1
|
de Ávila MJR, López-López S, García-Blázquez A, Ruiz-García A, González-Gómez MJ, Nueda ML, Baladrón V, Pérez-Roger I, Poch E, Ballester-Lurbe B, García-Ramírez JJ, Monsalve EM, Díaz-Guerra MJM. RND3 Potentiates Proinflammatory Activation through NOTCH Signaling in Activated Macrophages. J Immunol Res 2024; 2024:2264799. [PMID: 38343633 PMCID: PMC10857877 DOI: 10.1155/2024/2264799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.
Collapse
Affiliation(s)
- María José Romero de Ávila
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Susana López-López
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
- Research Unit, University Hospital Complex of Albacete, C/Laurel s/n, 02008, Albacete, Spain
| | - Aarón García-Blázquez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Almudena Ruiz-García
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - María Julia González-Gómez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María Luisa Nueda
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Victoriano Baladrón
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - Enric Poch
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences School of Health Sciences, University Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, E-46115 Alfara del Patriarca, Valencia, Spain
| | - José Javier García-Ramírez
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - Eva M. Monsalve
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| | - María José M. Díaz-Guerra
- Medical School, Biomedicine Institute (IB-UCLM)/Biomedicine Unit, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008, Albacete, Spain
| |
Collapse
|
2
|
Sheikhshabani SH, Modarres P, Ghafouri‐Fard S, Amini‐Farsani Z, Khodaee L, Shaygan N, Amini‐Farsani Z, Omrani MD. Meta-analysis of microarray data to determine gene indicators involved in cisplatin resistance in non-small cell lung cancer. Cancer Rep (Hoboken) 2024; 7:e1970. [PMID: 38351531 PMCID: PMC10864718 DOI: 10.1002/cnr2.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Lung cancer is a major cause of cancer-related mortality worldwide, with a 5-year survival rate of approximately 22%. Cisplatin is one of the standard first-line chemotherapeutic agents for non-small cell lung cancer (NSCLC), but its efficacy is often limited by the development of resistance. Despite extensive research on the molecular mechanisms of chemoresistance, the underlying causes remain elusive and complex. AIMS We analyzed three microarray datasets to find the gene signature and key pathways related to cisplatin resistance in NSCLC. METHODS AND RESULTS We compared the gene expression of sensitive and resistant NSCLC cell lines treated with cisplatin. We found 274 DEGs, including 111 upregulated and 163 downregulated genes, in the resistant group. Gene set enrichment analysis showed the potential roles of several DEGs, such as TUBB2B, MAPK7, TUBAL3, MAP2K5, SMUG1, NTHL1, PARP3, NTRK1, G6PD, PDK1, HEY1, YTHDF2, CD274, and MAGEA1, in cisplatin resistance. Functional analysis revealed the involvement of pathways, such as gap junction, base excision repair, central carbon metabolism, and Notch signaling in the resistant cell lines. CONCLUSION We identified several molecular factors that contribute to cisplatin resistance in NSCLC cell lines, involving genes and pathways that regulate gap junction communication, DNA damage repair, ROS balance, EMT induction, and stemness maintenance. These genes and pathways could be targets for future studies to overcome cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
| | - Paratoo Modarres
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Soudeh Ghafouri‐Fard
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Amini‐Farsani
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Lavin Khodaee
- Department of Biotechnology and Plant BreedingIslamic Azad University Science and Research BranchTehranIran
| | - Nasibeh Shaygan
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Amini‐Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of StatisticsLudwig‐Maximilian‐Universität MünchenMunichGermany
- Department of StatisticsLorestan UniversityKhorramabadIran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Geng N, Qi Y, Qin W, Li S, Jin H, Jiang Y, Wang X, Wei S, Wang P. Two microRNAs of plasma-derived small extracellular vesicles as biomarkers for metastatic non-small cell lung cancer. BMC Pulm Med 2023; 23:259. [PMID: 37452310 PMCID: PMC10347730 DOI: 10.1186/s12890-023-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as potential biomarkers for metastatic non-small cell lung cancer (NSCLC). METHODS We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and ClueGO were used to predict potential pathways of DEMs. MiRNA enrichment analysis and annotation tool (miEAA) was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis was used to validate target miRNAs. RESULT NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and qRT‒PCR was applied to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly upregulated in M-NSCLC patients. CONCLUSION This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yaopu Qi
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Si Li
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Hao Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yifang Jiang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Xiuhuan Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Shanna Wei
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
4
|
Endzhievskaya S, Hsu CK, Yang HS, Huang HY, Lin YC, Hong YK, Lee JYW, Onoufriadis A, Takeichi T, Yu-Yun Lee J, Shaw TJ, McGrath JA, Parsons M. Loss of RhoE Function in Dermatofibroma Promotes Disorganized Dermal Fibroblast Extracellular Matrix and Increased Integrin Activation. J Invest Dermatol 2023:S0022-202X(23)00075-1. [PMID: 36774976 DOI: 10.1016/j.jid.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 02/12/2023]
Abstract
Dermatofibromas (DFs) are common, benign fibrous skin tumors that can occur at any skin site. In most cases, DFs are solitary and sporadic, but a few are multiple and familial, and the mechanisms leading to these lesions are currently unclear. Using exome sequencing, we have identified a heterozygous variant in a pedigree with autosomal dominant multiple familial DF within RND3 (c.692C>T,p.T231M) that encodes for the small GTPase RhoE, a regulator of the actin cytoskeleton. Expression of T231M-RhoE or RhoE depletion using CRISPR in human dermal fibroblasts increased proliferation and adhesion to extracellular matrix through enhanced β1 integrin activation and more disorganized matrix. The enzyme PLOD2 was identified as a binding partner for RhoE, and the formation of this complex was disrupted by T231M-RhoE. PLOD2 promotes collagen cross-linking and activation of β1 integrins, and depleting PLOD2 in T231M-RhoE-expressing cells reduced T231M-RhoE-mediated β1 integrin activation and led to increased matrix alignment. Immunohistochemical analysis revealed reduced expression of RhoE but increased expression of PLOD2 in the dermis of DF skin samples compared with that of the controls. Our data show that loss of RhoE function leads to increased PLOD2 activation, enhancing integrin activation and leading to a disorganized extracellular matrix, contributing to DF.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center of Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsing-San Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yu Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John Y W Lee
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Julia Yu-Yun Lee
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Hu XC, Chu J, Zhou Y, Li CC, Zhou GJ, Jiang GQ. HOXD9 transcriptionally induced UXT facilitate breast cancer progression via epigenetic modification of RND3. Cell Signal 2022; 90:110188. [PMID: 34767964 DOI: 10.1016/j.cellsig.2021.110188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ubiquitously expressed transcript (UXT) is a prefoldin-like protein. It was reported that UXT played vital role in several cancer types. However, functional role of UXT in breast cancer need further investigation. METHODS mRNA level or protein level of were determined by qRT-PCR or western blots. Proliferation of breast cancer cells was evaluated by CCK-8 assay and EdU assay. Migrative and invasive ability of cells were determined by wound healing assay and transwell assay. Transcriptional activation of UXT was determined by dual luciferase activity. The enrichment of H3K27me3 and EZH2 on the promoter of RND3 was evaluated by ChIP assay. The methylation of RND3 promoter was determined by MSP assay. In vivo function of UXT was evaluated by xenograft model. RESULTS Our results indicated that UXT was elevated in breast cancer and associated with poor prognosis. HOXD9 elevated expression of UXT via transcriptional activation. UXT knockdown impaired the proliferation, migration and invasion. Rescue experiments suggested that UXT promoted malignant phenotypes of breast cancer cells via epigenetically repressing RND3. Moreover, UXT promoted tumorigeneses and metastasis of breast cancer cell in vivo. CONCLUSION Inhibition of UXT impaired proliferation and metastasis of cancer cell via promoting RND3. Moreover, UXT epigenetically repressed the expression of RND3 via recruiting EZH2 in the promoter of RND3.
Collapse
Affiliation(s)
- Xing-Chi Hu
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, PR China; Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224000, Jiangsu Province, PR China
| | - Jian Chu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224000, Jiangsu Province, PR China
| | - Yong Zhou
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224000, Jiangsu Province, PR China
| | - Chang-Chun Li
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224000, Jiangsu Province, PR China
| | - Guang-Jun Zhou
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng 224000, Jiangsu Province, PR China
| | - Guo-Qin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, PR China.
| |
Collapse
|
6
|
Jiang W, He Y, Ma Z, Zhang Y, Zhang C, Zheng N, Tang X. hsa_circ_0008234 inhibits the progression of lung adenocarcinoma by sponging miR-574-5p. Cell Death Discov 2021; 7:123. [PMID: 34050132 PMCID: PMC8163831 DOI: 10.1038/s41420-021-00512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
circRNAs are a novel type of noncoding RNA (ncRNA) that have been identified as an important regulator of gene expression and play a part in the progression of various diseases. However, the function of circ_0008234 in lung adenocarcinoma (LUAC) remains unknown. Through the GEO (Gene Expression Omnibus) database, circ_0008234 was first found to be downregulated in LUAC tissues. It could inhibit cell growth and accelerate apoptosis in vitro and in vivo. In terms of its possible mechanism, circ_0008234 mainly was present in the cytoplasm and competed with miR-574-5p to regulate RND3 (Rho family GTPase 3). Our results revealed that circ_0008234 inhibited the progression of LUAC through a competing endogenous RNA (ceRNA)-based mechanism and provided potential biomarkers and therapeutic targets for LUAC treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Yaozhou He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| | - Zijian Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P. R. China
| | - Yu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Chengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Nianpeng Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Xing Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P. R. China.
| |
Collapse
|
7
|
Anusewicz D, Orzechowska M, Bednarek AK. Notch Signaling Pathway in Cancer-Review with Bioinformatic Analysis. Cancers (Basel) 2021; 13:cancers13040768. [PMID: 33673145 PMCID: PMC7918426 DOI: 10.3390/cancers13040768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary The Notch signaling pathway, which controls multiple cell differentiation processes during the embryonic stage and adult life, is associated with carcinogenesis and disease progression. The aim of the present study was to highlight cancer heterogeneity with respect to the Notch pathway. Our analysis concerns the effects of the Notch signaling at different levels, including core components and downstream target genes. We also demonstrate overall and disease-free survival results, pointing out the characteristics of particular Notch components. Depending on tissue context, Notch members can be either oncogenic or suppressive. We observed different expression profile core components and target genes that could be associated with distinct survival of patients. Advances in our understanding of the Notch signaling in cancer are very promising for the development of new treatment strategies for the benefit of patients. Abstract Notch signaling is an evolutionarily conserved pathway regulating normal embryonic development and homeostasis in a wide variety of tissues. It is also critically involved in carcinogenesis, as well as cancer progression. Activation of the Notch pathway members can be either oncogenic or suppressive, depending on tissue context. The present study is a comprehensive overview, extended with a bioinformatics analysis of TCGA cohorts, including breast, bladder, cervical, colon, kidney, lung, ovary, prostate and rectum carcinomas. We performed global expression profiling of the Notch pathway core components and downstream targets. For this purpose, we implemented the Uniform Manifold Approximation and Projection algorithm to reduce the dimensions. Furthermore, we determined the optimal cutpoint using Evaluate Cutpoint software to established disease-free and overall survival with respect to particular Notch members. Our results demonstrated separation between tumors and their corresponding normal tissue, as well as between tumors in general. The differentiation of the Notch pathway, at its various stages, in terms of expression and survival resulted in distinct profiles of biological processes such as proliferation, adhesion, apoptosis and epithelial to mesenchymal transition. In conclusion, whether oncogenic or suppressive, Notch signaling is proven to be associated with various types of malignancies, and thus may be of interest as a potential therapeutic target.
Collapse
|
8
|
Zhang S, Fan Y, Zhong T, Ma S. Histopathological imaging features- versus molecular measurements-based cancer prognosis modeling. Sci Rep 2020; 10:15030. [PMID: 32929170 PMCID: PMC7490375 DOI: 10.1038/s41598-020-72201-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
For lung and many other cancers, prognosis is essentially important, and extensive modeling has been carried out. Cancer is a genetic disease. In the past 2 decades, diverse molecular data (such as gene expressions and DNA mutations) have been analyzed in prognosis modeling. More recently, histopathological imaging data, which is a "byproduct" of biopsy, has been suggested as informative for prognosis. In this article, with the TCGA LUAD and LUSC data, we examine and directly compare modeling lung cancer overall survival using gene expressions versus histopathological imaging features. High-dimensional penalization methods are adopted for estimation and variable selection. Our findings include that gene expressions have slightly better prognostic performance, and that most of the gene expressions are weakly correlated imaging features. This study may provide additional insight into utilizing the two types of important data in cancer prognosis modeling and into lung cancer overall survival.
Collapse
Affiliation(s)
- Sanguo Zhang
- School of Mathematics Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Fan
- School of Mathematics Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Tingyan Zhong
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Hui B, Xu Y, Zhao B, Ji H, Ma Z, Xu S, He Z, Wang K, Lu J. Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. Onco Targets Ther 2019; 12:1043-1057. [PMID: 30787623 PMCID: PMC6368419 DOI: 10.2147/ott.s188396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in various human diseases, including cancers. However, their mechanisms remain undocumented. We investigated alterations in lncRNA that may be related to pancreatic cancer (PC) through analysis of microarray data. Methods In the present study, quantitative real-time PCR analysis was used to examine the expression of taurine upregulated 1 (TUG1) in PC tissue samples and PC cell lines. In PC cell lines, MTT assays, colony formation assays, and flow cytometry were used to investigate the effects of TUG1 on proliferation, cell cycle regulation, and apoptosis. Moreover, we established a xenograft model to assess the effect of TUG1 on tumor growth in vivo. The molecular mechanism of potential target genes was detected through nuclear separation experiments, RNA immunoprecipitation (RIP), chromatin immunoprecipitation assays (ChIP), and other experimental methods. Results The findings suggest that the abnormally high expression of TUG1 in PC tissues was associated with tumor size and pathological stage. Knockdown of TUG1 blocked the cell cycle and accelerated apoptosis, thereby inhibiting the proliferation of PC cells. In addition, RIP experiments showed that TUG1 can recruit enhancer of zeste homolog 2 (EZH2) to the promoter regions of Rho family GTPase 3 (RND3) and metallothionein 2A (MT2A) and inhibit their expression at the transcriptional level. Furthermore, ChIP experiments demonstrated that EZH2 could bind to the promoter regions of RND3 and MT2A. The knockdown of TUG1 reduced this binding capacity. Conclusion In conclusion, our data suggest that TUG1 may regulate the expression of PC-associated tumor suppressor genes at the transcriptional level and these may become potential targets for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Bingqing Hui
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Benpeng Zhao
- Basic Medicine Faculty of Shanghai Jiaotong University, Core Facility of Basic Medical Sciences, Shanghai 200000, China
| | - Hao Ji
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Zhonghua Ma
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - ZhenYu He
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China, .,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China,
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210000, Jiangsu, China,
| |
Collapse
|
10
|
Zhong Y, Huang W, Du J, Wang Z, He J, Luo L. Improved Tol2-mediated enhancer trap identifies weakly expressed genes during liver and β cell development and regeneration in zebrafish. J Biol Chem 2018; 294:932-940. [PMID: 30504219 DOI: 10.1074/jbc.ra118.005568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/26/2018] [Indexed: 01/13/2023] Open
Abstract
The liver and pancreas are two major digestive organs, and among the different cell types in them, hepatocytes and the insulin-producing β cells have roles in both health and diseases. Accordingly, clinicians and researchers are very interested in the mechanisms underlying the development and regeneration of liver and pancreatic β cells. Gene and enhancer traps such as the Tol2 transposon-based system are useful for identifying genes potentially involved in developmental processes in the zebrafish model. Here, we developed a strategy that combines a Tol2-mediated enhancer trap and the Cre/loxP system by using loxP-flanked reporters driven by β cell- or hepatocyte-specific promoters and the upstream activating sequence (UAS)-driving Cre. Two double-transgenic reporter lines, Tg(ins:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus), were established to label pancreatic β cells and hepatocytes, respectively. These two double-transgenic lines were each crossed with the Tol2-enhancer trap founder lines to screen for and identify genes expressed in the β cell and hepatocytes during development. This trap system coupled with application of nitroreductase (NTR)/metronidazole (Mtz)-mediated cell ablation could identify genes expressed during regeneration. Of note, pilot enhancer traps captured transiently and weakly expressed genes such as rab3da and ensab with higher efficiencies than traditional enhancer trap systems. In conclusion, through permanent genetic labeling by Cre/loxP, this improved Tol2-mediated enhancer trap system provides a promising method to identify transiently or weakly expressed, but potentially important, genes during development and regeneration.
Collapse
Affiliation(s)
- Yadong Zhong
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Wei Huang
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Jiang Du
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Zekun Wang
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Jianbo He
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and.,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingfei Luo
- From the Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, and .,Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| |
Collapse
|
11
|
Zhai C, Shi W, Feng W, Zhu Y, Wang J, Li S, Yan X, Wang Q, Zhang Q, Chai L, Li C, Liu P, Li M. Activation of AMPK prevents monocrotaline-induced pulmonary arterial hypertension by suppression of NF-κB-mediated autophagy activation. Life Sci 2018; 208:87-95. [DOI: 10.1016/j.lfs.2018.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023]
|
12
|
Tang Q, Li M, Chen L, Bi F, Xia H. miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells. Int J Oncol 2018; 53:1732-1742. [PMID: 30066855 DOI: 10.3892/ijo.2018.4493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is a major cause of mortality worldwide and non‑small cell lung cancer (NSCLC) accounts for ~80% of all cases of lung cancer. Increasing evidence indicates that Rho family GTPase 3 (RhoE) is important in the carcinogenesis and progression of NSCLC. In addition, several studies have indicated that microRNA (miR)‑200b/c is downregulated in NSCLC cells. However, the exact mechanism remains to be elucidated. In the present study, immunohistochemistry (IHC) assays were used to analyze the RhoE and epithelial‑mesenchymal transition (EMT)‑related proteins in NSCLC tissues. Putative target sequences of the RhoE 3' untranslated region (3'UTR) for miR‑200b/c were detected using bioinformatics analysis. The mRNA expression levels of RhoE and miR‑200b/c were determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, and western blot analysis was used to detect the protein levels of RhoE in cells. The luciferase‑reporter activity of the RhoE 3'UTR was detected using a dual‑luciferase assay. A cell counting kit‑8 assay, flow cytometry and Transwell assay were used to detect cell proliferation, cell cycle, and invasion and migration ability, respectively. The IHC assays indicated that RhoE was overexpressed in NSCLC tissues. The bioinformatics analysis revealed that the RhoE 3'UTR contained a putative target site for miR‑200b/c, which was conserved across species. The results of RT‑qPCR analysis showed that the mRNA expression of RhoE was overexpressed and miR‑200b/200c was decreased in lung cancer tissues. The enhanced expression of miR‑200b or miR‑200c significantly downregulated the expression of RhoE at the mRNA and protein levels in A549 and NCI‑H1299 NSCLC cells. Furthermore, luciferase assays showed that miR‑200b and miR‑200c directly targeted the 3'UTR of RhoE. The forced expression of miR‑200b or miR‑200c markedly inhibited A549 cell and NCI‑H1299 cell proliferation, G0/G1 progression and cell invasion, which was consistent with the effects of RNA interference‑mediated RhoE knockdown in these cells. The suppression of RhoE regulated the expression of EMT‑related markers, which was consistent with the effect of miR‑200b/c in NSCLC cells, and the expression of EMT‑related proteins and RhoE were also correlated in the lung cancer tissues. Therefore, miR‑200b and miR‑200c targeted the expression of RhoE and inhibited the malignancy of NSCLC cells, and the downregulation of miR‑200b and miR‑200c may contribute to the high expression of RhoE in NSCLC.
Collapse
Affiliation(s)
- Qiulin Tang
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Chen
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Bi
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Xia
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget 2018; 7:82411-82423. [PMID: 27705942 PMCID: PMC5347701 DOI: 10.18632/oncotarget.12396] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/24/2016] [Indexed: 01/01/2023] Open
Abstract
Activation of Snail1 signaling promotes the migration and invasion of multiple tumors, including glioblastoma multiforme (GBM). However, the molecular mechanism that augments Snail1 signaling during GBM cell migration and invasion remains largely unknown. Identification of the factors that regulate Snail1 signaling is critical to block tumor cell migration and invasion. By screening human GBM specimens, we found that the expression levels of small GTPase RND3 positively correlated with the expression levels of E-cadherin and claudin, the glioblastoma migration biomarkers negatively regulated by Snail1. Downregulation of E-cadherin and claudin has been associated with the migration and invasion of GBM cells. We demonstrated that RND3 functioned as an endogenous inhibitor of the Snail-directed transcriptional regulation. RND3 physically interacted with Snail1 protein, enhanced Snail1 ubiquitination, and facilitated the protein degradation. Forced expression of RND3 inhibited Snail1 activity, which in turn blocked glioblastoma cell migration and invasion in vitro in cell culture and in vivo in GBM xenograft mice. In contrast, downregulation of RND3 augmented Snail1 activity, and subsequently decreased E-cadherin expression, eventually promoted glioblastoma cell migration and invasion. The pro-migration induced by RND3 downregulation was attenuated by Snail1 knockdown. The findings partially explain why Snail1 activity is augmented in GBM, and defines a new function of RND3 in GBM cell migration and invasion.
Collapse
|
14
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
15
|
Xu Y, Ge Z, Zhang E, Zuo Q, Huang S, Yang N, Wu D, Zhang Y, Chen Y, Xu H, Huang H, Jiang Z, Sun L. The lncRNA TUG1 modulates proliferation in trophoblast cells via epigenetic suppression of RND3. Cell Death Dis 2017; 8:e3104. [PMID: 29022920 PMCID: PMC5682669 DOI: 10.1038/cddis.2017.503] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022]
Abstract
Due to limited treatment options, pre-eclampsia (PE) is associated with fetal perinatal and maternal morbidity and mortality. During the causes of PE, failure of uterine spiral artery remodeling which might be related to functioning abnormally of trophoblast cells, result in the occurrence and progression of PE. Recently, abnormal expression of long non-coding RNAs (lncRNAs), as imperative regulators involved in human diseases progression (included PE), which has been indicated by increasing evidence. In this research, we found that TUG1, a lncRNA, was markedly reduced in placental samples from patients with PE. Loss-function assays indicated that knockdown TUG1 significantly affected cell proliferation, apoptosis, migration and network formation in vitro. RNA-seq revealed that TUG1 could affect abundant genes, and then explore the function and regulatory mechanism of TUG1 in trophoblast cells. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays validated that TUG1 can epigenetically inhibit the level of RND3 through binding to EZH2, thus promoting PE development. Therefore, via illuminating the TUG1 mechanisms underlying PE development and progression, our findings might furnish a prospective therapeutic strategy for PE intervention.
Collapse
Affiliation(s)
- Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiping Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyun Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanzi Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoqin Xu
- The Family Planning Science and Technology Research Institute, Nanjing, Jiangsu, China
| | - Huan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Zeng Y, Yin B, Wang X, Xia G, Shen Z, Gu W, Wu M. Effects of the Notch1 signaling pathway on human lung cancer A549 cells. Exp Lung Res 2017; 43:208-216. [PMID: 28718726 DOI: 10.1080/01902148.2017.1341008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate the effects of the Notch1 signaling pathway on human lung cancer A549 cells. MATERIALS AND METHODS A549 cells were transfected with recombinant plasmids. Cell proliferation was detected by MTT assay. A tumor-bearing mouse model was established for intratumoral gene injection. Apoptosis-related factors were detected by immunohistochemical assay. Caspase-8, caspase-3, caspase-9, PI3K, pAkt and pSTAT3 expressions were detected by Western blotting. RESULTS Compared with A549-GFP and A549 cells, A549-ICN cell growth in mice decelerated, tumor volume significantly reduced (p < 0.01), and survival time significantly increased (p < 0.05). Cyclin E and phosphorylated Rb protein expressions were significantly down-regulated. Compared with control, apoptosis-related protein Bcl-2 expression in tumors injected with Notch1 gene was significantly inhibited. After Deltex1 transfection, A549 cell proliferation decelerated, growth was significantly inhibited (p < 0.05), and survival time was significantly extended (p < 0.05). Cyclin E and mutant p53 protein expressions in tumors were down-regulated, phosphorylated Rb expression was almost completely inhibited, and Bcl-2 expression was significantly inhibited. TNF-α-related apoptosis-inducing ligand (TRAIL) inhibited A549-ICN cell growth time- and dose-dependently. After treatment for 24 h or longer, TRAIL induced apoptosis of more A549-ICN cells. Cleaved caspase-3 and cleaved caspase-9 were detected only in A549-ICN cells after 6 h of 40 ng/mL TRAIL treatment, but cleaved caspase-8 was not detected. Combining Notch1 signal with TRAIL inhibited PI3K, phosphorylated Akt and phosphorylated STAT3 expressions. CONCLUSION The Notch1 signaling pathway may inhibit A549 cell growth in vitro and in vivo by regulating cell cycle-related and anti-apoptotic protein expressions. Notch1 activation also suppressed A549 cell apoptosis by inhibiting the PI3K/pAkt pathway and activating the caspase-3 pathway in cooperation with TRAIL.
Collapse
Affiliation(s)
- Yun Zeng
- a Department of Medical Oncology , Jiangsu Cancer Hospital , Nanjing , Jiangsu Province , China.,b First Clinical College , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , China
| | - Bijian Yin
- a Department of Medical Oncology , Jiangsu Cancer Hospital , Nanjing , Jiangsu Province , China
| | - Xinwei Wang
- a Department of Medical Oncology , Jiangsu Cancer Hospital , Nanjing , Jiangsu Province , China
| | - Guohao Xia
- a Department of Medical Oncology , Jiangsu Cancer Hospital , Nanjing , Jiangsu Province , China
| | - Zhengjie Shen
- b First Clinical College , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , China
| | - Wenzhe Gu
- c Department of Otorhinolaryngology , Zhangjiagang Hospital of Traditional Chinese Medicine , Zhangjiagang , Jiangsu Province , China
| | - Mianhua Wu
- b First Clinical College , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , China
| |
Collapse
|
17
|
McManus M, Kleinerman E, Yang Y, Livingston JA, Mortus J, Rivera R, Zweidler-McKay P, Schadler K. Hes4: A potential prognostic biomarker for newly diagnosed patients with high-grade osteosarcoma. Pediatr Blood Cancer 2017; 64:10.1002/pbc.26318. [PMID: 27786411 PMCID: PMC6240354 DOI: 10.1002/pbc.26318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Prognostic biomarkers for osteosarcoma (OS) at the time of diagnosis are lacking. Necrotic response of OS to preoperative chemotherapy correlates with survival and is determined 3-4 months after diagnosis. The purpose of this study is to identify biomarkers that will stratify patients into good or poor responders to chemotherapy at diagnosis and determine the role of potential biomarkers in OS pathogenesis. PROCEDURE Because OS may be caused by disruptions of osteogenic differentiation, and the Notch pathway is one regulator of bone development, we examined the link between Notch effectors, OS differentiation, and OS outcome. We probed the R2: Genomics Analysis and Visualization Platform for RNA expression levels of Notch targets in mixed high-grade OS pretreatment biopsies. We used human OS cell lines in vitro and in mice to determine the role of the Notch target hairy/enhancer of split 4 (Hes4) in OS. RESULTS We found that in OS patients, high expression of Hes4 is correlated with decreased metastasis-free and overall survival. Human OS cells that overexpress Hes4 are more immature and have an increased invasive capacity in vitro. This was not universal to all Notch effectors, as Hes1 overexpression induced opposing effects. When injected into NSG mice, Hes4-overexpressing OS cells produced significantly larger, more lytic tumors and significantly more metastases than did control cells. CONCLUSIONS Hes4 overexpression promotes a more aggressive tumor phenotype by preventing osteoblastic differentiation of OS cells. Hes4 expression may allow for the stratification of patients into good or poor responders to chemotherapy at diagnosis.
Collapse
Affiliation(s)
- Madonna McManus
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - Eugenie Kleinerman
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - Yanwen Yang
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - J. Andrew Livingston
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared Mortus
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - Rocio Rivera
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - Patrick Zweidler-McKay
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| | - Keri Schadler
- Division of Pediatrics, Department of Pediatric Research, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Zhou J, Yang J, Fan X, Hu S, Zhou F, Dong J, Zhang S, Shang Y, Jiang X, Guo H, Chen N, Xiao X, Sheng J, Wu K, Nie Y, Fan D. Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy 2016; 12:515-28. [PMID: 26761524 DOI: 10.1080/15548627.2015.1136770] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LAMP2A is the key protein of chaperone-mediated autophagy (CMA), downregulation of LAMP2A leads to CMA blockade. CMA activation has been implicated in cancer growth, but the exact mechanisms are unclear. Elevated expression of LAMP2A was found in 8 kinds of tumors (n=747), suggesting that LAMP2A may have an important role in cancer progression. Unsurprisingly, LAMP2A knockdown in gastric cancer (GC) cells hindered proliferation, accompanied with altered expression of cell cycle-related proteins and accumulation of RND3/RhoE. Interactomic and KEGG analysis revealed that RND3 was a putative CMA substrate. Further study demonstrated that RND3 silencing could partly rescue the proliferation arrest induced by LAMP2A knockdown; RND3 was increased upon lysosome inhibition via both chemicals and LAMP2A-shRNA; Furthermore, RND3 could interact with CMA components HSPA8 and LAMP2A, and be engulfed by isolated lysosomes. Thus, constant degradation of RND3 by CMA is required to sustain rapid proliferation of GC cells. At last, the clinical significance of LAMP2A was explored in 593 gastric noncancerous lesions and 173 GC tissues, the results revealed that LAMP2A is a promising biomarker for GC early warning and prognosis of female GC patients.
Collapse
Affiliation(s)
- Jinfeng Zhou
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China.,b Department of Gastroenterology , The 264th hospital of PLA , Taiyuan , China
| | - Jianjun Yang
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xing Fan
- c Institute of Plastic Surgery of the Chinese PLA , Fourth Military Medical University , Xi'an , China
| | - Sijun Hu
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Fenli Zhou
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaqiang Dong
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Song Zhang
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Yulong Shang
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xiaoming Jiang
- d Department of Biochemistry and Molecular Biology , Ningbo University School of Medicine , Zhejiang , China
| | - Hao Guo
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Ning Chen
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xiao Xiao
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jianqiu Sheng
- e Department of Gastroenterology , General Hospital of Beijing Command , Beijing , China
| | - Kaichun Wu
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Yongzhan Nie
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
19
|
Paysan L, Piquet L, Saltel F, Moreau V. Rnd3 in Cancer: A Review of the Evidence for Tumor Promoter or Suppressor. Mol Cancer Res 2016; 14:1033-1044. [PMID: 27555595 DOI: 10.1158/1541-7786.mcr-16-0164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022]
Abstract
Rho-GTPases are members of the Ras superfamily of small GTPases and are general modulators of important cellular processes in tumor biology such as migration and proliferation. Among these proteins, Rnd3/RhoE, an atypical Rho-GTPase devoid of GTP hydrolytic activity, has recently been studied for its putative role in tumorigenesis. Indeed, Rnd3 is implicated in processes, such as proliferation and migration, whose deregulation is linked to cancer development and metastasis. The aim of this review is to provide an overview of the data surrounding Rnd3 deregulation in cancers, its origin, and consequences. Presented here is a comprehensive account of the expression status and biological output obtained in prostate, liver, stomach, colon, lung, and brain cancers as well as in melanoma and squamous cell carcinoma. Although there appears to be no general consensus about Rnd3 expression in cancers as this protein is differently altered according to the tumor context, these alterations overwhelmingly favor a protumorigenic role. Thus, depending on the tumor type, it may behave either as a tumor suppressor or as a tumor promoter. Importantly, the deregulation of Rnd3, in most cases, is linked to patient poor outcome. IMPLICATIONS Rnd3 has prognostic marker potential as exemplified in lung cancers and Rnd3 or Rnd3-associated signaling pathways may represent a new putative therapeutic target. Mol Cancer Res; 14(11); 1033-44. ©2016 AACR.
Collapse
Affiliation(s)
- Lisa Paysan
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Léo Piquet
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Frédéric Saltel
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France.,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France. .,Univ. Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
20
|
Gerhardt C, Leu T, Lier JM, Rüther U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 2016; 5:14. [PMID: 27293550 PMCID: PMC4901515 DOI: 10.1186/s13630-016-0035-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells. Int J Mol Sci 2016; 17:435. [PMID: 27023521 PMCID: PMC4848891 DOI: 10.3390/ijms17040435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells). We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR) for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.
Collapse
|
22
|
Abstract
Rnd3, also known as RhoE, belongs to the Rnd subclass of the Rho family of small guanosine triphosphate (GTP)-binding proteins. Rnd proteins are unique due to their inability to switch from a GTP-bound to GDP-bound conformation. Even though studies of the biological function of Rnd3 are far from being concluded, information is available regarding its expression pattern, cellular localization, and its activity, which can be altered depending on the conditions. The compiled data from these studies implies that Rnd3 may not be a traditional small GTPase. The basic role of Rnd3 is to report as an endogenous antagonist of RhoA signaling-mediated actin cytoskeleton dynamics, which specifically contributes to cell migration and neuron polarity. In addition, Rnd3 also plays a critical role in arresting cell cycle distribution, inhibiting cell growth, and inducing apoptosis and differentiation. Increasing data have shown that aberrant Rnd3 expression may be the leading cause of some systemic diseases; particularly highlighted in apoptotic cardiomyopathy, developmental arrhythmogenesis and heart failure, hydrocephalus, as well as tumor metastasis and chemotherapy resistance. Therefore, a better understanding of the function of Rnd3 under different physiological and pathological conditions, through the use of suitable models, would provide a novel insight into the origin and treatment of multiple human diseases.
Collapse
Affiliation(s)
- Wei Jie
- Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang, Guangdong Province, China
| | - Kelsey C Andrade
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xi Lin
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiangsheng Yang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Xiaojing Yue
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| | - Jiang Chang
- Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas, USA
| |
Collapse
|
23
|
Shang C, Hong Y, Guo Y, Liu YH, Xue YX. miR-128 regulates the apoptosis and proliferation of glioma cells by targeting RhoE. Oncol Lett 2015; 11:904-908. [PMID: 26870304 DOI: 10.3892/ol.2015.3927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigate whether miR-128 is capable of regulating the apoptosis and proliferation of human U251 glioma cells by downregulating RhoE. The expression of miR-128 was assessed by quantitative polymerase chain reaction in normal brain tissue and glioma samples. A significant downregulation of the expression of miR-128 was detected in glioma in contrast to normal brain tissue. Following the transfection of pre-miR-128 and anti-miR-128 into U251 cells, the high expression of miR-128 could inhibit proliferation and induce apoptosis in U251 cells, and those effects could be restored by miR-128 knockdown. To analyze the regulation mechanism of miR-128, TargetScan, miRanda and PicTar were used to ascertain whether RhoE was a potential target gene. Next, luciferase activity assay and western blot analysis confirmed that RhoE was a direct and specific target gene of miR-128. The advanced effects of pre-miR-128 on the apoptosis and proliferation of U251 cells were reversed by the upregulation of RhoE expression. In summary, aberrantly expressed miR-128 regulates apoptosis and proliferation in human glioma U251 cells partly by directly targeting RhoE. This finding may offer a new potential therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Hong
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, Liaoning 110007, P.R. China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
24
|
Liu B, Lin X, Yang X, Dong H, Yue X, Andrade KC, Guo Z, Yang J, Wu L, Zhu X, Zhang S, Tian D, Wang J, Cai Q, Chen Q, Mao S, Chen Q, Chang J. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity. Cancer Med 2015; 4:1404-16. [PMID: 26108681 PMCID: PMC4567025 DOI: 10.1002/cam4.484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/22/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis.
Collapse
Affiliation(s)
- Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Xi Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030
| | - Xiangsheng Yang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030
| | - Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Xiaojing Yue
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030
| | - Kelsey C Andrade
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030
| | - Zhentao Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jian Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Xiaonan Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Junmin Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qizuan Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Shanping Mao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jiang Chang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030
| |
Collapse
|
25
|
Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep 2015; 5:10338. [PMID: 25996086 PMCID: PMC4440529 DOI: 10.1038/srep10338] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Various studies have assessed the clinicopathological and prognostic value of Notch1 and Notch3 expression in Non-small cell lung cancer (NSCLC), but their results remain controversial. This meta-analysis was conducted to address the above issues by using a total of 19 studies involving 3663 patients. The correlations between Notch1 and Notch3 expression and clinicopathological features and NSCLC prognosis were analyzed. The meta-analysis indicated that higher expression of Notch1 was associated with greater possibility of lymph node metastasis and higher TNM stages. Moreover, patients with Notch1 overexpression and Notch3 overexpression showed significantly poor overall survival (Notch1: HR, 1.29; 95% CI, 1.06–1.57, p = 0.468 and I2 = 0.0%; Notch3: HR, 1.57; 95%CI, 1.04-2.36, p = 0.445 and I2 = 0.0%). Furthermore, there are statistically significant association between overall survival of NSCLC patients and the expression of Notch signaling ligand DLL3 and target gene HES1. Our meta-analysis supports that Notch signaling is a valuable bio-marker to predict progression and targeting Notch signaling could benefit subpopulation of NSCLC patients.
Collapse
|
26
|
RBPJ inhibition impairs the growth of lung cancer. Tumour Biol 2015; 36:3751-6. [PMID: 25589461 DOI: 10.1007/s13277-014-3015-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
The exact effects of the modulation of Notch signaling pathway on cell growth have been shown to depend on tumor cell type. Recombination signal-binding protein Jκ (RBPJ) is a key transcription factor downstream of receptor activation in Notch signaling pathway. Here, we evaluated the effects of RBPJ inhibition on the growth of lung cancer cells. We found that a short hairpin interfering RNA (shRNA) for RBPJ efficiently inhibited RBPJ expression in lung cancer cells, resulting in a significant decrease in the cell growth. Further analyses showed that RBPJ inhibition altered the levels of its downstream targets, including p21, p27, CDK2, Hes1, Bcl-2, and SKP2, to prevent the cells from growing. Our data thus suggest that shRNA intervention of RBPJ expression could be a promising therapeutic approach for treating human lung cancer.
Collapse
|