1
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
2
|
Maretina M, Koroleva V, Shchugareva L, Glotov A, Kiselev A. The Relevance of Spinal Muscular Atrophy Biomarkers in the Treatment Era. Biomedicines 2024; 12:2486. [PMID: 39595052 PMCID: PMC11591959 DOI: 10.3390/biomedicines12112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that currently has an approved treatment for all forms of the disease. Previously, biomarkers were primarily used for diagnostic purposes, such as detecting the presence of the disease or determining a specific clinical type of SMA. Currently, with the availability of therapy, biomarkers have become more valuable due to their potential for prognostic, predictive, and pharmacodynamic applications. This review describes the most promising physiological, functional, imaging and molecular biomarkers for SMA, derived from different patients' tissues. The review summarizes information about classical biomarkers that are already used in clinical practice as well as fresh findings on promising biomarkers that have been recently disclosed. It highlights the usefulness, limitations, and strengths of each potential biomarker, indicating the purposes for which each is best suited and when combining them may be most beneficial.
Collapse
Affiliation(s)
- Marianna Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| | - Valeria Koroleva
- Municipal Hospital for Children No. 1, 198205 Saint-Petersburg, Russia; (V.K.); (L.S.)
| | - Lyudmila Shchugareva
- Municipal Hospital for Children No. 1, 198205 Saint-Petersburg, Russia; (V.K.); (L.S.)
- Department of Pediatric Neuropathology and Neurosurgery, North-Western State Medical University Named After I.I. Mechnikov, 191015 Saint-Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| | - Anton Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| |
Collapse
|
3
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
5
|
Gong Z, Lo WLA, Wang R, Li L. Electrical impedance myography combined with quantitative assessment techniques in paretic muscle of stroke survivors: Insights and challenges. Front Aging Neurosci 2023; 15:1130230. [PMID: 37020859 PMCID: PMC10069712 DOI: 10.3389/fnagi.2023.1130230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.
Collapse
Affiliation(s)
- Ze Gong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Le Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Le Li,
| |
Collapse
|
6
|
Glascock J, Darras BT, Crawford TO, Sumner CJ, Kolb SJ, DiDonato C, Elsheikh B, Howell K, Farwell W, Valente M, Petrillo M, Tingey J, Jarecki J. Identifying Biomarkers of Spinal Muscular Atrophy for Further Development. J Neuromuscul Dis 2023; 10:937-954. [PMID: 37458045 PMCID: PMC10578234 DOI: 10.3233/jnd-230054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by bi-allelic, recessive mutations of the survival motor neuron 1 (SMN1) gene and reduced expression levels of the survival motor neuron (SMN) protein. Degeneration of alpha motor neurons in the spinal cord causes progressive skeletal muscle weakness. The wide range of disease severities, variable rates of decline, and heterogenous clinical responses to approved disease-modifying treatment remain poorly understood and limit the ability to optimize treatment for patients. Validation of a reliable biomarker(s) with the potential to support early diagnosis, inform disease prognosis and therapeutic suitability, and/or confirm response to treatment(s) represents a significant unmet need in SMA. OBJECTIVES The SMA Multidisciplinary Biomarkers Working Group, comprising 11 experts in a variety of relevant fields, sought to determine the most promising candidate biomarker currently available, determine key knowledge gaps, and recommend next steps toward validating that biomarker for SMA. METHODS The Working Group engaged in a modified Delphi process to answer questions about candidate SMA biomarkers. Members participated in six rounds of reiterative surveys that were designed to build upon previous discussions. RESULTS The Working Group reached a consensus that neurofilament (NF) is the candidate biomarker best poised for further development. Several important knowledge gaps were identified, and the next steps toward filling these gaps were proposed. CONCLUSIONS NF is a promising SMA biomarker with the potential for prognostic, predictive, and pharmacodynamic capabilities. The Working Group has identified needed information to continue efforts toward the validation of NF as a biomarker for SMA.
Collapse
Affiliation(s)
| | - Basil T. Darras
- Boston Children’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Thomas O. Crawford
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Charlotte J. Sumner
- Johns Hopkins University School of Medicine Departments of Neurology and Neuroscience, Department of Neurology and Pediatrics, Baltimore, MD, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Bakri Elsheikh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, Jackson, WY, USA
| | | | | | | | | | | |
Collapse
|
7
|
Pandeya SR, Nagy JA, Riveros D, Semple C, Taylor RS, Sanchez B, Rutkove SB. Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PLoS One 2021; 16:e0259071. [PMID: 34714853 PMCID: PMC8555802 DOI: 10.1371/journal.pone.0259071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been established. Here we studied three groups of diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse), and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb measurements using a standard surface array and ex vivo measurements on freshly excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8 kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spearman rho values generally ranging from 0.3-0.7, depending on the impedance parameter (i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was an offset in frequency with impedance values obtained at higher surface frequencies correlating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/db model, correlations were comparatively weaker and strongest at very high and very low frequencies. When combining impedance data from all three disease models together, moderate correlations persisted (with maximal Spearman rho values of 0.45). These data support that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree across several different diseases, with the highest correlations occurring in the 10-200 kHz frequency range. Understanding these relationships will prove useful for future applications of the technique of EIM in the assessment of neuromuscular disorders.
Collapse
Affiliation(s)
- Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Carson Semple
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin Sanchez
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
9
|
Moore JT, Wier CG, Lemmerman LR, Ortega-Pineda L, Dodd DJ, Lawrence WR, Duarte-Sanmiguel S, Dathathreya K, Diaz-Starokozheva L, Harris HN, Sen CK, Valerio IL, Higuita-Castro N, Arnold WD, Kolb SJ, Gallego-Perez D. Nanochannel-Based Poration Drives Benign and Effective Nonviral Gene Delivery to Peripheral Nerve Tissue. ADVANCED BIOSYSTEMS 2020; 4:e2000157. [PMID: 32939985 PMCID: PMC7704786 DOI: 10.1002/adbi.202000157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
While gene and cell therapies have emerged as promising treatment strategies for various neurological conditions, heavy reliance on viral vectors can hamper widespread clinical implementation. Here, the use of tissue nanotransfection as a platform nanotechnology to drive nonviral gene delivery to nerve tissue via nanochannels, in an effective, controlled, and benign manner is explored. TNT facilitates plasmid DNA delivery to the sciatic nerve of mice in a voltage-dependent manner. Compared to standard bulk electroporation (BEP), impairment in toe-spread and pinprick response is not caused by TNT, and has limited to no impact on electrophysiological parameters. BEP, however, induces significant nerve damage and increases macrophage immunoreactivity. TNT is subsequently used to deliver vasculogenic cell therapies to crushed nerves via delivery of reprogramming factor genes Etv2, Foxc2, and Fli1 (EFF). The results indicate the TNT-based delivery of EFF in a sciatic nerve crush model leads to increased vascularity, reduced macrophage infiltration, and improved recovery in electrophysiological parameters compared to crushed nerves that are TNT-treated with sham/empty plasmids. Altogether, the results indicate that TNT can be a powerful platform nanotechnology for localized nonviral gene delivery to nerve tissue, in vivo, and the deployment of reprogramming-based cell therapies for nerve repair/regeneration.
Collapse
Affiliation(s)
- Jordan T. Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Luke R. Lemmerman
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Daniel J. Dodd
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Kavya Dathathreya
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Hallie N. Harris
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chandan K. Sen
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Ian L. Valerio
- Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Kariyawasam DST, D'Silva A, Lin C, Ryan MM, Farrar MA. Biomarkers and the Development of a Personalized Medicine Approach in Spinal Muscular Atrophy. Front Neurol 2019; 10:898. [PMID: 31481927 PMCID: PMC6709682 DOI: 10.3389/fneur.2019.00898] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent unprecedented advances in treatment for spinal muscular atrophy (SMA) enabled patients to access the first approved disease modifying therapy for the condition. There are however many uncertainties, regarding timing of treatment initiation, response to intervention, treatment effects and long-term outcomes, which are complicated by the evolving phenotypes seen in the post-treatment era for patients with SMA. Biomarkers of disease, with diagnostic, prognostic, predictive, and pharmacodynamic value are thus urgently required, to facilitate a wider understanding in this dynamic landscape. A spectrum of these candidate biomarkers, will be evaluated in this review, including genetic, epigenetic, proteomic, electrophysiological, and imaging measures. Of these, SMN2 appears to be the most significant modifier of phenotype to date, and its use in prognostication shows considerable clinical utility. Longitudinal studies in patients with SMA highlight an emerging role of circulatory markers such as neurofilament, in tracking disease progression and response to treatment. Furthermore, neurophysiological biomarkers such as CMAP and MUNE values show considerable promise in the real word setting, in following the dynamic response and output of the motor unit to therapeutic intervention. The specific value for these possible biomarkers across diagnosis, prognosis, prediction of treatment response, efficacy, and safety will be central to guide future patient-targeted treatments, the design of clinical trials, and understanding of the pathophysiological mechanisms of disease and intervention.
Collapse
Affiliation(s)
- Didu S T Kariyawasam
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cindy Lin
- Department of Neurophysiology, Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Monique M Ryan
- Department of Neurology, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Kapur K, Nagy JA, Taylor RS, Sanchez B, Rutkove SB. Estimating Myofiber Size With Electrical Impedance Myography: a Study In Amyotrophic Lateral Sclerosis MICE. Muscle Nerve 2018; 58:713-717. [PMID: 30175407 DOI: 10.1002/mus.26187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION A method for quantifying myofiber size noninvasively would find wide use, including primary diagnosis and evaluating response to therapy. METHODS Using prediction algorithms, including the least absolute shrinkage and selection operator, we applied multifrequency electrical impedance myography (EIM) to amyotrophic lateral sclerosis superoxide dismutase 1 G93A mice of different ages and assessed myofiber size histologically. RESULTS Multifrequency EIM data provided highly accurate predictions of myofiber size, with a root mean squared error (RMSE) of only 14% in mean myofiber area (corresponding to ± 207 µm2 for a mean area of 1,488 µm2 ) and an RMSE of only 8.8% in predicting the coefficient of variation in fiber size distribution. DISCUSSION This impedance-based approach provides predictive variables to assess myofiber size and distribution with good accuracy, particularly in diseases in which myofiber atrophy is the predominant histological feature, without the requirement for biopsy or burdensome quantification. Muscle Nerve 58: 713-717, 2018.
Collapse
Affiliation(s)
- Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Rebecca S Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, TCC-810, Boston, Massachusetts, 02215, USA
| |
Collapse
|
12
|
Ko FC, Li J, Brooks DJ, Rutkove SB, Bouxsein ML. Structural and functional properties of bone are compromised in amyotrophic lateral sclerosis mice. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:457-462. [PMID: 29569488 DOI: 10.1080/21678421.2018.1452946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In addition to muscle weakness, amyotrophic lateral sclerosis (ALS) is associated with an increased incidence of skeletal fractures. The SOD1G93A mouse model recapitulates many features of human ALS. These mice also exhibit decreased bone mass. However, the functional, or biomechanical, behavior of the skeleton in SOD1G93A mice has not been investigated. To do so, we examined skeletal phenotypes in end-stage (16-week-old) SOD1G93A female mice and healthy littermate female controls (N = 9-10/group). Outcomes included trabecular and cortical bone microarchitecture by microcomputed tomography; stiffness and strength via three-point bending; resistance to crack growth by fracture toughness testing; and cortical bone matrix properties via cyclic reference point indentation. SOD1G93A mice had similar bone size, but significantly lower trabecular bone mass (-54%), thinner trabeculae (-41%) and decreased cortical bone thickness (-17%) and cortical area (-18%) compared to control mice (all p < 0.01). In line with these bone mass and microstructure deficits, SOD1G93A mice had significantly lower femoral bending stiffness (-27%) and failure moment (-41%), along with decreased fracture toughness (-18%) (all p < 0.001). This is the first study to demonstrate functional deficits in the skeleton of end-stage ALS mice, and imply multiple mechanisms for increased skeletal fragility and fracture risk in patients in ALS. Importantly, our results provide strong rationale for interventions to reduce fracture risk in ALS patients with advanced disease.
Collapse
Affiliation(s)
- Frank C Ko
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA.,b Endocrine Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Jia Li
- c Department of Neurology , Harvard Medical School , Boston , MA , USA.,d Department of Neurology , Beth Israel Deaconess Medical Center , Boston , MA , USA , and
| | - Daniel J Brooks
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Seward B Rutkove
- c Department of Neurology , Harvard Medical School , Boston , MA , USA.,d Department of Neurology , Beth Israel Deaconess Medical Center , Boston , MA , USA , and
| | - Mary L Bouxsein
- a Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center , Boston , MA , USA.,b Endocrine Unit , Massachusetts General Hospital , Boston , MA , USA.,e Department of Orthopedic Surgery , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
13
|
Arnold WD, Taylor RS, Li J, Nagy JA, Sanchez B, Rutkove SB. Electrical impedance myography detects age-related muscle change in mice. PLoS One 2017; 12:e0185614. [PMID: 29049394 PMCID: PMC5648130 DOI: 10.1371/journal.pone.0185614] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022] Open
Abstract
Loss of muscle mass and strength represents one of the most significant contributors to impaired function in older adults. Convenient and non-invasive biomarkers are needed that can readily identify and track age-related muscle change. Previous data has suggested electrical impedance myography (EIM) has the potential to serve in this capacity. In this study we investigated how changes in EIM compared with other standard measures of muscle structure and function in aged compared with young mice. A total of 19 male mice aged approximately 25 months and 19 male mice aged 3 months underwent surface multifrequency EIM of the right gastrocnemius muscle using standard methods. Fore and hind limb grip strength, sciatic compound muscle action potential amplitude, and in-situ force of the gastrocnemius were also measured; after sacrifice, gastrocnemius myofiber size was assessed using standard histology. Spearman correlation coefficients were calculated to investigate the association between EIM and muscle characteristics. EIM in aged animals demonstrated significantly lower 50 kHz impedance phase (p<0.001) and reactance (p<0.01) values as well as reduced multifrequency parameters. In contrast, absolute gastrocnemius muscle mass was no different between young and aged mice (p = 0.58) but was reduced in aged mice after normalization to body mass (p<0.001). Median myofiber size in the aged mice was not different from that of young mice (p = 0.72). Aged mice showed reduced muscle function on the basis of normalized fore limb (p<0.001) and normalized hind limb (p<0.001) grip strength, as well as normalized gastrocnemius twitch (p<0.001) and normalized maximal isometric force (p<0.001). Sciatic compound muscle action potential amplitude was reduced in aged mice (p<0.05). EIM parameters showed good correlation with reduced standard physiological and electrophysiological measures of muscle health. Our study suggests that EIM is sensitive to aged-related muscle change and may represent a convenient and valuable method of quantifying loss of muscle health.
Collapse
Affiliation(s)
- W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rebecca S. Taylor
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janice A. Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Handheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel Syndrome. Ann Biomed Eng 2017; 45:1572-1580. [DOI: 10.1007/s10439-017-1819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
|
15
|
Li Z, Tian D, Chen L, Wang X, Jiang L, Yu Y. Electrical impedance myography for discriminating traumatic peripheral nerve injury in the upper extremity. Clin Neurophysiol 2017; 128:384-390. [DOI: 10.1016/j.clinph.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/01/2016] [Accepted: 11/12/2016] [Indexed: 12/14/2022]
|
16
|
Sanchez B, Rutkove SB. Electrical Impedance Myography and Its Applications in Neuromuscular Disorders. Neurotherapeutics 2017; 14:107-118. [PMID: 27812921 PMCID: PMC5233633 DOI: 10.1007/s13311-016-0491-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrical impedance myography (EIM) refers to the specific application of electrical bioimpedance techniques for the assessment of neuromuscular disorders. In EIM, a weak, high-frequency electrical current is applied to a muscle or muscle group of interest and the resulting voltages measured. Among its advantages, the technique can be used noninvasively across a variety of disorders and requires limited subject cooperation and evaluator training to obtain accurate and repeatable data. Studies in both animals and human subjects support its potential utility as a primary diagnostic tool, as well as a biomarker for clinical trial or individual patient use. This review begins by providing an overview of the current state and technological advances in electrical impedance myography and its specific application to the study of muscle. We then provide a summary of the clinical and preclinical applications of EIM for neuromuscular conditions, and conclude with an evaluation of ongoing research efforts and future developments.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B Rutkove
- Department of Neurology, Division of Neuromuscular Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy. PLoS One 2016; 11:e0166803. [PMID: 27870893 PMCID: PMC5117715 DOI: 10.1371/journal.pone.0166803] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disorder that causes progressive muscle atrophy and weakness. Using adeno-associated virus-mediated gene transfer, we evaluated the potential to improve skeletal muscle weakness via systemic, postnatal inhibition of either myostatin or all signaling via the activin receptor type IIB (ActRIIB). After demonstrating elevated p-SMAD3 content and differential content of ActRIIB ligands, 4-week-old male C/C SMA model mice were treated intraperitoneally with 1x1012 genome copies of pseudotype 2/8 virus encoding a soluble form of the ActRIIB extracellular domain (sActRIIB) or protease-resistant myostatin propeptide (dnMstn) driven by a liver specific promoter. At 12 weeks of age, muscle mass and function were improved in treated C/C mice by both treatments, compared to controls. The fast fiber type muscles had a greater response to treatment than did slow muscles, and the greatest therapeutic effects were found with sActRIIB treatment. Myostatin/activin inhibition, however, did not rescue C/C mice from the reduction in motor unit numbers of the tibialis anterior muscle. Collectively, this study indicates that myostatin/activin inhibition represents a potential therapeutic strategy to increase muscle mass and strength, but not neuromuscular junction defects, in less severe forms of SMA.
Collapse
|
18
|
Li J, Pacheck A, Sanchez B, Rutkove SB. Single and modeled multifrequency electrical impedance myography parameters and their relationship to force production in the ALS SOD1G93A mouse. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:397-403. [PMID: 27077943 PMCID: PMC5004347 DOI: 10.3109/21678421.2016.1165258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The relationship between muscle force production in ALS SOD1G93A mice and single and modeled multifrequency electrical impedance myography (EIM) parameters is unknown. We evaluated the relationship between multifrequency EIM data and paw grip and in situ force measurements, as well to standard measures including body weight and compound motor action potential (CMAP) amplitude. METHODS Twenty-nine SOD1 G93A mice aged 13-18 weeks (approximately 4-5 per week) and a group of similarly aged wild-type mice (N = 7) were studied with single and multifrequency EIM, CMAP, front and hind-limb paw grip measures, and in situ force measurements of the gastrocnemius. RESULTS Significant differences among WT, presymptomatic, and symptomatic ALS animals were identified for all standard measures and single 50 kHz frequency EIM parameters. Of the modeled multifrequency measures, the center frequency, fc , an index of cell size, showed the strongest relationship to force output. The two other multifrequency parameters corresponding to cell size distribution and cell density showed consistent although mostly non-significant differences. CONCLUSION Reductions in force are reflected in single 50 kHz impedance values and in the fc. These data support the construct validity of EIM as an assessment tool of muscle dysfunction in diseases associated with motor neuron loss.
Collapse
Affiliation(s)
- Jia Li
- a From the Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA 02215 , USA
| | - Adam Pacheck
- a From the Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA 02215 , USA
| | - Benjamin Sanchez
- a From the Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA 02215 , USA
| | - Seward B Rutkove
- a From the Department of Neurology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA 02215 , USA
| |
Collapse
|
19
|
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, Swoboda KJ, Reyna SP, Sakonju A, Darras BT, Shell R, Kuntz N, Castro D, Iannaccone ST, Parsons J, Connolly AM, Chiriboga CA, McDonald C, Burnette WB, Werner K, Thangarajh M, Shieh PB, Finanger E, Cudkowicz ME, McGovern MM, McNeil DE, Finkel R, Kaye E, Kingsley A, Renusch SR, McGovern VL, Wang X, Zaworski PG, Prior TW, Burghes AHM, Bartlett A, Kissel JT. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol 2016; 3:132-45. [PMID: 26900585 PMCID: PMC4748311 DOI: 10.1002/acn3.283] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE This study prospectively assessed putative promising biomarkers for use in assessing infants with spinal muscular atrophy (SMA). METHODS This prospective, multi-center natural history study targeted the enrollment of SMA infants and healthy control infants less than 6 months of age. Recruitment occurred at 14 centers within the NINDS National Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) Network. Infant motor function scales and putative electrophysiological, protein and molecular biomarkers were assessed at baseline and subsequent visits. RESULTS Enrollment began November, 2012 and ended September, 2014 with 26 SMA infants and 27 healthy infants enrolled. Baseline demographic characteristics of the SMA and control infant cohorts aligned well. Motor function as assessed by the Test for Infant Motor Performance Items (TIMPSI) and the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) revealed significant differences between the SMA and control infants at baseline. Ulnar compound muscle action potential amplitude (CMAP) in SMA infants (1.4 ± 2.2 mV) was significantly reduced compared to controls (5.5 ± 2.0 mV). Electrical impedance myography (EIM) high-frequency reactance slope (Ohms/MHz) was significantly higher in SMA infants than controls SMA infants had lower survival motor neuron (SMN) mRNA levels in blood than controls, and several serum protein analytes were altered between cohorts. INTERPRETATION By the time infants were recruited and presented for the baseline visit, SMA infants had reduced motor function compared to controls. Ulnar CMAP, EIM, blood SMN mRNA levels, and serum protein analytes were able to distinguish between cohorts at the enrollment visit.
Collapse
Affiliation(s)
- Stephen J Kolb
- Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio; Department of Biological Chemistry & Pharmacology The Ohio State University Wexner Medical Center Columbus Ohio
| | - Christopher S Coffey
- Department of Biostatistics Neuro NEXT Data Coordinating Center University of Iowa Iowa City Iowa
| | - Jon W Yankey
- Department of Biostatistics Neuro NEXT Data Coordinating Center University of Iowa Iowa City Iowa
| | - Kristin Krosschell
- Departments of Physical Therapy and Human Movement Sciences and Pediatrics Northwestern University Feinberg School of Medicine Chicago Illinois
| | - W David Arnold
- Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio; Department of Physical Medicine and Rehabilitation The Ohio State University Wexner Medical Center Columbus Ohio
| | - Seward B Rutkove
- Department of Neurology Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Kathryn J Swoboda
- Departments of Neurology and Pediatrics University of Utah Salt Lake City Utah; Department of Neurology Neuro NEXT Clinical Coordinating Center Massachusetts General Hospital Boston Massachusetts
| | - Sandra P Reyna
- Departments of Neurology and Pediatrics University of Utah Salt Lake City Utah; Department of Neurology Neuro NEXT Clinical Coordinating Center Massachusetts General Hospital Boston Massachusetts
| | - Ai Sakonju
- Departments of Neurology and Pediatrics University of Utah Salt Lake City Utah
| | - Basil T Darras
- Department of Neurology Boston Children's Hospital Boston Massachusetts
| | | | - Nancy Kuntz
- Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois
| | | | | | - Julie Parsons
- Children's Hospital Colorado, University of Colorado School of Medicine Aurora Colorado
| | - Anne M Connolly
- Washington University School of Medicine in St. Louis St. Louis Missouri
| | - Claudia A Chiriboga
- Department of Neurology Columbia College of Physicians and Surgeons New York New York
| | | | | | | | | | - Perry B Shieh
- University of California - Los Angeles Los Angeles California
| | | | - Merit E Cudkowicz
- Department of Neurology Neuro NEXT Clinical Coordinating Center Massachusetts General Hospital Boston Massachusetts
| | - Michelle M McGovern
- Department of Neurology Neuro NEXT Clinical Coordinating Center Massachusetts General Hospital Boston Massachusetts
| | - D Elizabeth McNeil
- National Institute of Neurological Disorders and Stroke Bethesda Maryland
| | | | - Edward Kaye
- Sarepta Therapeutics Cambridge Massachusetts
| | - Allison Kingsley
- Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio
| | - Samantha R Renusch
- Department of Biological Chemistry & Pharmacology The Ohio State University Wexner Medical Center Columbus Ohio
| | - Vicki L McGovern
- Department of Biological Chemistry & Pharmacology The Ohio State University Wexner Medical Center Columbus Ohio
| | - Xueqian Wang
- Department of Biological Chemistry & Pharmacology The Ohio State University Wexner Medical Center Columbus Ohio
| | | | - Thomas W Prior
- Department of Molecular Pathology Ohio State Wexner Medical Center Columbus Ohio
| | - Arthur H M Burghes
- Department of Biological Chemistry & Pharmacology The Ohio State University Wexner Medical Center Columbus Ohio
| | - Amy Bartlett
- Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio
| | - John T Kissel
- Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio
| | | |
Collapse
|
20
|
Arnold W, McGovern VL, Sanchez B, Li J, Corlett KM, Kolb SJ, Rutkove SB, Burghes AH. The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy. Neurobiol Dis 2015; 87:116-23. [PMID: 26733414 DOI: 10.1016/j.nbd.2015.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/20/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Significant advances in the development of SMN-restoring therapeutics have occurred since 2010 when very effective biological treatments were reported in mouse models of spinal muscular atrophy. As these treatments are applied in human clinical trials, there is pressing need to define quantitative assessments of disease progression, treatment stratification, and therapeutic efficacy. The electrophysiological measures Compound Muscle Action Potential and Motor Unit Number Estimation are reliable measures of nerve function. In both the SMN∆7 mouse and a pig model of spinal muscular atrophy, early SMN restoration results in preservation of electrophysiological measures. Currently, clinical trials are underway in patients at post-symptomatic stages of disease progression. In this study, we present results from both early and delayed SMN restoration using clinically-relevant measures including electrical impedance myography, compound muscle action potential, and motor unit number estimation to quantify the efficacy and time-sensitivity of SMN-restoring therapy. METHODS SMA∆7 mice were treated via intracerebroventricular injection with antisense oligonucleotides targeting ISS-N1 to increase SMN protein from the SMN2 gene on postnatal day 2, 4, or 6 and compared with sham-treated spinal muscular atrophy and control mice. Compound muscle action potential and motor unit number estimation of the triceps surae muscles were performed at day 12, 21, and 30 by a single evaluator blinded to genotype and treatment. Similarly, electrical impedance myography was measured on the biceps femoris muscle at 12days for comparison. RESULTS Electrophysiological measures and electrical impedance myography detected significant differences at 12days between control and late-treated (4 or 6days) and sham-treated spinal muscular atrophy mice, but not in mice treated at 2days (p<0.01). EIM findings paralleled and correlated with compound muscle action potential and motor unit number estimation (r=0.61 and r=0.50, respectively, p<0.01). Longitudinal measures at 21 and 30days show that symptomatic therapy results in reduced motor unit number estimation associated with delayed normalization of compound muscle action potential. CONCLUSIONS The incomplete effect of symptomatic treatment is accurately identified by both electrophysiological measures and electrical impedance myography. There is strong correlation between these measures and with weight and righting reflex. This study predicts that measures of compound muscle action potential, motor unit number estimation, and electrical impedance myography are promising biomarkers of treatment stratification and effect for future spinal muscular atrophy trials. The ease of application and simplicity of electrical impedance myography compared with standard electrophysiological measures may be particularly valuable in future pediatric clinical trials.
Collapse
Affiliation(s)
- W Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Kaitlyn M Corlett
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Arthur H Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave, Columbus, OH 43210, United States; Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 363 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210, United States
| |
Collapse
|
21
|
Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy. Proc Natl Acad Sci U S A 2015; 112:E5863-72. [PMID: 26460027 DOI: 10.1073/pnas.1509758112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron 1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system.
Collapse
|
22
|
Arnold WD, Sheth KA, Wier CG, Kissel JT, Burghes AH, Kolb SJ. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles. J Vis Exp 2015. [PMID: 26436455 PMCID: PMC4676269 DOI: 10.3791/52899] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.
Collapse
Affiliation(s)
- W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Physical Medicine and Rehabilitation, The Ohio State University; Department of Neuroscience, The Ohio State University Wexner Medical Center;
| | - Kajri A Sheth
- Department of Neurology, The Ohio State University Wexner Medical Center
| | - Christopher G Wier
- Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center
| | - Arthur H Burghes
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center; Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center; Department of Neuroscience, The Ohio State University Wexner Medical Center; Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center
| |
Collapse
|
23
|
Todd AG, McElroy JA, Grange RW, Fuller DD, Walter GA, Byrne BJ, Falk DJ. Correcting Neuromuscular Deficits With Gene Therapy in Pompe Disease. Ann Neurol 2015; 78:222-34. [PMID: 25925726 PMCID: PMC4520217 DOI: 10.1002/ana.24433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We have recently reported on the pathology of the neuromuscular junction (NMJ) in Pompe disease, reflecting disruption of neuronal and muscle homeostasis as a result of glycogen accumulation. The aim of this study was to examine how the alteration of NMJ physiology contributes to Pompe disease pathology; we performed molecular, physiological, and histochemical analyses of NMJ-related measures of the tibialis anterior muscles of young-, mid-, and late-stage alpha-glucosidase (GAA)-deficient mice. METHODS We performed intramuscular injection of an adeno-associated virus (AAV)9 vector expressing GAA (AAV9-hGAA) into the tibialis anterior muscle of Gaa(-/-) mice at early, mid, and severe pathological time points. We analyzed expression of NMJ-related genes, in situ muscle force production, and clearance of glycogen in conjunction with histological assessment of the NMJ. RESULTS Our data demonstrate that AAV9-hGAA is able to replace GAA to the affected tissue and modify AChR mRNA expression, muscle force production, motor endplate area, and innervation status. Importantly, the degree of restoration for these outcomes is limited by severity of disease. Early restoration of GAA activity was most effective, whereas late correction of GAA expression was not effective in modifying parameters reflecting NMJ structure and function nor in force restoration despite resolution of glycogen storage in muscle. INTERPRETATION Our data provide new mechanistic insight into the pathology of Pompe disease and suggest that early systemic correction to both neural and muscle tissues may be essential for successful correction of neuromuscular function in Pompe disease. Ann Neurol 2015;78:222-234.
Collapse
Affiliation(s)
- Adrian G. Todd
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Robert W. Grange
- Department of Human Nutrition, Foods and Exercise, Virginia Tech University, Blacksburg, VA
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Darin J. Falk
- Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
24
|
Zhao F, Xie Q, Xu M, Wang S, Zhou J, Liu F. RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP. Biosens Bioelectron 2014; 66:238-43. [PMID: 25437358 DOI: 10.1016/j.bios.2014.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/26/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important small biological molecule associated with the healthy state of living organism. In order to realize highly sensitive and specific detection of cAMP, here an RNA aptamer and electrochemical impedance spectroscopy (EIS) based biosensor enhanced by gold nanoparticles electrodeposited on the surface of gold electrode is designed. The designed aptasensor has a wide effective measuring range from 50pM to 250pM with a detection limit of 50pM in PBS buffer, and an effective measuring range from 50nM to 1μM with a detection limit of 50nM in serum. The designed biosensor is also able to detect cAMP with high sensitivity, specificity, and stability. Since the biosensor can be easily fabricated with low cost and repeatedly used for at least two times, it owns great potential in wide application fields such as clinical test and food inspection, etc.
Collapse
Affiliation(s)
- Fulin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qingyun Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingfei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shouyu Wang
- Department of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|