1
|
Pienkowski T, Golonko A, Bolkun L, Wawrzak-Pienkowska K, Szczerbinski L, Kretowski A, Ciborowski M, Lewandowski W, Priebe W, Swislocka R. Investigation into biased signaling, glycosylation, and drug vulnerability of acute myeloid leukemia. Pharmacol Ther 2025; 270:108848. [PMID: 40194743 DOI: 10.1016/j.pharmthera.2025.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Understanding and harnessing biased signaling offers significant potential for developing novel therapeutic strategies or enhancing existing treatments. By managing biased signaling, it is possible to minimize adverse effects, including toxicity, and to optimize therapeutic outcomes by selectively targeting beneficial pathways. In the context of acute myeloid leukemia (AML), a highly aggressive blood cancer characterized by the rapid proliferation of abnormal myeloid cells in the bone marrow and blood, the dysregulation of these signaling pathways, particularly those involving G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), significantly contributes to disease progression and therapeutic resistance. Traditional therapies for AML often struggle with resistance and toxicity, leading to poor patient outcomes. However, by exploiting the concept of biased signaling, researchers may be able to design drugs that selectively activate pathways that inhibit cancer cell growth while avoiding those that contribute to resistance or toxicity. Glycosylation, a key post-translational modification (PTM), plays a crucial role in biased signaling by altering receptor conformation and ligand-binding affinity, thereby affecting the outcome of biased signaling. Chemokine receptors like CXCR4, which are often overexpressed and heavily glycosylated in AML, serve as targets for therapeutic intervention. By externally inducing or inhibiting specific PTMs, it may be possible to further refine therapeutic strategies, unlocking new possibilities for developing more effective and less toxic treatments. This review highlights the importance of understanding the dynamic relationship between glycosylation and biased signaling in AML, which is essential for the development of more effective treatments and overcoming drug resistance, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Aleksandra Golonko
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland; Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Wawrzak-Pienkowska
- Department of Gastroenterology, Hepatology and Internal Diseases, Voivodeship Hospital in Bialystok, 15-278 Bialystok, Poland; Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Wlodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| |
Collapse
|
2
|
D'Antongiovanni V, Fornai M, Colucci R, Nericcio A, Benvenuti L, Di Salvo C, Segnani C, Pierucci C, Ippolito C, Nemeth ZH, Haskó G, Bernardini N, Antonioli L, Pellegrini C. Enteric glial NLRP3 inflammasome contributes to gut mucosal barrier alterations in a mouse model of diet-induced obesity. Acta Physiol (Oxf) 2025; 241:e14232. [PMID: 39287080 DOI: 10.1111/apha.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
AIM In the present study, we investigated the involvement of NLRP3 inflammasome in the intestinal epithelial barrier (IEB) changes associated with obesity, and its role in the interplay between enteric glia and intestinal epithelial cells (IECs). METHODS Wild-type C57BL/6J and NLRP3-KO (-/-) mice were fed with high-fat diet (HFD) or standard diet for 8 weeks. Colonic IEB integrity and inflammasome activation were assessed. Immunolocalization of colonic mucosal GFAP- and NLRP3-positive cells along with in vitro coculture experiments with enteric glial cells (EGCs) and IECs allowed to investigate the potential link between altered IEB, enteric gliosis, and NLRP3 activation. RESULTS HFD mice showed increased body weight, altered IEB integrity, increased GFAP-positive glial cells, and NLRP3 inflammasome hyperactivation. HFD-NLRP3-/- mice showed a lower increase in body weight, an improvement in IEB integrity and an absence of enteric gliosis. Coculture experiments showed that palmitate and lipopolysaccharide contribute to IEB damage and promote enteric gliosis with consequent hyperactivation of enteric glial NLRP3/caspase-1/IL-1β signaling. Enteric glial-derived IL-1β release exacerbates the IEB alterations. Such an effect was abrogated upon incubation with anakinra (IL-1β receptor antagonist) and with conditioned medium derived from silenced-NLRP3 glial cells. CONCLUSION HFD intake elicits mucosal enteric gliotic processes characterized by a hyperactivation of NLRP3/caspase-1/IL-1β signaling pathway, that contributes to further exacerbate the disruption of intestinal mucosal barrier integrity. However, we cannot rule out the contribution of NLRP3 inflammasome activation from other cells, such as immune cells, in IEB alterations associated with obesity. Overall, our results suggest that enteric glial NLRP3 inflammasome might represent an interesting molecular target for the development of novel pharmacological approaches aimed at managing the enteric inflammation and intestinal mucosal dysfunctions associated with obesity.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clarissa Pierucci
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Zoltan H Nemeth
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Di Salvo C, D'Antongiovanni V, Benvenuti L, Fornai M, Valdiserra G, Natale G, Ryskalin L, Lucarini E, Mannelli LDC, Ghelardini C, Colucci R, Haskó G, Pellegrini C, Antonioli L. The pharmacological blockade of P2X4 receptor as a viable approach to manage visceral pain in a rat model of colitis. J Drug Target 2024; 32:953-963. [PMID: 38864378 DOI: 10.1080/1061186x.2024.2367563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1β levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In in vitro studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1β axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis via NLRP3/IL-1β axis inhibition.
Collapse
Affiliation(s)
- Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
D'Antongiovanni V, Pellegrini C, Benvenuti L, Fornai M, Di Salvo C, Natale G, Ryskalin L, Bertani L, Lucarini E, Di Cesare Mannelli L, Ghelardini C, Nemeth ZH, Haskó G, Antonioli L. Anti-inflammatory Effects of Novel P2X4 Receptor Antagonists, NC-2600 and NP-1815-PX, in a Murine Model of Colitis. Inflammation 2022; 45:1829-1847. [PMID: 35338432 PMCID: PMC9197920 DOI: 10.1007/s10753-022-01663-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
The pharmacological blockade of P2X4 receptors has shown potential benefits in the management of several immune/inflammatory diseases. However, data regarding the involvement of P2X4 receptors in the pathophysiological mechanisms of action in intestinal inflammation are not well defined. We aimed to evaluate the anti-inflammatory effects of two novel and selective P2X4 receptor antagonists, NC-2600 and NP-1815-PX, and characterize the molecular mechanisms of their action in a murine model of 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis. These two drugs and dexamethasone (DEX) were administered orally for 6 days, immediately after the manifestation of DNBS. The body weight decrease, resulting from colitis, was attenuated by NC-2600 and NP-1815-PX, but not DEX. However, all three drugs attenuated the increase in spleen weight and ameliorated macroscopic and microscopic colonic tissue damage. Furthermore, all three compounds decreased tissue IL-1β levels and caspase-1 expression and activity. Colonic tissue increase of tumor necrosis factor was downregulated by DEX, while both NC-2600 and NP-1815-PX were ineffective. The reduction of occludin associated with colitis was ameliorated by NC-2600 and NP-1815-PX, but not DEX. In THP-1 cells, lipopolysaccharide and ATP upregulated IL-1β release and NLRP3, caspase-1, caspase-5, and caspase-8 activity, but not of caspase-4. These changes were prevented by NC-2600 and NP-1815-PX treatment. For the first time, the above findings show that the selective inhibition of P2X4 receptors represents a viable approach to manage bowel inflammation via the inhibition of NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa Via Roma 55, 56126 Pisa, Italy.
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Bertani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Zoltan H Nemeth
- Department of Surgery, Morristown Medical Center, Morristown, NJ, 07960, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Enteric α-synuclein impairs intestinal epithelial barrier through caspase-1-inflammasome signaling in Parkinson's disease before brain pathology. NPJ Parkinsons Dis 2022; 8:9. [PMID: 35022395 PMCID: PMC8755783 DOI: 10.1038/s41531-021-00263-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bowel inflammation, impaired intestinal epithelial barrier (IEB), and gut dysbiosis could represent early events in Parkinson’s disease (PD). This study examined, in a descriptive manner, the correlation among enteric α-synuclein, bowel inflammation, impairments of IEB and alterations of enteric bacteria in a transgenic (Tg) model of PD before brain pathology. Human A53T α-synuclein Tg mice were sacrificed at 3, 6, and 9 months of age to evaluate concomitance of enteric inflammation, IEB impairments, and enteric bacterial metabolite alterations during the early phases of α-synucleinopathy. The molecular mechanisms underlying the interplay between α-synuclein, activation of immune/inflammatory responses and IEB alterations were investigated with in vitro experiments in cell cultures. Tg mice displayed an increase in colonic levels of IL-1β, TNF, caspase-1 activity and enteric glia activation since 3 months of age. Colonic TLR-2 and zonulin-1 expression were altered in Tg mice as compared with controls. Lipopolysaccharide levels were increased in Tg animals at 3 months, while fecal butyrate and propionate levels were decreased. Co-treatment with lipopolysaccharide and α-synuclein promoted IL-1β release in the supernatant of THP-1 cells. When applied to Caco-2 cells, the THP-1-derived supernatant decreased zonulin-1 and occludin expression. Such an effect was abrogated when THP-1 cells were incubated with YVAD (caspase-1 inhibitor) or when Caco-2 were incubated with anakinra, while butyrate incubation did not prevent such decrease. Taken together, early enteric α-synuclein accumulation contributes to compromise IEB through the direct activation of canonical caspase-1-dependent inflammasome signaling. These changes could contribute both to bowel symptoms as well as central pathology.
Collapse
|
6
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Benvenuti L, Di Salvo C, Flori L, Piccarducci R, Daniele S, Martelli A, Calderone V, Martini C, Fornai M. Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2021; 12:748021. [PMID: 34658885 PMCID: PMC8511319 DOI: 10.3389/fphar.2021.748021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Palmitoylethanolamide (PEA), an endogenous lipid mediator, is emerging as a promising pharmacological agent in multiple neurodegenerative disorders for its anti-inflammatory and neuroprotective properties. However, its effects on enteric inflammation and colonic dysmotility associated with Alzheimer’s disease (AD) are lacking. This study was designed to investigate the beneficial effect of PEA administration in counteracting the enteric inflammation and relieving the bowel motor dysfunctions in an AD mouse model, SAMP8 mice. In addition, the ability of PEA in modulating the activation of enteric glial cells (EGCs), pivotally involved in the pathophysiology of bowel dysfunctions associated with inflammatory conditions, has also been examined. SAMP8 mice at 4 months of age were treated orally with PEA (5 mg/kg/day) for 2 months. SAMR1 animals were employed as controls. At the end of treatment, parameters dealing with colonic motility, inflammation, barrier integrity and AD protein accumulation were evaluated. The effect of PEA on EGCs was tested in cultured cells treated with lipopolysaccharide (LPS) plus β-amyloid 1–42 (Aβ). SAMP8 treated with PEA displayed: 1) an improvement of in vitro colonic motor activity, citrate synthase activity and intestinal epithelial barrier integrity and 2) a decrease in colonic Aβ and α-synuclein (α-syn) accumulation, S100-β expression as well as enteric IL-1β and circulating LPS levels, as compared with untreated SAMP8 mice. In EGCs, treatment with PEA counteracted the increment of S100-β, TLR-4, NF-κB p65 and IL-1β release induced by LPS and Aβ. These results suggest that PEA, under a condition of cognitive decline, prevents the enteric glial hyperactivation, reduces AD protein accumulation and counteracts the onset and progression of colonic inflammatory condition, as well as relieves intestinal motor dysfunctions and improves the intestinal epithelial barrier integrity. Therefore, PEA represents a viable approach for the management of the enteric inflammation and motor contractile abnormalities associated with AD.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Pellegrini C, Fornai M, Benvenuti L, Colucci R, Caputi V, Palazon-Riquelme P, Giron MC, Nericcio A, Garelli F, D'Antongiovanni V, Segnani C, Ippolito C, Nannipieri M, Lopez-Castejon G, Pelegrin P, Haskó G, Bernardini N, Blandizzi C, Antonioli L. NLRP3 at the crossroads between immune/inflammatory responses and enteric neuroplastic remodelling in a mouse model of diet-induced obesity. Br J Pharmacol 2021; 178:3924-3942. [PMID: 34000757 DOI: 10.1111/bph.15532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Enteric neurogenic/inflammation contributes to bowel dysmotility in obesity. We examined the role of NLRP3 in colonic neuromuscular dysfunctions in mice with high-fat diet (HFD)-induced obesity. EXPERIMENTAL APPROACH Wild-type C57BL/6J and NLRP3-KO (Nlrp3-/- ) mice were fed with HFD or standard diet for 8 weeks. The activation of inflammasome pathways in colonic tissues from obese mice was assessed. The role of NLRP3 in in vivo colonic transit and in vitro tachykininergic contractions and substance P distribution was evaluated. The effect of substance P on NLRP3 signalling was tested in cultured cells. KEY RESULTS HFD mice displayed increased body and epididymal fat weight, cholesterol levels, plasma resistin levels and plasma and colonic IL-1β levels, colonic inflammasome adaptor protein apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC) and caspase-1 mRNA expression and ASC immunopositivity in macrophages. Colonic tachykininergic contractions were enhanced in HFD mice. HFD NLRP3-/- mice developed lower increase in body and epididymal fat weight, cholesterol levels, systemic and bowel inflammation. In HFD Nlrp3-/- mice, the functional alterations of tachykinergic pathways and faecal output were normalized. In THP-1 cells, substance P promoted IL-1β release. This effect was inhibited upon incubation with caspase-1 inhibitor or NK1 antagonist and not observed in ASC-/- cells. CONCLUSION AND IMPLICATIONS In obesity, NLRP3 regulates an interplay between the shaping of enteric immune/inflammatory responses and the activation of substance P/NK1 pathways underlying the onset of colonic dysmotility. Identifying NLRP3 as a therapeutic target for the treatment of bowel symptoms related to obesity.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pablo Palazon-Riquelme
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Francesca Garelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | | | - Cristina Segnani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Lacerenza S, Ciregia F, Giusti L, Bonotti A, Greco V, Giannaccini G, D'Antongiovanni V, Fallahi P, Pieroni L, Cristaudo A, Lucacchini A, Mazzoni MR, Foddis R. Putative Biomarkers for Malignant Pleural Mesothelioma Suggested by Proteomic Analysis of Cell Secretome. Cancer Genomics Proteomics 2020; 17:225-236. [PMID: 32345664 DOI: 10.21873/cgp.20183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) a rare neoplasm linked to asbestos exposure is characterized by a poor prognosis. Soluble mesothelin is currently considered the most specific diagnostic biomarker. The aim of the study was to identify novel biomarkers by proteomic analysis of two MPM cell lines secretome. MATERIALS AND METHODS The protein patterns of MPM cells secretome were examined and compared to a non-malignant mesothelial cell line using two-dimensional gel electrophoresis coupled to mass spectrometry. Serum levels of candidate biomarkers were determined in MPM patients and control subjects. RESULTS Two up-regulated proteins involved in cancer biology, prosaposin and quiescin Q6 sulfhydryl oxidase 1, were considered candidate biomarkers. Serum levels of both proteins were significantly higher in MPM patients than control subjects. Combining the data of each receiver-operating characteristic analysis predicted a good diagnostic accuracy. CONCLUSION A panel of the putative biomarkers represents a promising tool for MPM diagnosis.
Collapse
Affiliation(s)
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Viviana Greco
- Institute of Biochemistry and Clinical Chemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Poupak Fallahi
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rudy Foddis
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Adams GN, Sharma BK, Rosenfeldt L, Frederick M, Flick MJ, Witte DP, Mosnier LO, Harmel-Laws E, Steinbrecher KA, Palumbo JS. Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J Thromb Haemost 2018; 16:2258-2269. [PMID: 30152921 PMCID: PMC6214773 DOI: 10.1111/jth.14277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 12/28/2022]
Abstract
Essentials Protease activated receptor-1 (PAR-1) has been proposed to drive cancer progression. Surprisingly, PAR-1 deletion accelerated tumor progression in two distinct experimental settings. PAR-1 deletion was shown to limit the apoptosis of transformed epithelial cells. Thrombin- and activated protein C-mediated PAR-1 activation have unique effects on tumor cell biology. SUMMARY: Background Multiple studies have implicated protease-activated receptor-1 (PAR-1), a G-protein-coupled receptor activated by proteolytic cleavage of its N-terminus, as one target coupling thrombin-mediated proteolysis to tumor progression. Objective To analyze the role of PAR-1 in the setting of two distinct spontaneously developing tumor models in mice. Methods We interbred PAR-1-deficient mice with Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, which spontaneously develop prostate tumors, and adenomatous polyposis coli Min (APCMin/+ ) mice, which spontaneously develop intestinal adenomas. Results Analyses of TRAMP mice with advanced disease (30 weeks) revealed that PAR-1 deficiency resulted in significantly larger and more aggressive prostate tumors. Prostates collected at an earlier time point (12 weeks of age) revealed that PAR-1 promotes apoptosis in transformed epithelia. In vitro analyses of TRAMP-derived cells revealed that activated protein C-mediated PAR-1 cleavage can induce tumor cell apoptosis, suggesting that tumor cell-intrinsic PAR-1 functions can limit tumor progression. Paralleling results in TRAMP mice, PAR-1-deficient APCMin/+ mice developed three-fold more adenomas than PAR-1-expressing mice, and the adenomas that formed were significantly larger. Moreover, loss of PAR-1 expression was shown to limit apoptosis in transformed intestinal epithelial cells. Conclusions Together, these results demonstrate a previously unrecognized role for PAR-1 in impeding tumor progression in vivo. These results also offer a cautionary note suggesting that long-term PAR-1 inhibition could increase malignancy risk in some contexts.
Collapse
Affiliation(s)
- Gregory N. Adams
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Malinda Frederick
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Matthew J. Flick
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - David P. Witte
- Department of Pathology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | | | - Eleana Harmel-Laws
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine
| |
Collapse
|
10
|
Bruno R, Alì G, Giannini R, Proietti A, Lucchi M, Chella A, Melfi F, Mussi A, Fontanini G. Malignant pleural mesothelioma and mesothelial hyperplasia: A new molecular tool for the differential diagnosis. Oncotarget 2018; 8:2758-2770. [PMID: 27835874 PMCID: PMC5356839 DOI: 10.18632/oncotarget.13174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare asbestos related cancer, aggressive and unresponsive to therapies. Histological examination of pleural lesions is the gold standard of MPM diagnosis, although it is sometimes hard to discriminate the epithelioid type of MPM from benign mesothelial hyperplasia (MH).This work aims to define a new molecular tool for the differential diagnosis of MPM, using the expression profile of 117 genes deregulated in this tumour.The gene expression analysis was performed by nanoString System on tumour tissues from 36 epithelioid MPM and 17 MH patients, and on 14 mesothelial pleural samples analysed in a blind way. Data analysis included raw nanoString data normalization, unsupervised cluster analysis by Pearson correlation, non-parametric Mann Whitney U-test and molecular classification by the Uncorrelated Shrunken Centroid (USC) Algorithm.The Mann-Whitney U-test found 35 genes upregulated and 31 downregulated in MPM. The unsupervised cluster analysis revealed two clusters, one composed only of MPM and one only of MH samples, thus revealing class-specific gene profiles. The Uncorrelated Shrunken Centroid algorithm identified two classifiers, one including 22 genes and the other 40 genes, able to properly classify all the samples as benign or malignant using gene expression data; both classifiers were also able to correctly determine, in a blind analysis, the diagnostic categories of all the 14 unknown samples.In conclusion we delineated a diagnostic tool combining molecular data (gene expression) and computational analysis (USC algorithm), which can be applied in the clinical practice for the differential diagnosis of MPM.
Collapse
Affiliation(s)
- Rossella Bruno
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Greta Alì
- Division of Pathological Anatomy, University Hospital of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Agnese Proietti
- Division of Pathological Anatomy, University Hospital of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Division of Pneumology, University Hospital of Pisa, Pisa, Italy
| | - Franca Melfi
- Division of Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Alfredo Mussi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy.,Division of Thoracic Surgery, University Hospital of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy.,Program of Pleuropulmonary Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8:107334-107345. [PMID: 29291033 PMCID: PMC5739818 DOI: 10.18632/oncotarget.21015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiahui Yu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shangjin Song
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
12
|
Alberio T, Pieroni L, Ronci M, Banfi C, Bongarzone I, Bottoni P, Brioschi M, Caterino M, Chinello C, Cormio A, Cozzolino F, Cunsolo V, Fontana S, Garavaglia B, Giusti L, Greco V, Lucacchini A, Maffioli E, Magni F, Monteleone F, Monti M, Monti V, Musicco C, Petrosillo G, Porcelli V, Saletti R, Scatena R, Soggiu A, Tedeschi G, Zilocchi M, Roncada P, Urbani A, Fasano M. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative. J Proteome Res 2017; 16:4319-4329. [DOI: 10.1021/acs.jproteome.7b00350] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tiziana Alberio
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| | | | - Maurizio Ronci
- IRCCS-Santa Lucia
Foundation, Rome I-00143, Italy
- Department
of Medical, Oral, and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti I-66013, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Milan I-20138, Italy
| | - Italia Bongarzone
- Department
of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133, Italy
| | - Patrizia Bottoni
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, Milan I-20138, Italy
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples I-80131, Italy
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
| | - Clizia Chinello
- Department
of Medicine and Surgery, University of Milano-Bicocca, Monza I-20900, Italy
| | - Antonella Cormio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Bari I-70125, Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Naples I-80126, Italy
| | - Vincenzo Cunsolo
- Department
of Chemical Sciences, University of Catania, Catania I-95125, Italy
| | - Simona Fontana
- Dipartimento
di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo I-90123, Italy
| | - Barbara Garavaglia
- Molecular
Neurogenetics Unit, IRCCS Foundation Neurological Institute C. Besta, Milan I-20126, Italy
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa I-56126, Italy
| | | | | | - Elisa Maffioli
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
| | - Fulvio Magni
- Department
of Medicine and Surgery, University of Milano-Bicocca, Monza I-20900, Italy
| | - Francesca Monteleone
- Dipartimento
di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo I-90123, Italy
| | - Maria Monti
- CEINGE Biotecnologie
Avanzate s.c.a.r.l., Naples I-80145, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Naples I-80126, Italy
| | - Valentina Monti
- Molecular
Neurogenetics Unit, IRCCS Foundation Neurological Institute C. Besta, Milan I-20126, Italy
| | - Clara Musicco
- Bioenergetics
and Molecular Biotechnologies (IBIOM), CNR - Institute of Biomembranes, Bari I-70126, Italy
| | - Giuseppe Petrosillo
- Bioenergetics
and Molecular Biotechnologies (IBIOM), CNR - Institute of Biomembranes, Bari I-70126, Italy
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Bari I-70125, Italy
| | - Rosaria Saletti
- Department
of Chemical Sciences, University of Catania, Catania I-95125, Italy
| | - Roberto Scatena
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Alessio Soggiu
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
| | - Gabriella Tedeschi
- Department
of Veterinary Medicine (DiMeVet), University of Milan, Milan I-20133, Italy
- Fondazione Filarete, Milan I-20139, Italy
| | - Mara Zilocchi
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Rivolta d’Adda I-26027, Italy
| | - Andrea Urbani
- IRCCS-Santa Lucia
Foundation, Rome I-00143, Italy
- Institute
of Biochemistry and Clinical Biochemistry, School of Medicine - Catholic University, Rome I-00168, Italy
| | - Mauro Fasano
- Department
of Science and High Technology, Università degli Studi dell’Insubria, Busto Arsizio I-21052, Italy
| |
Collapse
|