopic expression of miR-30e-3p inhibited the growth of glioma cells and arrested cell cycle at G0/G1 phase. Canopy FGF signaling regulator 2 (CNPY2) was predicted as a direct target of miR-30e-3p by bioinformatics analysis. Luciferase reporter assay confirmed the interaction between miR-30e-3p and CNPY2. We also demonstrated that miR-30e-3p suppressed glioma xenograft tumor development invivo and the inhibition was abolished by CNPY2 overexpression. In addition, we showed that overexpression of miR-30e-3p enhanced the sensitivity of glioma cell to TMZ treatment. Glioma cells with miR-30e-3p overexpression had decreased cell proliferation and enhanced cell apoptosis upon TMZ treatment. Moreover, we revealed that miR-30e-3p modulated TMZ sensitivity of glioma cells via negatively regulating CNPY2. Taken together, our findings demonstrate that miR-30e-3p plays a critical role in glioma development and drug sensitivity to TMZ treatment via negatively regulating CNPY2 expression. The study suggests that miR-30e-3p/CNPY2 could be developed as a novel target to improve the glioma therapy.Abbreviations: miR-30e-3p, microRNA-30e-3p; TMZ, temozolomide; CNPY2, canopy FGF signaling regulator 2; 3'-UTR, 3' untranslated region; NC, negative control.
Collapse
Affiliation(s)
- Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Yuan Qiao
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Bo Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| |
Collapse
|
12
|
Canopy Homolog 2 as a Novel Molecular Target in Hepatocarcinogenesis. Cancers (Basel) 2021; 13:cancers13143613. [PMID: 34298825 PMCID: PMC8306219 DOI: 10.3390/cancers13143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peri-tumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.
Collapse
|
13
|
Zhao L, Li H, Gao Q, Xu J, Zhu Y, Zhai M, Zhang P, Shen N, Di Y, Wang J, Chen T, Huang M, Sun J, Liu C. Berberine Attenuates Cerebral Ischemia-Reperfusion Injury Induced Neuronal Apoptosis by Down-Regulating the CNPY2 Signaling Pathway. Front Pharmacol 2021; 12:609693. [PMID: 33995012 PMCID: PMC8113774 DOI: 10.3389/fphar.2021.609693] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Berberine (BBR) has a neuroprotective effect against ischemic stroke, but its specific protective mechanism has not been clearly elaborated. This study explored the effect of BBR on the canopy FGF signaling regulator 2 (CNPY2) signaling pathway in the ischemic penumbra of rats. The model of cerebral ischemia-reperfusion injury (CIRI) was established by the thread embolization method, and BBR was gastrically perfused for 48 h or 24 h before operation and 6 h after operation. The rats were randomly divided into four groups: the Sham group, BBR group, CIRI group, and CIRI + BBR group. After 2 h of ischemia, followed by 24 h of reperfusion, we confirmed the neurologic dysfunction and apoptosis induced by CIRI in rats (p < 0.05). In the ischemic penumbra, the expression levels of CNPY2-regulated endoplasmic reticulum stress-induced apoptosis proteins (CNPY2, glucose-regulated protein 78 (GRP78), double-stranded RNA-activated protein kinase-like ER kinase (PERK), C/EBP homologous protein (CHOP), and Caspase-3) were significantly increased, but these levels were decreased after BBR treatment (p < 0.05). To further verify the inhibitory effect of BBR on CIRI-induced neuronal apoptosis, we added an endoplasmic reticulum-specific agonist and a PERK inhibitor to the treatment. BBR was shown to significantly inhibit the expression of apoptotic proteins induced by endoplasmic reticulum stress agonist, while the PERK inhibitor partially reversed the ability of BBR to inhibit apoptotic protein (p < 0.05). These results confirm that berberine may inhibit CIRI-induced neuronal apoptosis by downregulating the CNPY2 signaling pathway, thereby exerting a neuroprotective effect.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Qian Gao
- Department of Emergency Medicine, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Jin Xu
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Yongjie Zhu
- Department of Pathology, First People's Hospital of Aksu, Xinjiang, China
| | - Meili Zhai
- Department of Anaesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin, China
| | - Peijun Zhang
- Department of Anaesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin, China
| | - Na Shen
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Yanbo Di
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Jinhui Wang
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Tie Chen
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Meina Huang
- Department of Anaesthesiology, Wuqing People's Hospital, Tianjin, China
| | - Jinglai Sun
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Chong Liu
- Department of Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China.,Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Zhao L, Zhai M, Yang X, Guo H, Cao Y, Wang D, Li P, Liu C. Dexmedetomidine attenuates neuronal injury after spinal cord ischaemia-reperfusion injury by targeting the CNPY2-endoplasmic reticulum stress signalling. J Cell Mol Med 2019; 23:8173-8183. [PMID: 31625681 PMCID: PMC6850922 DOI: 10.1111/jcmm.14688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Dexmedetomidine (Dex) has been proven to exert protective effects on multiple organs in response to ischaemia-reperfusion injury, but the specific mechanism by which this occurs has not been fully elucidated. The purpose of this study was to investigate whether Dex attenuates spinal cord ischaemia-reperfusion injury (SCIRI) by inhibiting endoplasmic reticulum stress (ERS). Our team established a model of SCIRI and utilized the endoplasmic reticulum agonist thapsigargin. Dex (25 g/kg) was intraperitoneally injected 30 minutes before spinal cord ischaemia. After 45 minutes of ischaemia, the spinal cord was reperfused for 24 hours. To evaluate the neuroprotective effect of Dex on SCIRI, neurological function scores were assessed in rats and apoptosis of spinal cord cells was determined by TUNEL staining. To determine whether the endoplasmic reticulum apoptosis pathway CNPY2-PERK was involved in the neuroprotective mechanism of Dex, the expression levels of related proteins (CNPY2, GRP78, PERK, CHOP, caspase-12, caspase-9 and caspase-3) were detected by western blot analysis and RT-PCR. We observed that Dex significantly increased the neurological function scores after SCIRI and decreased apoptosis of spinal cord cells. The expression of ERS-related apoptosis proteins was significantly increased by SCIRI but was significantly decreased in response to Dex administration. Taken together, the results of this study indicate that Dex may attenuate SCIRI by inhibiting the CNPY2-ERS apoptotic pathway.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of human development and reproductive regulation, Tianjin, China
| | - Xu Yang
- Department of medicine, Tianjin Medical College, Tianjin, China
| | - Hongjie Guo
- Department of Critical Care Medicine, Tianjin 4th Centre Hospital, Tianjin, China
| | - Ying Cao
- Department of Critical Care Medicine, Tianjin 4th Centre Hospital, Tianjin, China
| | - Donghui Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan City, China
| | - Ping Li
- Department of Anaesthesiology, Tianjin Hospital, Tianjin, China
| | - Chong Liu
- Department of Anaesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Peng J, Ou Q, Pan Z, Zhang R, Zhao Y, Deng Y, Lu Z, Zhang L, Li C, Zhou Y, Guo J, Wan D, Fang Y. Serum CNPY2 isoform 2 represents a novel biomarker for early detection of colorectal cancer. Aging (Albany NY) 2019; 10:1921-1931. [PMID: 30070972 PMCID: PMC6128441 DOI: 10.18632/aging.101512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Since early diagnosis is very important for treating CRC, we decided to detect peripheral serum canopy fibroblast growth factor signaling regulator 2 (CNPY2) isoform 2 to verify its diagnostic value for CRC patients. Serum samples were collected from 430 CRC patients and 201 healthy controls. Enzyme-linked immunosorbent assay (ELISA) detection kits for CNPY2 isoform 2 were generated and then applied to measure serum CNPY2 isoform 2 concentrations. Serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) were also measured. The median serum CNPY2 isoform 2 concentrations in all CRC patients were significantly higher than those in the healthy control group (all P<0.001). Those with stage I CRC presented the highest area under the receiver operating characteristic curve (AUC) for CNPY2 isoform 2 [0.707, 95% confidence interval (CI): 0.649-0.765, P<0.001]. The diagnostic efficiency of the combination of CNPY2 isoform 2, CEA and CA19-9 was significantly higher than that of each biomarker detected separately (all P<0.0167). Serum CNPY2 isoform 2 may be a valuable biomarker for the early detection of CRC and presents an improvement in the diagnostic efficiency by combination of CEA and CA19-9.
Collapse
Affiliation(s)
- Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Yujie Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Yuxiang Deng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Lin Zhang
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Caixia Li
- School of Mathematics and Computational Science Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yaxian Zhou
- Senboll Biotechnology Co., Ltd., Pingshan Bio-Pharmacy Business Accelerator, Pingshan District, Shenzhen, Guangdong 518000, P. R. China
| | - Jian Guo
- Senboll Biotechnology Co., Ltd., Pingshan Bio-Pharmacy Business Accelerator, Pingshan District, Shenzhen, Guangdong 518000, P. R. China
| | - Desen Wan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South ; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| |
Collapse
|
16
|
Liu C, Liu Y, He J, Mu R, Di Y, Shen N, Liu X, Gao X, Wang J, Chen T, Fang T, Li H, Tian F. Liraglutide Increases VEGF Expression via CNPY2-PERK Pathway Induced by Hypoxia/Reoxygenation Injury. Front Pharmacol 2019; 10:789. [PMID: 31396081 PMCID: PMC6664686 DOI: 10.3389/fphar.2019.00789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Liraglutide (Lir) is a glucagon-like peptide-1 receptor agonist that lowers blood sugar and reduces myocardial infarct size by improving endothelial cell function. However, its mechanism has not yet been clarified. Unfolded protein response (UPR) plays an important role in the pathogenesis of myocardial ischemia-reperfusion injury. It determines the survival of cells. Endoplasmic reticulum position protein homologue 2 (CNPY2) is a novel initiator of UPR that also participates in angiogenesis. To this extent, the current study further explored whether Lir regulates angiogenesis through CNPY2. In our article, a hypoxia/reoxygenation (H/R) injury model of human umbilical vein endothelial cells (HUVECs) was established and the effect of Lir on HUVECs was first evaluated by the Cell Counting Kit-8. Endothelial tube formation was used to analyze the ability of Lir to induce angiogenesis. Subsequently, the effect of Lir on the concentrations of hypoxia-inducible factor 1α (HIF1α), vascular endothelial growth factor (VEGF), and CNPY2 was detected by enzyme-linked immunosorbent assay. To assess whether Lir regulates angiogenesis through the CNPY2-initiated UPR pathway, the expression of UPR-related pathway proteins (CNPY2, GRP78, PERK, and ATF4) and angiogenic proteins (HIF1α and VEGF) was detected by reverse transcription-polymerase chain reaction and Western blot. The results confirmed that Lir significantly increased the expression of HIF1α and VEGF as well as the expression of CNPY2-PERK pathway proteins in HUVECs after H/R injury. To further validate the experimental results, we introduced the PERK inhibitor GSK2606414. GSK2606414 was able to significantly decrease both the mRNA and protein expression of ATF4, HIF1α, and VEGF in vascular endothelial cells after H/R injury. The effect of Lir was also inhibited using GSK2606414. Therefore, our study suggested that the CNPY2-PERK pathway was involved in the mechanism of VEGF expression after H/R injury in HUVECs. Lir increased the expression of VEGF through the CNPY2-PERK pathway, which may promote endothelial cell angiogenesis and protect HUVEC from H/R damage.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China.,Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Yong Liu
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Jing He
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Rong Mu
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Na Shen
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Xuan Liu
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiao Gao
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Jinhui Wang
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Tie Chen
- Department of Anaesthesiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Yin W, Guo J, Zhang C, Alibhai FJ, Li SH, Billia P, Wu J, Yau TM, Weisel RD, Li RK. Knockout of Canopy 2 activates p16 INK4a pathway to impair cardiac repair. J Mol Cell Cardiol 2019; 132:36-48. [PMID: 31047986 DOI: 10.1016/j.yjmcc.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/14/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cardiac repair depends on angiogenesis and cell proliferation. Previously we identified Canopy 2 (CNPY2) as a secreted angiogenic growth factor which promotes neovascularization. We investigated the role of CNPY2 in cardiac repair following myocardial infarction (MI) and the possible mediators involved using Cnpy2 knockout (KO) mice and human cardiac tissue. METHODS AND RESULTS Cardiac tissue from patients with end-stage heart failure had significantly lower endogenous CNPY2 expression compared to samples from control patients. CNPY2 expression in mouse hearts significantly decreased following MI. Significantly less leukocyte and endothelial cell proliferation was found in Cnpy2 KO than wild-type (WT) mice post MI which contributed to impaired angiogenesis, tissue repair, and decreased cardiac function (fractional shortening: WT: 21.1 ± 2.1% vs. KO: 16.4 ± 1.6%, p < .01 at day 28 post MI). RT-qPCR revealed significantly increased p16INK4a expression in Cnpy2 KO mouse hearts (WT: 1.0 ± 0.04 vs. KO: 2.33 ± 0.11 [relative expression of p16 INK4a], p < .01) which was confirmed by immunostaining (WT: 8.47 ± 1.22 vs. KO: 12.9 ± 1.22 [% total cells], p < .05) for the p16INK4a protein. Expression of cell cycle-related proteins, cyclin D1, cyclin-dependent kinases 4 and 6, and phosphorylated retinoblastoma protein (pRb) was significantly decreased in Cnpy2 KO mouse hearts. The up-regulation of the p16INK4a/cyclin D1/Rb pathway by knockout of Cnpy2 was accompanied by attenuation of PDK1/Akt phosphorylation. MI exacerbated the detrimental effects of p16INK4a on tissue repair in Cnpy2 KO mice. Overexpression of CNPY2 in the cardiac tissue of transgenic mice reversed the inhibition of cell proliferation through suppression of the p16INK4a pathway. CONCLUSIONS Cardiac injury and progressive heart failure were associated with decreased CNPY2 levels in both humans and mice. Knockout of Cnpy2 resulted in up-regulation of p16INK4a which impaired cardiac function and tissue repair. These data suggest that CNPY2 is an important regulator of p16INK4a and promotes cell proliferation and tissue repair through inhibition of the p16INK4a pathway. CNPY2 treatment may offer a new approach to restore cardiac function after an MI.
Collapse
Affiliation(s)
- Wenjuan Yin
- Department of Pathology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Jian Guo
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Chongyu Zhang
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Phyllis Billia
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiology, University Health Network, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Terrence M Yau
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Cui Y, Wang Y, Liu G. Protective effect of Barbaloin in a rat model of myocardial ischemia reperfusion injury through the regulation of the CNPY2‑PERK pathway. Int J Mol Med 2019; 43:2015-2023. [PMID: 30864682 PMCID: PMC6443342 DOI: 10.3892/ijmm.2019.4123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Barbaloin (Bar) has a myocardial protective effect, but its mechanism of action is uncertain. The endoplasmic reticulum stress (ERS)-mediated apoptosis pathway serves an important role in the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). Inhibiting ERS may significantly improve the progression of MIRI and serve a role in its prevention. Therefore, based on current knowledge of ERS-mediated cardiomyocyte apoptosis and the cardioprotective effect of Bar, the purpose of the present study was to further evaluate the myocardial protective effect and potential mechanisms of Bar pretreatment in MIRI. The present study established a MIR rat model and randomly divided these rats into four groups. Prior to myocardial ischemia, Bar (20 mg/kg) was administered to rats once daily for 1 week. Myocardial blood serum lactate dehydrogenase and creatine kinase were subsequently measured. A terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay was used to evaluate the myocardial protective effect of Bar pretreatment on MIRI. To assess whether the ERS signaling pathway was involved in the myocardial protection mechanism of Bar pretreatment, the expression levels of ERS-associated proteins, protein canopy homolog 2 (CNPY2), glucose regulatory protein 78, transcriptional activator 4, C/EBP-homologous protein (CHOP), PKR endoplasmic reticulum kinase (PERK), caspase-12 and caspase-3 were detected by western blot analysis, immunohistochemistry or reverse transcription-quantitative polymerase chain reaction. The results confirmed that Bar pretreatment significantly reduced the damage and the level of apoptosis caused by MIR. Bar pretreatment significantly inhibited the expression of ERS-associated proteins in cardiomyocytes. In addition, the immunohistochemistry results demonstrated that Bar pretreatment significantly inhibited the CNPY2-positive cell apoptosis ratio of cardiomyocytes. Therefore, the results of the current study suggested that CNPY2 is present in cardiomyocytes and participates in the development of MIRI by initiating the PERK-CHOP signaling pathway. Bar pretreatment may attenuate MIRI by inhibiting the CNPY2-PERK apoptotic pathway.
Collapse
Affiliation(s)
- Yue Cui
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Yongqiang Wang
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Gang Liu
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
19
|
Shimura M, Mizuma M, Takadate T, Katoh Y, Suzuki T, Iseki M, Hata T, Aoki S, Suzuki Y, Sakata N, Ohtsuka H, Hayashi H, Morikawa T, Nakagawa K, Motoi F, Naitoh T, Igarashi K, Sasano H, Unno M. A novel liver metastasis-correlated protein of pancreatic neuroendocrine neoplasm (PanNEN) discovered by proteomic analysis. Oncotarget 2018; 9:24291-24303. [PMID: 29849941 PMCID: PMC5966250 DOI: 10.18632/oncotarget.25110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/17/2018] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to identify novel liver metastasis-correlated proteins of PanNEN by proteomics to compare pancreatic tumor (PT) with paired metastatic liver tumor (LT). Of 118 surgical cases with PanNEN, 7 cases with formalin-fixed paraffin-embedded (FFPE) tissues of both PT and paired LT were evaluated by proteomics. Tumor cells were selectively collected from FFPE tissues by laser capture microdissection. A total of 3,722 proteins were detected from extracted peptides by mass spectrometry-based shotgun analysis. Selection of the candidate proteins expressed differently between PT and LT were performed by semi-quantitative comparison in silico and confirmation with immunohistochemistry. We focused on ANXA6, CNPY2, RAB11B and TUBB3, all of which had higher expressions in LT. In all surgical cases with FFPE samples, liver recurrence-free survival (RFS) was evaluated in correlation to the expression of the candidate proteins in PT by immunohistochemistry. Liver RFS was significantly poorer in CNPY2 positive patients than in negative patients (10-year liver RFS; 39.8% vs. 92.3%, p = 0.012). Also, liver RFS tended to be poorer in ANXA6 positive patients than in those who were negative (10-year liver RFS; 51.4% vs. 95.0%, p = 0.099). In the multivariate analysis, the independent predictors of liver RFS were CNPY2 positivity (HR: 6.19, 95 % CI: 1.47-42.79, p = 0.011) and tumor size ≥ 42 mm (HR: 4.63, 95 % CI: 1.03-23.23, p = 0.045). In conclusion, CNPY2 is a novel liver metastasis-correlated protein of PanNEN.
Collapse
Affiliation(s)
- Mitsuhiro Shimura
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Tatsuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Yasutake Katoh
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Takashi Suzuki
- Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Masahiro Iseki
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Shuichi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Yukie Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Naoaki Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Aobaku, Sendai 980-8574, Japan
| |
Collapse
|
20
|
Varade J, Wang N, Lim CK, Zhang T, Zhang Y, Liu X, Piehl F, Matell R, Cao H, Xu X, Hammarström L. Novel genetic loci associated HLA-B*08:01 positive myasthenia gravis. J Autoimmun 2018; 88:43-49. [DOI: 10.1016/j.jaut.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023]
|
21
|
Nuez-Ortín WG, Carter CG, Nichols PD, Cooke IR, Wilson R. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature. BMC Genomics 2018; 19:133. [PMID: 29433420 PMCID: PMC5809918 DOI: 10.1186/s12864-018-4517-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Atlantic salmon production in Tasmania (Southern Australia) occurs near the upper limits of the species thermal tolerance. Summer water temperatures can average over 19 °C over several weeks and have negative effects on performance and health. Liver tissue exerts important metabolic functions in thermal adaptation. With the aim of identifying mechanisms underlying liver plasticity in response to chronic elevated temperature in Atlantic salmon, label-free shotgun proteomics was used to explore quantitative protein changes after 43 days of exposure to elevated temperature. Results A total of 276 proteins were differentially (adjusted p-value < 0.05) expressed between the control (15 °C) and elevated (21 °C) temperature treatments. As identified by Ingenuity Pathway Analysis (IPA), transcription and translation mechanisms, protein degradation via the proteasome, and cytoskeletal components were down-regulated at elevated temperature. In contrast, an up-regulated response was identified for NRF2-mediated oxidative stress, endoplasmic reticulum stress, and amino acid degradation. The proteome response was paralleled by reduced fish condition factor and hepato-somatic index at elevated temperature. Conclusions The present study provides new evidence of the interplay among different cellular machineries in a scenario of heat-induced energy deficit and oxidative stress, and refines present understanding of how Atlantic salmon cope with chronic exposure to temperature near the upper limits of thermal tolerance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4517-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Waldo G Nuez-Ortín
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia.,CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Ira R Cooke
- Comparative Genomics Centre, James Cook University, Townsville, QLD, 4811, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| |
Collapse
|
22
|
Peng J, Ou Q, Guo J, Pan Z, Zhang R, Wu X, Zhao Y, Deng Y, Li C, Wang F, Li L, Chen G, Lu Z, Ding P, Wan D, Fang Y. Expression of a novel CNPY2 isoform in colorectal cancer and its association with oncologic prognosis. Aging (Albany NY) 2018; 9:2334-2351. [PMID: 29135454 PMCID: PMC5723690 DOI: 10.18632/aging.101324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Recently, we identified a novel biomarker, canopy fibroblast growth factor signaling regulator 2 (CNPY2) isoform2, and subsequently investigated its expression and prognostic value in CRC patients. We initially generated CNPY2 isoform2 monoclonal antibodies and examined CNPY2 isoform2 expression in CRC cell lines and tissues using quantitative real-time polymerase chain reaction, western blot and immunohistochemistry analyses. We found that CNPY2 isoform2 expression significantly increased in tumor cell lines and tissues compared with that in normal colon epithelial cells and tumor-adjacent normal tissues. Survival analysis indicated that patients with low CNPY2 isoform2 expression had poorer 5-year overall survival (OS) in both the training cohort (41.7% vs. 77.7%, P = 0.007) and validation cohort (47.1% vs. 78.8%, P = 0.002). In multivariable analysis, CNPY2 isoform2 was identified as a predictor of 5-year OS in both the training cohort [hazard ratio (HR) = 5.001; 95% confidence interval (CI) 2.156–11.598, P < 0.001) and validation cohort (HR= 2.443; 95% CI 1.197- 4.983, P = 0.014). In conclusion, CNPY2 isoform2 represents as a novel and valuable prognostic indicator for CRC patients, while the oncologic function of CNPY2 requires further study.
Collapse
Affiliation(s)
- Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jian Guo
- Senboll Biotechnology Co., Ltd., Pingshan Bio-pharmacy Business Accelerator Unit 205, Shenzhen, Guangdong 518000, P. R. China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Xiaojun Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujie Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yuxiang Deng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Caixia Li
- School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Fulong Wang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Liren Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Gong Chen
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Peirong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Desen Wan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
23
|
Guo J, Mihic A, Wu J, Zhang Y, Singh K, Dhingra S, Weisel RD, Li RK. Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy. Eur Heart J 2015; 36:2530-40. [PMID: 26160001 DOI: 10.1093/eurheartj/ehv294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023] Open
Abstract
AIMS A mismatch between adequate angiogenesis and overgrowth of myocytes may be a critical mechanism controlling the transition from adaptive hypertrophy to heart failure. Canopy 2 (CNPY2) was recently identified as a secreted, HIF-1α-regulated angiogenic growth factor. As angiogenic factors play important roles in the development of myocardial hypertrophy, we investigated the role of CNPY2 in molecular and functional changes during development of chronic heart failure using cardiac-specific transgenic (TG) mice that overexpress human CNPY2. METHODS AND RESULTS We generated TG mice that constitutively express CNPY2 in the myocardium. Cardiomyopathy was induced in TG and wild-type (WT) mice by transverse aortic constriction (TAC). WT mice developed significant ventricular hypertrophy at 4 weeks and severe dilatation and heart failure at 12 weeks after TAC. However, TG mice preserved much better cardiac structure and function, with less severe ventricular dilatation and markedly reduced cardiac apoptosis and fibrosis following TAC. Excess CNPY2 in TG mice prevented significant loss of vasculature up to 12 weeks after TAC injury, resulting in a better local myocardial environment that facilitated myocyte survival and prevented excessive matrix remodelling compared with WT mice. TG mice had less accumulation of endogenous tumor suppressor p53 after TAC, indicating intrinsic activation of the p53-mediated repression of HIF-1α, and Cnpy2 was diminished in TG mice compared with WT controls. CONCLUSION Our study showed a correlation between downregulation of endogenous mouse Cnpy2 and p53-mediated HIF-1α inhibition during late-stage hypertrophic development. Additional CNPY2 attenuated the transition from compensatory hypertrophic response to maladaptive ventricular dilatation and heart failure.
Collapse
Affiliation(s)
- Jian Guo
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Anton Mihic
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Jun Wu
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Yuemei Zhang
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Kaustabh Singh
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Sanjiv Dhingra
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Richard D Weisel
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Ren-Ke Li
- Toronto General Research Institute, University Health Network, MaRS Centre, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Canada M5G 1L7 Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Guo J, Zhang Y, Mihic A, Li SH, Sun Z, Shao Z, Wu J, Weisel RD, Li RK. A secreted protein (Canopy 2, CNPY2) enhances angiogenesis and promotes smooth muscle cell migration and proliferation. Cardiovasc Res 2015; 105:383-393. [PMID: 25589425 DOI: 10.1093/cvr/cvv010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|