1
|
Ma C, Luo C, Deng F, Yu C, Chen Y, Zhong G, Zhan Y, Nie L, Huang Y, Xia Y, Cai Z, Xu K, Cai H, Wang F, Lu Z, Zeng X, Zhu Y, Liu S. Major vault protein directly enhances adaptive immunity induced by Influenza A virus or indirectly through innate immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167441. [PMID: 39069011 DOI: 10.1016/j.bbadis.2024.167441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As we previously revealed, major vault protein (MVP) is a virus-induced host factor, and its expression is crucial for innate immune responses. Nevertheless, the function of MVP in adaptive immunity is poorly known. Here, we demonstrate that Mvp knockout mice had attenuated antibody responses and reduced survival after rechallenge with homologous influenza A virus (IAV) relative to wild-type mice. Analysis of B cell populations showed that MVP promoted germinal center (GC) responses to develop optimal antiviral humoral immunity. Although MVP-deficient T cells and dendritic cells (DCs) were not intrinsically damaged, MVP promoted activating effector T cells and T follicular helper responses and regulated specific DC subsets. These findings suggest that MVP directs an effective adaptive immune response against IAV by directly engaging in GC reactions or indirectly augmenting cellular immunity via innate immune pathways.
Collapse
Affiliation(s)
- Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yumeng Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gechang Zhong
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxin Zhan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiangtai Zeng
- Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China; Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
2
|
Mincham KT, Lauzon-Joset JF, Read JF, Holt PG, Stumbles PA, Strickland DH. Mapping Lung Hematopoietic Progenitors: Developmental Kinetics and Response to Influenza A Infection. Am J Respir Cell Mol Biol 2024; 71:219-228. [PMID: 38669465 DOI: 10.1165/rcmb.2023-0395oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024] Open
Abstract
The bone marrow is a specialized niche responsible for the maintenance of hematopoietic stem and progenitor cells during homeostasis and inflammation. Recent studies, however, have extended this essential role to the extramedullary and extravascular lung microenvironment. Here, we provide further evidence for a reservoir of hematopoietic stem and progenitor cells within the lung from Embryonic Day 18.5 until adulthood. These lung progenitors display distinct microenvironment-specific developmental kinetics compared with their bone marrow counterparts, exemplified by a rapid shift from a common myeloid to a megakaryocyte-erythrocyte progenitor-dominated niche with increasing age. In adult mice, influenza A viral infection results in a transient reduction in multipotent progenitors within the lungs, with a parallel increase in downstream granulocyte-monocyte progenitors and dendritic cell populations associated with acute viral infections. Our findings suggest that lung hematopoietic progenitors play a role in reestablishing immunological homeostasis in the respiratory mucosa, which may have significant clinical implications for maintaining pulmonary health after inflammatory perturbation.
Collapse
Affiliation(s)
- Kyle T Mincham
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jean-Francois Lauzon-Joset
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - James F Read
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Patrick G Holt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia; and
| | - Philip A Stumbles
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Deborah H Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Al-Shalan HAM, Zhou L, Dong Z, Wang P, Nicholls PK, Boughton B, Stumbles PA, Greene WK, Ma B. Systemic perturbations in amino acids/amino acid derivatives and tryptophan pathway metabolites associated with murine influenza A virus infection. Virol J 2023; 20:270. [PMID: 37990229 PMCID: PMC10664681 DOI: 10.1186/s12985-023-02239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is the only influenza virus causing flu pandemics (i.e., global epidemics of flu disease). Influenza (the flu) is a highly contagious disease that can be deadly, especially in high-risk groups. Worldwide, these annual epidemics are estimated to result in about 3 to 5 million cases of severe illness and in about 290,000 to 650,000 respiratory deaths. We intend to reveal the effect of IAV infection on the host's metabolism, immune response, and neurotoxicity by using a mouse IAV infection model. METHODS 51 metabolites of murine blood plasma (33 amino acids/amino acid derivatives (AADs) and 18 metabolites of the tryptophan pathway) were analyzed by using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry with Electrospray Ionization at the acute (7 days post-infection (dpi)), resolution (14 dpi), and recovery (21 dpi) stages of the virus infection in comparison with controls. RESULTS Among the 33 biogenic amino acids/AADs, the levels of five amino acids/AADs (1-methylhistidine, 5-oxoproline, α-aminobutyric acid, glutamine, and taurine) increased by 7 dpi, whereas the levels of ten amino acids/AADs (4-hydroxyproline, alanine, arginine, asparagine, cysteine, citrulline, glycine, methionine, proline, and tyrosine) decreased. By 14 dpi, the levels of one AAD (3-methylhistidine) increased, whereas the levels of five amino acids/AADs (α-aminobutyric acid, aminoadipic acid, methionine, threonine, valine) decreased. Among the 18 metabolites from the tryptophan pathway, the levels of kynurenine, quinolinic acid, hydroxykynurenine increased by 7 dpi, whereas the levels of indole-3-acetic acid and nicotinamide riboside decreased. CONCLUSIONS Our data may facilitate understanding the molecular mechanisms of host responses to IAV infection and provide a basis for discovering potential new mechanistic, diagnostic, and prognostic biomarkers and therapeutic targets for IAV infection.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Lu Zhou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhifan Dong
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Berin Boughton
- Australian National Phenome Centre, Computational and Systems Medicine, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Philip A Stumbles
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
4
|
Al-Shalan HAM, Hu D, Wang P, Uddin J, Chopra A, Greene WK, Ma B. Transcriptomic Profiling of Influenza A Virus-Infected Mouse Lung at Recovery Stage Using RNA Sequencing. Viruses 2023; 15:2198. [PMID: 38005876 PMCID: PMC10675624 DOI: 10.3390/v15112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad 10071, Iraq
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Jasim Uddin
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Abha Chopra
- Genomics Core Research Facility, Health Futures Institute, Murdoch University, Murdoch, WA 6149, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
5
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
6
|
Erjefält JS, de Souza Xavier Costa N, Jönsson J, Cozzolino O, Dantas KC, Clausson CM, Siddhuraj P, Lindö C, Alyamani M, Lombardi SCFS, Mendroni Júnior A, Antonangelo L, Faria CS, Duarte-Neto AN, de Almeida Monteiro RA, Rebello Pinho JR, Gomes-Gouvêa MS, Verciano Pereira R, Monteiro JS, Setubal JC, de Oliveira EP, Theodoro Filho J, Sanden C, Orengo JM, Sleeman MA, da Silva LFF, Saldiva PHN, Dolhnikoff M, Mauad T. Diffuse alveolar damage patterns reflect the immunological and molecular heterogeneity in fatal COVID-19. EBioMedicine 2022; 83:104229. [PMID: 36027872 PMCID: PMC9398470 DOI: 10.1016/j.ebiom.2022.104229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. Methods We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. Findings Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. Interpretation Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. Funding CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.
Collapse
Affiliation(s)
- Jonas S Erjefält
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden; Department of Allergology and Respiratory Medicine, Lund University, Sweden
| | - Natália de Souza Xavier Costa
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Olga Cozzolino
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Katia Cristina Dantas
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carl-Magnus Clausson
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Premkumar Siddhuraj
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | | | - Manar Alyamani
- Unit of Airway inflammation, Department of Experimental Medicine Sciences, Lund University, Sweden
| | - Suzete Cleusa Ferreira Spina Lombardi
- Divisão de Pesquisa & Medicina Transfusional, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Mendroni Júnior
- Divisão de Pesquisa & Medicina Transfusional, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Laboratório Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leila Antonangelo
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Divisão de Patologia Clínica - Departamento de Patologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Silvério Faria
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - João Renato Rebello Pinho
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michele Soares Gomes-Gouvêa
- Departamento de Gastroenterologia (LIM-07), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberta Verciano Pereira
- Laboratório de Investigação Médica (LIM03), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química Universidade de São Paulo, São Paulo, Brazil
| | - Ellen Pierre de Oliveira
- Departamento de Cardiopneumologia, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jair Theodoro Filho
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Luiz Fernando Ferraz da Silva
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZC, Rotolo L, Echeverri ES, Peck HE, Ni H, Yoon JK, Kim Y, Santangelo PJ, Dahlman JE. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng 2021; 5:1059-1068. [PMID: 34616046 PMCID: PMC10197923 DOI: 10.1038/s41551-021-00786-x] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022]
Abstract
Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics.
Collapse
Affiliation(s)
- Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jared Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Marine Z C Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Rotolo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jeong-Kee Yoon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - YongTae Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
de Jong E, Lauzon-Joset JF, Leffler J, Serralha M, Larcombe AN, Christophersen CT, Holt PG, Strickland DH, Bosco A. IRF7-Associated Immunophenotypes Have Dichotomous Responses to Virus/Allergen Coexposure and OM-85-Induced Reprogramming. Front Immunol 2021; 12:699633. [PMID: 34367159 PMCID: PMC8339879 DOI: 10.3389/fimmu.2021.699633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
High risk for virus-induced asthma exacerbations in children is associated with an IRF7lo immunophenotype, but the underlying mechanisms are unclear. Here, we applied a Systems Biology approach to an animal model comprising rat strains manifesting high (BN) versus low susceptibility (PVG) to experimental asthma, induced by virus/allergen coexposure, to elucidate the mechanism(s)-of-action of the high-risk asthma immunophenotype. We also investigated potential risk mitigation via pretreatment with the immune training agent OM-85. Virus/allergen coexposure in low-risk PVG rats resulted in rapid and transient airways inflammation alongside IRF7 gene network formation. In contrast, responses in high-risk BN rats were characterized by severe airways eosinophilia and exaggerated proinflammatory responses that failed to resolve, and complete absence of IRF7 gene networks. OM-85 had more profound effects in high-risk BN rats, inducing immune-related gene expression changes in lung at baseline and reducing exaggerated airway inflammatory responses to virus/allergen coexposure. In low-risk PVG rats, OM-85 boosted IRF7 gene networks in the lung but did not alter baseline gene expression or cellular influx. Distinct IRF7-associated asthma risk immunophenotypes have dichotomous responses to virus/allergen coexposure and respond differentially to OM-85 pretreatment. Extrapolating to humans, our findings suggest that the beneficial effects OM-85 pretreatment may preferentially target those in high-risk subgroups.
Collapse
Affiliation(s)
- Emma de Jong
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| | - Jean-Francois Lauzon-Joset
- Telethon Kids Institute, Perth, WA, Australia.,Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Jonatan Leffler
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| | | | - Alexander N Larcombe
- Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Claus T Christophersen
- WA Human Microbiome Collaboration Centre, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Centre for Integrative Metabolomics and Computational Biology, School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | | | - Anthony Bosco
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
9
|
Lauzon-Joset JF, Mincham KT, Scott NM, Khandan Y, Stumbles PA, Holt PG, Strickland DH. Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OM-85. Clin Transl Immunology 2021; 10:e1303. [PMID: 34249358 PMCID: PMC8248556 DOI: 10.1002/cti2.1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Incomplete maturation of immune regulatory functions at birth is antecedent to the heightened risk for severe respiratory infections during infancy. Our forerunner animal model studies demonstrated that maternal treatment with the microbial‐derived immune training agent OM‐85 during pregnancy promotes accelerated postnatal maturation of mechanisms that regulate inflammatory processes in the offspring airways. Here, we aimed to provide proof of concept for a novel solution to reduce the burden and potential long‐term sequelae of severe early‐life respiratory viral infection through maternal oral treatment during pregnancy with OM‐85, already in widespread human clinical use. Methods In this study, we performed flow cytometry and targeted gene expression (RT‐qPCR) analysis on lungs from neonatal offspring whose mothers received oral OM‐85 treatment during pregnancy. We next determined whether neonatal offspring from OM‐85 treated mothers demonstrate enhanced protection against lethal lower respiratory infection with mouse‐adapted rhinovirus (vMC0), and associated lung immune changes. Results Offspring from mothers treated with OM‐85 during pregnancy display accelerated postnatal seeding of lung myeloid populations demonstrating upregulation of function‐associated markers. Offspring from OM‐85 mothers additionally exhibit enhanced expression of TLR4/7 and the IL‐1β/NLRP3 inflammasome complex within the lung. These treatment effects were associated with enhanced capacity to clear an otherwise lethal respiratory viral infection during the neonatal period, with concomitant regulation of viral‐induced IFN response intensity. Conclusion These results demonstrate that maternal OM‐85 treatment protects offspring against lethal neonatal respiratory viral infection by accelerating development of innate immune mechanisms crucial for maintenance of local immune homeostasis in the face of pathogen challenge.
Collapse
Affiliation(s)
- Jean-Francois Lauzon-Joset
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada.,Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Kyle T Mincham
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Naomi M Scott
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Yasmine Khandan
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Philip A Stumbles
- Telethon Kids Institute University of Western Australia Nedlands WA Australia.,Medical, Molecular and Forensic Sciences Murdoch University Perth WA Australia
| | - Patrick G Holt
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | | |
Collapse
|
10
|
Lauzon-Joset JF, Scott NM, Mincham KT, Stumbles PA, Holt PG, Strickland DH. Pregnancy Induces a Steady-State Shift in Alveolar Macrophage M1/M2 Phenotype That Is Associated With a Heightened Severity of Influenza Virus Infection: Mechanistic Insight Using Mouse Models. J Infect Dis 2020; 219:1823-1831. [PMID: 30576502 DOI: 10.1093/infdis/jiy732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection during pregnancy is associated with enhanced disease severity. However, the underlying mechanisms are still not fully understood. We hypothesized that normal alveolar macrophage (AM) functions, which are central to maintaining lung immune homeostasis, are altered during pregnancy and that this dysregulation contributes to the increased inflammatory response to influenza virus infection. METHODS Time-mated BALB/c mice were infected with a low dose of H1N1 influenza A virus at gestation day 9.5. Inflammatory cells in bronchoalveolar lavage (BAL) fluid were assessed by flow cytometry. RESULTS Our findings confirm previous reports of increased severity of influenza virus infection in pregnant mice. The heightened inflammatory response detected in BAL fluid from infected pregnant mice was characterized by neutrophil-rich inflammation with concomitantly reduced numbers of AM, which were slower to return to baseline counts, compared with nonpregnant infected mice. The increased infection severity and inflammatory responses to influenza during pregnancy were associated with a pregnancy-induced shift in AM phenotype at homeostatic baseline, from the M1 (ie, classical activation) state toward the M2 (ie, alternative activation) state, as evidence by increased expression of CD301 and reduced levels of CCR7. CONCLUSION These results show that pregnancy is associated with an alternatively activated phenotype of AM before infection, which may contribute to heightened disease severity.
Collapse
Affiliation(s)
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, Nedlands
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Medicine, University of Western Australia, Crawley
| | - Philip A Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands.,School of Veterinary and Life Science, Murdoch University, Perth, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands
| | | |
Collapse
|
11
|
Buttignol M, Pires-Neto RC, Rossi E Silva RC, Albino MB, Dolhnikoff M, Mauad T. Airway and parenchyma immune cells in influenza A(H1N1)pdm09 viral and non-viral diffuse alveolar damage. Respir Res 2017; 18:147. [PMID: 28774302 PMCID: PMC5543730 DOI: 10.1186/s12931-017-0630-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background Diffuse alveolar damage (DAD), which is the histological surrogate for acute respiratory distress syndrome (ARDS), has a multifactorial aetiology. Therefore it is possible that the immunopathology differs among the various presentations of DAD. The aim of this study is to compare lung immunopathology of viral (influenza A(H1N1)pdm09) to non-viral, extrapulmonary aetiologies in autopsy cases with DAD. Methods The lung tissue of 44 patients, was divided in the H1N1 group (n = 15) characterized by severe pulmonary injury due to influenza A(H1N1)pdm09 infection; the ARDS group (n = 13), characterized by patients with DAD due to non-pulmonary causes; and the Control group (n = 16), consisting of patients with non-pulmonary causes of death. Immunohistochemistry and image analysis were used to quantify, in the parenchyma and small airways, several immune cell markers. Results Both DAD groups had higher expression of neutrophils and macrophages in parenchyma and small airways. However, there was a higher expression of CD4+ and CD8+ T lymphocytes, CD83+ dendritic cells, granzyme A+ and natural killer + cell density in the lung parenchyma of the H1N1 group (p < 0.05). In the small airways, there was a lower cell density of tryptase + mast cells and dendritic + cells and an increase of IL-17 in both DAD groups (p < 0.05). Conclusion DAD due to viral A(H1N1)pdm09 is associated with a cytotoxic inflammatory phenotype, with partially divergent responses in the parenchyma relative to the small airways. In non-viral DAD, main immune cell alterations were found at the small airway level, reinforcing the role of the small airways in the pathogenesis of the exudative phase of DAD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0630-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monique Buttignol
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil.
| | - Ruy Camargo Pires-Neto
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil
| | - Renata Calciolari Rossi E Silva
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil
| | - Marina Ballarin Albino
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil
| | - Marisa Dolhnikoff
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil
| | - Thais Mauad
- Departament of Pathology, University of São Paulo - School of Medicine (FMUSP), Av. Dr. Arnaldo, 455 - 1 andar, sala 1155, São Paulo, SP, 01246903, Brazil
| |
Collapse
|
12
|
Scott NM, Lauzon-Joset JF, Jones AC, Mincham KT, Troy NM, Leffler J, Serralha M, Prescott SL, Robertson SA, Pasquali C, Bosco A, Holt PG, Strickland DH. Protection against maternal infection-associated fetal growth restriction: proof-of-concept with a microbial-derived immunomodulator. Mucosal Immunol 2017; 10:789-801. [PMID: 27759021 DOI: 10.1038/mi.2016.85] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023]
Abstract
Infection-associated inflammatory stress during pregnancy is the most common cause of fetal growth restriction and/or miscarriage. Treatment strategies for protection of at-risk mothers are limited to a narrow range of vaccines, which do not cover the bulk of the common pathogens most frequently encountered. Using mouse models, we demonstrate that oral treatment during pregnancy with a microbial-derived immunomodulator (OM85), currently used clinically for attenuation of infection-associated airway inflammatory symptoms in infants-adults, markedly reduces risk for fetal loss/growth restriction resulting from maternal challenge with bacterial lipopolysaccharide or influenza. Focusing on LPS exposure, we demonstrate that the key molecular indices of maternal inflammatory stress, notably high levels of RANTES, MIP-1α, CCL2, KC, and G-CSF (granulocyte colony-stimulating factor) in gestational tissues/serum, are abrogated by OM85 pretreatment. Systems-level analyses conducted in parallel using RNASeq revealed that OM85 pretreatment selectively tunes LPS-induced activation in maternal gestational tissues for attenuated expression of TNF, IL1, and IFNG-driven proinflammatory networks, without constraining Type1-IFN-associated networks central to first-line antimicrobial defense. This study suggests that broad-spectrum protection-of-pregnancy against infection-associated inflammatory stress, without compromising capacity for efficient pathogen eradication, represents an achievable therapeutic goal.
Collapse
Affiliation(s)
- N M Scott
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - J F Lauzon-Joset
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - A C Jones
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - K T Mincham
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - N M Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - J Leffler
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - M Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - S L Prescott
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, West Perth, Western Australia, Australia
| | - S A Robertson
- Robinson Research Institute and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - C Pasquali
- OM Pharma, SA Geneva, Geneva, Switzerland
| | - A Bosco
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - P G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| | - D H Strickland
- Telethon Kids Institute, The University of Western Australia, West Perth, Western Australia, Australia
| |
Collapse
|
13
|
Pociask DA, Robinson KM, Chen K, McHugh KJ, Clay ME, Huang GT, Benos PV, Janssen-Heininger YMW, Kolls JK, Anathy V, Alcorn JF. Epigenetic and Transcriptomic Regulation of Lung Repair during Recovery from Influenza Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:851-863. [PMID: 28193481 DOI: 10.1016/j.ajpath.2016.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
Seasonal and pandemic influenza is a cause of morbidity and mortality worldwide. Most people infected with influenza virus display mild-to-moderate disease phenotypes and recover within a few weeks. Influenza is known to cause persistent alveolitis in animal models; however, little is known about the molecular pathways involved in this phenotype. We challenged C57BL/6 mice with influenza A/PR/8/34 and examined lung pathologic processes and inflammation, as well as transcriptomic and epigenetic changes at 21 to 60 days after infection. Influenza induced persistent parenchymal lung inflammation, alveolar epithelial metaplasia, and epithelial endoplasmic reticulum stress that were evident after the clearance of virus and resolution of morbidity. Influenza infection induced robust changes in the lung transcriptome, including a significant impact on inflammatory and extracellular matrix protein expression. Despite the robust changes in lung gene expression, preceding influenza (21 days) did not exacerbate secondary Staphylococcus aureus infection. Finally, we examined the impact of influenza on miRNA expression in the lung and found an increase in miR-155. miR-155 knockout mice recovered from influenza infection faster than controls and had decreased lung inflammation and endoplasmic reticulum stress. These data illuminate the dynamic molecular changes in the lung in the weeks after influenza infection and characterize the repair process, identifying a novel role for miR-155.
Collapse
Affiliation(s)
- Derek A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Keven M Robinson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kong Chen
- Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Michelle E Clay
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Grace T Huang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; PhD Program in Computational Biology, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jay K Kolls
- Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Vikas Anathy
- Department of Pathology, University of Vermont, Burlington, Vermont
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
| |
Collapse
|